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C∗-Algebras over Topological Spaces:
Filtrated K-Theory

Ralf Meyer and Ryszard Nest

Abstract. We define the filtrated K-theory of a C∗-algebra over a finite topological space X and explain

how to construct a spectral sequence that computes the bivariant Kasparov theory over X in terms of

filtrated K-theory.

For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an

exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification.

We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe

two C∗-algebras over a space X with four points that have isomorphic filtrated K-theory without being

KK(X)-equivalent. For this space X, we enrich filtrated K-theory by another K-theory functor to a

complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.

1 Introduction

1.1 The Universal Coefficient Theorem Problem

One of the main problems in the theory of C∗-algebras is the computation of the

equivariant KK-theory of C∗-algebras endowed with some extra structure. Here we

apply the general techniques developed in [6, 9] to the case of C∗-algebras with a

non-trivial ideal lattice. The appropriate version of KK-theory is Kirchberg’s gener-

alisation of Kasparov theory to C∗-algebras over non-Hausdorff topological spaces

(see [5]). Our goal is to compute it in terms of more manageable K-theoretic in-

formation, generalising the usual Universal Coefficient Theorem that computes Kas-

parov’s original theory for C∗-algebras in the bootstrap class by an exact sequence

(1.1) Ext(K∗+1(A),K∗(B)) ֌ KK∗(A,B) ։ Hom(K∗(A),K∗(B)).

The generalisation of the bootstrap class to the case of C∗-algebras with non-

trivial ideal lattice was introduced and studied in [8]. Let us first recall some notation

from [8]. Let X be a (usually non-Hausdorff) topological space. A C∗-algebra over X

is a C∗-algebra A endowed with a continuous map Prim(A) → X. Let C∗alg(X)

be the category of C∗-algebras over X; the morphisms in C∗alg(X) are given by

X-equivariant (in obvious sense) ∗-homomorphisms. Taking Kirchberg’s KK-groups

as morphisms and the same objects, we get the category KK(X). It has a structure of a

triangulated category (see [8]). For finite X, the bootstrap class B(X) is defined as the

smallest subcategory of KK(X) that is closed under suspension, isomorphism, exact

triangles, and direct sums and contains all objects with underlying C∗-algebra C .
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General methods from homological algebra suggest a homology theory H∗ for

C∗-algebras over X, taking values in some Abelian category C. Under some mild as-

sumptions, the machinery developed in [6,9] yields an Adams type spectral sequence

which abuts to KK(X; , ), with an E2-term expressed in terms of H∗.

For classification purposes, we need, instead of a spectral sequence, a short exact

sequence of the type (1.1):

(1.2) ExtC(H∗+1(A),H∗(B)) ֌ KK∗(X; A,B) ։ HomC(H∗(A),H∗(B)),

and a precise description of the range of H∗.

In this case, given two C∗-algebras A and B over X that belong to the bootstrap

class, an isomorphism of H∗(A) to H∗(B) lifts to a KK(X)-equivalence between A

and B. The results of Eberhard Kirchberg then allow lifting this KK(X)-equivalence

to a ∗-isomorphism A ∼= B, provided A and B are tight, purely infinite, stable, nuclear

and separable; here tightness means that the maps Prim(A) → X and Prim(B) → X

are homeomorphisms (see [5]). It was also shown in [8] that, in the case when X is

finite, any object of the bootstrap class is KK(X)-equivalent to a tight, purely infinite,

stable, nuclear, separable C∗-algebra over X.

Hence the existence of an exact sequence of the form (1.2) for all objects of the boot-

strap class leads to a complete classification of the tight, purely infinite, stable, nuclear,

separable C∗-algebras over X in terms of their image under the functor H∗.

1.2 Main Results

It is relatively easy to construct filtrations on KK that produce spectral sequences

which converge to KK-groups on the bootstrap category and whose E2-term involves

only the K-theory of the quotients K∗(A/ J) for the ideals J corresponding to minimal

open subsets of X; an example is the filtration used in [8, §4.1]. However, this spectral

sequence is not very useful for practical purposes, since it does not degenerate at

the E2-level. The second differential involves, in particular, the K-theory of various

subquotients I/ J for the ideals I ⊂ J ⊂ A and the associated six-term exact sequences

in K-theory

(1.3) K0(I) // K0( J) // K0( J/I)

��
K1( J/I)

OO

K1( J)oo K1(I).oo

Also higher differentials do not vanish.

To get a short exact sequence instead, we need to consider more sophisticated ho-

mology theories. The homology theory analysed here is “filtrated K-theory,” which is

in some sense the second approximation to this spectral sequence. Roughly speaking,

filtrated K-theory comprises the K-theory of various subquotients together with all

canonical maps between these groups. We will make this definition precise later. The

part of it which involves the exact sequences (1.3) appeared previously in the work
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of Gunnar Restorff [11] for Cuntz–Krieger algebras and of Mikael Rørdam [13] and

Alexander Bonkat [2] for extensions of C∗-algebras. The UCT theorem in the case

when the ideal structure is given by I1 ⊳ I2 ⊳ A was obtained by Gunnar Restorff in

his Ph.D. thesis [12], where he introduced an invariant which is a particular case of

filtrated K-theory.

In this paper we prove the following theorem.

Theorem 1.1 The filtrated K-theory satisfies the Universal Coefficient Theorem and

is a complete invariant for C∗-algebras over those finite topological spaces with a totally

ordered lattice of open subsets.

Note that a C∗-algebra over a space of the type described in this result is essentially

the same as a C∗-algebra A together with a finite increasing chain of ideals

{0} = I0 ⊳ I1 ⊳ I2 ⊳ I3 ⊳ · · · ⊳ In−1 ⊳ In = A.

We will also show that the spectral sequence associated with the filtrated K-theory

does not collapse in general. Let (X, <) be the partially ordered set, where X =

{1, 2, 3, 4} with the partial order given by 1, 2, 3 < 4 and no further strict inequalities

between 1, 2, 3. A C∗-algebra over this space is a C∗-algebra A together with an ideal I

and a decomposition of A/I into a direct sum of three orthogonal ideals.

Theorem 1.2 The filtrated K-theory over (X, <) does not satisfy the Universal Coeffi-

cient Theorem and is not a complete invariant.

In fact, we give an explicit example of two C∗-algebras A and B over X in the boot-

strap class that have isomorphic filtrated K-theory but are not KK(X)-equivalent.

However, for the particular four-point space X, we still get a complete invariant and

a Universal Coefficient Theorem as in (1.2), by adding another K-theory functor to fil-

trated K-theory.

It is not clear how to construct such an enriched and still computable filtrated

K-theory for general finite spaces.

1.3 The General Machinery

Now we explain the general machinery behind our approach. Let us fix a finite topo-

logical space X. The first step is the correct definition of filtrated K-theory. The fil-

trated K-theory of a C∗-algebra A over X comprises the Z/2-graded Abelian groups

K∗

(
A(Y )

)
for all locally closed subsets Y ⊆ X together with all natural transforma-

tions between these groups. The main issue here is to find all natural transforma-

tions. These natural transformations enter in the definition of the target category

of the filtrated K-theory functor and thus influence the Hom and Ext terms that we

expect in the Universal Coefficient Theorem.

We can guess some of these natural transformations. If U is a relatively open

subset of Y , then A(U ) is an ideal in A(Y ), with quotient A(Y )/A(U ) = A(Y \ U ).
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This C∗-algebra extension leads to a natural six-term exact sequence

(1.4)

K0(A(U )) // K0(A(Y )) // K0(A(Y \U ))

��
K1(A(Y \U ))

OO

K1(A(Y ))oo K1(A(U )).oo

These exact sequences provide three types of natural transformations associated with

inclusions of open subsets, restriction to closed subset, and boundary maps.

An obvious source for relations between these natural transformations are mor-

phisms of C∗-algebra extensions: since the six-term exact sequences in (1.4) are natu-

ral, each natural morphism of extensions provides some commuting diagrams, which

become relations among our generators.

But do these obvious generators and relations already describe all natural transfor-

mations? This turns out to be the case for the spaces studied in this article — both the

positive and the negative examples. Although the authors know no counterexamples,

we do not expect this to be so in general.

The starting point for our study of filtrated K-theory is that the covariant functors

A 7→ K∗

(
A(Y )

)
are representable, that is, they are of the form KK∗(X;RY ,A) for

suitable C∗-algebras RY over X — these are the representing objects. Our construc-

tion of RY yields commutative C∗-algebras, consisting of C0-functions on suitable

locally closed subspaces of the order complex of the partial order on X. The Yoneda

Lemma tells us that natural transformations from K∗(A(Y )) to K∗(A(Z)) correspond

to KK∗(X;RZ ,RY ) ∼= K∗

(
RY (Z)

)
. These groups are easy enough to compute in the

examples we consider, and turn out to be definable by the concrete generators and

relations mentioned above.

The natural transformations acting on filtrated K-theory form a Z/2-graded pre-

additive category NT. A (countable) module over NT is, by definition, an additive

functor from NT to the category of (countable) Z/2-graded Abelian groups. By con-

struction, the filtrated K-theory of any C∗-algebra over X is such a countable mod-

ule. Let C be the category of countable NT-modules. This is an Abelian category,

and filtrated K-theory is a stable homological functor FK from the Kasparov category

KK(X) of C∗-algebras over X to C.

It is easy to check that the functor FK: KK(X) → C is universal in the language

of [9]. General results on homological ideals in triangulated categories now produce

a cohomological spectral sequence that converges towards KK∗(X; A,B) if A belongs

to the bootstrap class; its E2-term involves Ext
p

C

(
FK(A), FK(B)

)
.

The main issue is whether the Ext-groups Ext
p

C
(FK(A), FK(B)) with p ≥ 2 vanish,

so that our spectral sequence degenerates to an exact sequence of the desired form.

This amounts to checking whether FK(A) has a projective resolution of length 1 in C.

Already for the non-Hausdorff two-point space considered in [2, 13], the cate-

gory C has infinite cohomological dimension, that is, there are objects that admit no

projective resolution of finite length. But these objects do not belong to the range of

the functor FK. If an NT-module A belongs to the range of FK, then there are exact
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sequences

(1.5) · · · → A(U ) → A(Y ) → A(Y \U ) → A(U ) → · · ·

for any Y ∈ LC(X), U ∈ LC(Y ) because of (1.4). But there are NT-modules without

finite length projective resolutions. For totally ordered spaces, an object of C has a

projective resolution of length 1 if and only if it has a projective resolution of finite

length, if and only if the sequences (1.5) are exact, if and only if it is the filtrated

K-theory of some separable C∗-algebra over X, which we can take in the bootstrap

class.

For the four-point counterexample considered in Section 5, we first find a torsion-

free exact module that is not projective and then use it to find an exact module with-

out projective resolutions of length 1. Then we find two non-isomorphic objects of

the bootstrap class with the same filtrated K-theory. The idea here is to consider a

certain exact triangle ΣC → A → B → C , which splits on the level of filtrated

K-theory, so that A ⊕C and B have the same filtrated K-theory. But we can prove in

our concrete example that A ⊕C and B are not KK(X)-equivalent.

A C∗-algebra over the four-point space X is a C∗-algebra A with a distinguished

ideal I and a direct sum decomposition of A/I as a direct sum of three orthogonal ide-

als. Since both direct sums and extensions of C∗-algebras can be classified by filtrated

K-theory, it is remarkable that the combination of both provides a counterexample.

Incidentally, the space Xop that corresponds to a C∗-algebra A with a distinguished

ideal I and a direct sum decomposition of I as a direct sum of three orthogonal ideals

also leads to a counterexample in a similar fashion.

For the four-point space X above, there is essentially just one module that ought

to be projective but is not. We can add another invariant to filtrated K-theory that

corresponds to this offending module. Since this changes our whole category, it may

lead to further offending modules, which would have to be added in a second step,

and this could, in principle, go on forever. But in the concrete case at hand, we get

projective resolutions of length 1 for all modules over the enriched filtrated K-theory.

As a result, the enriched filtrated K-theory classifies objects of the bootstrap class

over X up to KK(X)-equivalence, and it classifies purely infinite separable nuclear

stable C∗-algebras with primitive ideal space X and simple subquotients in the boot-

strap class.

1.4 Some Basic Notation

We shall use the following notation from [8]:

∈∈ : we write x ∈∈ C for objects of a category C as opposed to mor-

phisms;

X : a topological space, often assumed sober (see [14]);

O(X) : the set of open subsets of X, partially ordered by ⊆;

LC(X) : the set of locally closed subsets of X;

LC(X)∗ : the set of connected, non-empty locally closed subsets of X;

� : the specialisation preorder on X, defined by x � y ⇐⇒ {x} ⊆ {y}
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A : a C∗-algebra;

Prim(A) : the primitive ideal space of A with hull–kernel topology;

I(A) : the set of closed ∗-ideals in A, partially ordered by ⊆;

C∗alg(X) : the category of C∗-algebras over X with X-equivariant ∗-homo-

morphisms

C∗sep(X) : the full subcategory of separable C∗-algebras over X;

KK(X) : the Kasparov category of C∗-algebras over X: its objects are sep-

arable C∗-algebras over X, its set of morphisms from A to B is

KK0(X; A,B);

B(X) : the bootstrap class in KK(X);

iX
Y : the extension functor C∗alg(Y ) → C∗alg(X) or KK(Y ) →

KK(X) for a subset Y ⊆ X;

ix : an abbreviation for iX
{x} for x ∈ X;

rY
X : the restriction functor C∗alg(X) → C∗alg(Y ) or KK(X) →

KK(Y ) for a locally closed subset Y ⊆ X;

Σ : the suspension ΣA := C0(R,A).
Roughly speaking, a space is sober if it can be recovered from the lattice O(X). It is

explained in [8, §2.5] why we may restrict attention to such spaces. For finite spaces,

sobriety is equivalent to the separation axiom T0, that is, two points are equal once

they have the same closure.

A C∗-algebra over X is a pair (A, ψ) consisting of a C∗-algebra A and a continuous

map ψ : Prim(A) → X. If X is sober, this is equivalent to a map

ψ∗ : O(X) → I(A), U 7→ A(U )

that preserves finite infima and arbitrary suprema, that is,

A
( ⋂

U∈F

U
)
=

⋂
U∈F

A(U ), A
( ⋃

U∈S

U
)
=

∨
U∈S

A(U ) =
∑

U∈S

A(U ),

where F ⊆ O(X) is finite and S ⊆ O(X) is arbitrary. In particular, this implies

A(∅) = {0}, A(X) = A, and the monotonicity condition A(U ) ⊳ A(V ) for U ⊆ V .

A ∗-homomorphism f : A → B between two C∗-algebras over X is X-equivariant

if f (A(U )) ⊆ B(U ) for all U ∈ O(X).

A subset Y ⊆ X is locally closed if and only if Y = U \V for open subsets V,U ∈
O(X) with V ⊆ U . Then we define A(Y ) := A(U )/A(V ) for a C∗-algebra A over X;

this does not depend on the choice of U and V by [8, Lemma 2.15].

If Y ⊆ X is locally closed and A is a C∗-algebra over Y , then we extend A to a

C∗-algebra iX
Y A over X by iX

Y A(Z) := A(Y ∩ Z) for Z ∈ LC(X). Conversely, we can

restrict a C∗-algebra B over X to a C∗-algebra rY
X (B) over Y by rY

X B(Z) := B(Z) for all

Z ∈ LC(Y ) ⊆ LC(X).

The category KK(X) is triangulated, with exact triangles coming either from map-

ping cone triangles of X-equivariant ∗-homomorphisms or, equivalently, from semi-

split C∗-algebra extensions over X (see [7, 8]). Here an extension is called semi-split

if it splits by an X-equivariant completely positive contraction.

The bootstrap class B(X) is the localising subcategory of KK(X) generated by the

objects ixC for all x ∈ X. That is, it is the smallest class of objects containing these
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generators that is closed under suspensions, KK(X)-equivalence, semi-split exten-

sions, and countable direct sums.

2 Filtrated K-Theory

Let X be a finite topological space. We will not discuss filtrated K-theory for

C∗-algebras over infinite spaces here.

Definition 2.1 For a locally closed subset Y ⊆ X, we define a functor

FKY : KK(X) → Ab
Z/2, FKY (A) := K∗(A(Y )).

Here Ab denotes the category of Abelian groups and Ab
Z/2 denotes the category of

Z/2-graded Abelian groups.

For each Y ∈ LC(X), the functor FKY is stable and homological, that is, it inter-

twines the suspension on KK(X) with the translation functor on Ab
Z/2 (this func-

tor shifts the grading), and if ΣC → A → B → C is an exact triangle in KK(X)

— this may, for instance, come from a semi-split extension A ֌ B ։ C — then

FKY (A) → FKY (B) → FKY (C) is an exact sequence in Ab
Z/2.

The functors FKY together form the filtrated K-theory functor. But the latter also

includes its target category, which we now define in a rather abstract way.

Definition 2.2 For Y,Z ∈ LC(X), let NT∗(Y,Z) be the Z/2-graded Abelian group

of all natural transformations FKY ⇒ FKZ . The composition of natural transforma-

tions provides a product

NTi(Y,Z) ×NT j(W,Y ) → NTi+ j(W,Z), f , g 7→ f ◦ g,

which is associative and additive in each variable.

We let NT be the Z/2-graded category whose object set is LC and whose mor-

phism space Y → Z is NT∗(Y,Z). The Abelian group structure on these morphism

spaces turns this into a pre-additive category.

Definition 2.3 A module over NT is a grading preserving, additive functor

G : NT → Ab
Z/2. That is, it consists of a family of Z/2-graded Abelian groups

GY = (GY,0,GY,1) for Y ∈ LC(X) and product maps NTi(Y,Z) × GY, j → GZ,i+ j

for all Y,Z ∈ LC(X), i, j ∈ Z/2; these product maps are associative, additive in each

variable, and the identity transformations in NT(Y,Y ) act identically on GY for all

Y ∈ LC(X).

Let Mod(NT) be the category of NT-modules. The morphisms in Mod(NT) are

the natural transformations of functors or, equivalently, families of grading preserv-

ing group homomorphisms GY → G ′
Y that commute with the actions of NT. Let

Mod(NT)c be the full subcategory of countable modules.

By construction, the natural transformations FKY ⇒ FKZ in NT∗(Y,Z) induce

maps FKY (A) → FKZ(A) for all A ∈∈ KK(X). This turns (FKY (A))Y∈LC(X) into
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a module over NT. Furthermore, it is well known that the K-theory of separable

C∗-algebras such as A(Y ) for A ∈∈ KK(X) is countable.

Definition 2.4 Filtrated K-theory is the functor

FK = (FKY )Y∈LC(X) : KK(X) → Mod(NT)c, A 7→
(

K∗(A(Y ))
)

Y∈LC(X)
.

The target category Mod(NT)c is an important part of this definition because we

will compute groups of morphisms and extensions in this category.

Since A(∅) = {0} for all C∗-algebras over X, we have FK∅ = 0, so that ∅ is a

zero object of NT. Therefore, G∅ vanishes for any NT-module.

If Y ∈ LC(X) is not connected, that is, Y = Y1 ⊔ Y2 with two disjoint rela-

tively open subsets Y1,Y2 ∈ O(Y ) ⊆ LC(X), then A(Y ) ∼= A(Y1) ⊕ A(Y2) for any

C∗-algebra A over X. Hence FKY (A) ∼= FKY1
(A)× FKY2

(A). The natural transforma-

tions that implement this natural isomorphism correspond to a direct sum diagram

Y ∼= Y1 ⊕ Y2 in NT. Therefore, any NT-module has GY
∼= GY1

⊕ GY2
; here we use

the fact that a functor that is additive on morphisms is also additive on objects, even

if the category in question is only pre-additive.

Since X is finite, any locally closed subset is a disjoint union of its connected com-

ponents. This corresponds to a direct sum decomposition Y ∼=
⊕

j∈π0(Y ) Y j in NT.

Therefore, we lose no information when we replace LC(X) by the subset LC(X)∗ of

nonempty, connected, locally closed subsets.

2.1 The Representability Theorem

The representability theorem serves two purposes. We will first use it to describe the

category NT. Later we use it to construct geometric resolutions in KK(X).

Theorem 2.5 Let X be a finite topological space. The covariant functors FKY for

Y ∈ LC(X) are representable, that is, there are objects RY ∈∈ KK(X) and natural

isomorphisms

KK∗(X;RY ,A) ∼= FKY (A) = K∗(A(Y ))

for all A ∈∈ KK(X), Y ∈ LC(X).

Before we prove this theorem in §2.2, we first describe the representing ob-

jects RY explicitly, and we use this to describe the groups of natural transformations

NT∗(Y,Z) as K-theory groups of certain locally compact spaces.

The construction of RY requires some preparation. We equip X with the special-

isation preorder � as in [8, §2.7]; recall that x � y if and only if {x} ⊆ {y}. Since

the topological space X is finite, it carries the Alexandrov topology of the preorder �,

that is, a subset Y ⊆ X is open if and only if x � y ∈ Y implies x ∈ Y . Similarly,

Y ⊆ X is closed if and only if x � y ∈ Y implies x ∈ Y , and locally closed if and only

if x � y � z and x, z ∈ Y implies y ∈ Y .

Definition 2.6 Let (X,�) be a partially ordered set. Its order complex is the geo-

metric realisation of the simplicial set Ch(X) whose n-simplices are the chains x0 �
x1 � · · · � xn in X and whose face and degeneracy maps delete or double an entry

of the chain.
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Equivalently, Ch(X) is the classifying space of the thin category that has object

set X and a morphism x → y whenever x � y.

The order complex is the main ingredient in the construction of the representing

objects RY for Y ∈ LC(X).

The non-degenerate n-simplices in Ch(X) are the strict chains x0 ≺ · · · ≺ xn in X.

We let SX be the set of all strict chains. For each I = (x0 ≺ · · · ≺ xn) ∈ SX , we let ∆I

be a copy of ∆n; more formally, ∆I = {(t, I) | t ∈ ∆n}. We also let ∆◦
I ⊆ ∆I be the

corresponding open simplex ∆n \ ∂∆n.

The space Ch(X) is obtained from the union
∐

I∈SX
∆I by identifying ∆I with the

corresponding face in ∆ J whenever I, J ∈ SX satisfy I ⊆ J. Thus the underlying set

of Ch(X) is a disjoint union

(2.1) Ch(X) =
∐

I∈SX

∆
◦
I .

For I ∈ SX , let min I and max I be the (unique) minimal and maximal elements

in SX , respectively. We define two functions m,M : Ch(X) → X by mapping points

in ∆
◦
I to min I and max I, respectively. This well defines functions on Ch(X), because

of (2.1).

Lemma 2.7 If Y ⊆ X is closed, then m−1(Y ) is open and M−1(Y ) is closed in Ch(X).

If Y ⊆ X is open, then m−1(Y ) is closed and M−1(Y ) is open. If Y ⊆ X is locally closed,

then m−1(Y ) and M−1(Y ) are locally closed.

Proof First we show that M−1(Y ) is closed if Y is closed. If I ∈ SX satisfies max I ∈
Y , then max J ∈ Y for all J ⊆ I because max J � max I ∈ Y . Hence ∆I ⊆ M−1(Y )

once M−1(Y ) ∩∆
◦
I 6= ∅, so that M−1(Y ) ∩∆I is closed for all I ∈ SX ; this implies

that M−1(Y ) is closed.

A similar argument shows that m−1(Y ) is closed in Ch(X) if Y is open. Now the

remaining assertions follow easily because the maps m−1 and M−1 commute with

complements, unions, and intersections.

More explicitly, if Y ⊆ X is open, then m−1(Y ) is the union of the simplices SX for

all chains x0 ≺ x1 ≺ · · · ≺ xn with x0 ∈ Y and hence x0, . . . , xn ∈ Y . Thus

m−1(Y ) = Ch(Y ) if Y ⊆ X is open.

Similarly,

M−1(Y ) = Ch(Y ) if Y ⊆ X is closed.

Here we identify Ch(Y ) with a subcomplex of Ch(X) in the obvious way.

Let Xop be X with the topology for the reversed partial order ≻; that is, the open

subsets of Xop are the closed subsets of X, and vice versa. We may rephrase Lemma 2.7

as follows.

Proposition 2.8 The map (m,M) : Ch(X) → Xop × X is continuous.
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Let R := C(Ch(X)) be the C∗-algebra of continuous functions on Ch(X). Since

PrimR = Prim C
(

Ch(X)
)

∼= Ch(X), the map (m,M) turns R into a C∗-algebra

over Xop ×X. We abbreviate S(Y,Z) := m−1(Y )∩M−1(Z) ⊆ Ch(X); this is a locally

closed subset of Ch(X) by Lemma 2.7

Definition 2.9 We let RY be the C∗-algebra over X with

RY (Z) := R(Y op × Z) = C0

(
S(Y,Z)

)

for all Y,Z ∈ LC(X); here Y op denotes Y with the subspace topology from Xop.

Equivalently, we let RY be the restriction of R to Y op × X, viewed as a C∗-algebra

over X via the coordinate projection Y op × X → X.

We will prove Theorem 2.5 for this choice of RY in §2.2. Taking this for granted,

we use the concrete description of RY to compute the groups of natural transfor-

mations. By the Yoneda Lemma, natural transformations between the functors FKY

come from morphisms between the representing objects. More precisely,

(2.2) NT∗(Y,Z) ∼= KK∗(X;RZ ,RY ) ∼= FKZ(RY ) = K∗(RY (Z))

= K∗(R(Y op × Z)) = K∗
(

m−1(Y ) ∩ M−1(Z)
)
= K∗(S(Y,Z)).

By the way, the universal property of Kasparov theory says that it makes no differ-

ence for the natural transformations FKY ⇒ FKZ whether we view these two func-

tors as defined on C∗sep(X) or KK(X). But since RY only represents FKY on the level

of KK(X), we get KK∗(X;RZ ,RY ) and not the space of X-equivariant ∗-homomor-

phisms RZ → RY .

We describe S(Y,Z) more explicitly using the closure and boundary operations

Z := {x ∈ X | there is z ∈ Z with x � z}, ∂Z := Z \ Z,

Ỹ := {x ∈ X | there is y ∈ Y with x � y}, ∂̃Y := Ỹ \ Y.

Of course, Z is the closure of Z in X and Ỹ is the closure of Y in Xop.

Lemma 2.10 If Y,Z ∈ LC(X), then

S(Y,Z) = Ch(Ỹ ∩ Z)
∖ (

Ch(Ỹ ∩ ∂Z) ∪ Ch(∂̃Y ∩ Z)
)
.

In particular,

S(Y,Z) = Ch(Y ∩ Z) \ Ch(Y ∩ ∂Z) if Y is open,

S(Y,Z) = Ch(Ỹ ∩ Z) \ Ch(∂̃Y ∩ Z) if Z is closed,

S(Y,Z) = Ch(Y ∩ Z) if Y is open and Z is closed.
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Proof Let x0 ≺ x1 ≺ · · · ≺ xn be a strict chain in X. The interior of the correspond-

ing simplex belongs to S(Y,Z) if and only if x0 ∈ Y and xn ∈ Z. This implies x j ∈ Ỹ

and x j ∈ Z for all j, so that the simplex belongs to Ch(Ỹ ∩ Z). Furthermore, we nei-

ther have x j ∈ ∂̃Y ∩ Z for all j nor x j ∈ Ỹ ∩ ∂Z for all j because x0 ∈ Y and xn ∈ Z.

Thus the simplex belongs neither to Ch(Ỹ ∩ ∂Z) nor to Ch(∂̃Y ∩ Z). Conversely, if

x j ∈ Ỹ ∩ Z for all j and neither x j ∈ ∂̃Y ∩ Z for all j nor x j ∈ Ỹ ∩ ∂Z for all j,

then some x j must belong to Y ∩ Z and some xk must belong to Ỹ ∩ Z. Since Y ∩ Z

is closed in Ỹ ∩ Z and Ỹ ∩ Z is open in Ỹ ∩ Z, this implies x0 ∈ Y and xn ∈ Z. This

shows that the interior of a simplex belongs to S(Y,Z) if and only if it is contained in

Ch(Ỹ ∩ Z)
∖ (

Ch(Ỹ ∩ ∂Z) ∪ Ch(∂̃Y ∩ Z)
)

.

Lemma 2.10 and (2.2) yield

NT∗(Y,Z) ∼= K∗(S(Y,Z)) ∼= K∗
(

Ch(Ỹ ∩ Z),Ch(Ỹ ∩ ∂Z) ∪ Ch(∂̃Y ∩ Z)
)
.

This is the K-theory of a finite CW-pair and hence is always finitely generated as an

Abelian group.

If C is any finite simplicial complex, then its barycentric subdivision is of the

form Ch(X), where X is the partially ordered set of non-degenerate simplices in C .

Thus NT∗(X,X) = K∗(|C|), so that any finitely generated Abelian group arises as

NT∗(X,X). As a consequence, special properties of the pre-additive category NT can

only be hidden in its composition.

When we identify NT∗(Y,Z) ∼= KK∗(X;RZ ,RY ), then the composition of nat-

ural transformations corresponds to the Kasparov composition product. This gets

somewhat obscured when we follow the isomorphisms

KK∗(X;RZ ,RY ) ∼= K∗

(
RY (Z)

)
= K∗

(
S(Y,Z)

)
.

To describe the composition of natural transformations in terms of K∗
(

S(Y,Z)
)

, we

must first lift elements of K∗
(

S(Y,Z)
)

back to KK∗(X;RZ ,RY ) and then compose

them. The lifting requires a formula for the natural isomorphism

(2.3) KK∗(X;RY ,A) → K∗

(
A(Y )

)

that occurs in the Representability Theorem. By the Yoneda Lemma, any such natural

transformation is of the form f 7→ f∗(ξY ) for a unique

ξY ∈ K0(RY (Y )) = K0(S(Y,Y )) = K0(Ch(Y )).

The natural transformation in (2.3) is generated by the class of the 1-dimensional

trivial vector bundle over the compact space Ch(Y ) or, equivalently, the class of the

unit element in K0

(
RY (Y )

)
.

In the examples we consider later, all natural transformations turn out to be prod-

ucts of obvious ones, coming from the K-theory six-term exact sequences (1.4). To

check this, we only have to verify that a given element α of KK∗(X;RZ ,RY ) lifts a

given element of K∗
(

S(Y,Z)
)

. The isomorphism (2.3) maps α to [ξZ] ⊗RZ (Z) α(Z)
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in K∗

(
RY (Z)

)
= K∗

(
S(Y,Z)

)
, where α(Z) in KK∗

(
RZ(Z),RY (Z)

)
is obtained

from α by restriction to Z. This product is easy to compute.

To get acquainted with this approach to natural transformations, we compute

some important examples. Let Y ∈ LC(X) and U ∈ O(Y ). Since R is a C∗-algebra

over Xop × X, there is an extension

(2.4) RY\U ֌ RY ։ RU

of C∗-algebras over X. It contains C∗-algebra extensions

RY\U (Z) ֌ RY (Z) ։ RU (Z)

for all Z ∈ LC(X). Let Z = Y \U . The extension (2.4) is semi-split in C∗alg(X) and

hence has a class in KK1(X;RU ,RZ) and produces an exact triangle

(2.5) ΣRU → RZ → RY → RU

in KK(X).

Lemma 2.11 The maps in the extension triangle (2.5) correspond to the natural trans-

formations FKU [1] ⇐ FKZ ⇐ FKY ⇐ FKU in (1.4).

Proof The natural transformation µY
U : FKU ⇒ FKY in (1.4) is induced by the natu-

ral ∗-homomorphism j : A(U ) → A(Y ). For A = RU , this map is invertible because

S(U ,Y ) = S(U ,U ) = Ch(U ). Hence j(ξU ) ∈ K0(S(U ,Y )) is again the class of

the trivial vector bundle on Ch(U ); this class corresponds to the natural transforma-

tion µY
U . The restriction map RY ։ RU in (2.4) maps [ξY ] to [ξU ] — recall that

both [ξY ] and [ξU ] are trivial vector bundles. Hence the restriction map RY ։ RU

and the natural transformation µZ
Y correspond to the same class in K0(S(U ,Y )), the

1-dimensional trivial vector bundle on Ch(U ).

Similarly, the natural transformation µZ
Y : FKY ⇒ FKZ is induced by the natural

∗-homomorphism p : A(Y ) ։ A(Z). For A = RY , this is the restriction ∗-homo-

morphism C
(

Ch(Y )
)

→ C
(

Ch(Z)
)

because S(Y,Y ) = Ch(Y ) and S(Y,Z) =

Ch(Z). Since the restriction of a trivial bundle remains trivial, µZ
Y corresponds to the

trivial 1-dimensional vector bundle on S(Y,Z) = Ch(Z). The embedding RZ ։ RY

restricts to an identity map on Z because S(Z,Z) = S(Z,Y ) = Ch(Z). Since this

maps [ξZ] to the trivial bundle, the embedding RZ ։ RY and µZ
Y both correspond

to the same class, the 1-dimensional trivial vector bundle on Ch(Z), in K0
(

S(Y,Z)
)

.

Finally, we study the boundary map δU
Z : FKZ ⇒ FKU [1]. We claim that it corre-

sponds to the class of the extension RZ ֌ RY ։ RU in KK1(X;RU ,RZ). To prove

this, we use that Ch(Y ) is the join of the spaces Ch(U ) and Ch(Z), so that there is a

continuous map f : Ch(Y ) → [0, 1] whose fibres over 0 and 1 are Ch(U ) and Ch(Z),

respectively.

More precisely, let x0 ≺ x1 ≺ · · · ≺ xn be a strict chain in Y and let ξ be a point

of the corresponding simplex with coordinates (t0, . . . , tn) with t0 + · · · + tn = 1,
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that is, ξ = t0x0 + · · · + tnxn. Then there is j ∈ {0, . . . , n} with x0, . . . , x j ∈ U ,

x j+1, . . . , xn ∈ Z. We can, therefore, write ξ = tU ξU + tZξZ with

ξU =
t0x0 + · · · + t jx j

tU

∈ Ch(U ), tU = t0 + · · · + t j ,

ξZ =
t j+1x j+1 + · · · + tnxn

tZ

∈ Ch(Z), tZ = t j+1 + · · · + tn.

We define a continuous map f : Ch(Y ) → [0, 1] by ξ 7→ tZ . We have

S(U ,U ) = Ch(U ) = f −1(0), S(Z,Z) = Ch(Z) = f −1(1)

by construction, and hence

S(Z,U ) = Ch(Y ) \
(

Ch(U ) ⊔ Ch(Z)
)
= f −1((0, 1)).

Now we can compute some boundary maps. The boundary map

K0
(

S(Z,Z)
)
∼= K0

(
RZ(Z)

)
→ K1

(
RZ(U )

)
∼= K1

(
S(Z,U )

)

maps the class of the trivial bundle [ξZ] to f ∗(δ), where δ denotes a generator of

Z ∼= K1
(

(0, 1)
)

; this follows from the naturality of the boundary map. The boundary

map

K0(S(U ,U )) ∼= K0(RU (U )) → K1(RZ(U )) ∼= K1(S(Z,U ))

for the extension RZ ֌ RY ։ RU maps the class of the trivial bundle [ξU ] to

− f ∗(δ), again by naturality of the boundary map.

Remark 2.12 The proof also describes the classes in K0(S(U ,Y )), K0(S(Y,Z)), and

K1(S(Z,U )) that correspond to the natural transformations in (1.4). The natural

transformations FKU ⇒ FKY and FKY ⇒ FKZ are represented by the classes of

the trivial vector bundles over the compact spaces S(U ,Y ) and S(Y,Z); the natural

boundary map FKZ ⇒ FKU [1] is represented by f ∗(δ) for a generator of K1
(

(0, 1)
)

.

2.2 Proof of Theorem 2.5

We check first that the natural transformation KK∗(X;RY ,A) → K∗(A(Y )) induced

by ξY is an isomorphism if Y is the minimal open subset Ux containing some point

x ∈ X. The adjointness relation KK∗(X; ix(A),B) ∼= KK∗(A,B(Ux)) for all B ∈∈
KK(X) established in [8, Proposition 3.12] yields

KK∗(X; ix(C),B) ∼= KK∗

(
C,B(Ux)

)
= FKUx

(B),

that is, ix(C) represents FKUx
. To check that RUx

does so as well, we must show that

ix(C) and RUx
are KK(X)-equivalent.
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Recall that ix(C) = (C, x), where x denotes the map Prim(C) ∼= {x}
⊆
−→ X, and

ix(C)(Z) =

{
C if x ∈ Z,

0 otherwise,

for all Z ∈ LC(X).

Since Ux = {y ∈ X | x � y}, the preordered set Ux has a minimal point,

namely x. Therefore, the space Ch(Ux) is starlike and hence contractible in a canoni-

cal way towards x. The path from a point in ∆I for I ∈ SUx
to the base point in ∆x lies

in ∆I∪{x}. Since max I∪{x} = max I, the contraction preserves the ideals RUx
(V ) for

V ∈ O(X), so that we get a homotopy equivalence between C
(

Ch(Ux)
)

and ix(C)

in C∗alg(X). Thus RUx
corepresents FKUx

as well. It is easy to see that the natural

isomorphism KK∗(X;RUx
, ) ∼= FKUx

is induced by ξUx
.

Let Good ⊆ LC(X) be the set of all Z ∈ LC(X) for which the natural transfor-

mation KK∗(X;RZ ,A) → FKZ(A) induced by ξZ is an isomorphism. We must show

that Good = LC(X). We have just seen that Ux ∈ Good for all x ∈ X.

Let Y ∈ LC(X) and U ∈ O(Y ); we claim that all three of U , Y , and Y \U are good

once two of them are. This follows from the Five Lemma, because the maps induced

by ξZ for Z = U ,Y,Y \U intertwine the maps in the six-term exact sequences (1.4)

and

KK0(X;RU ,A) // KK0(X;RY ,A) // KK0(X;RY\U ,A)

��
KK1(X;RY\U ,A)

OO

KK1(X;RY ,A)oo KK1(X;RU ,A)oo

for any A ∈∈ KK(X); the latter six-term exact sequence is induced by the semi-

split extension (2.5). The commutativity of the relevant diagrams follows from the

computations in the proof of Lemma 2.11 (which do not depend on Theorem 2.5).

The two-out-of-three property of Good implies that

U ,V ∈ O(X), U ,V,U ∩V ∈ Good, =⇒ U ∪V ∈ Good

because (U ∪V )\U = V \(U ∩V ). By induction on the length of U , this implies that

all open subsets of X belong to Good. Since any locally closed subset is a difference

of two open subsets, we conclude that Good = LC(X). This finishes the proof of

Theorem 2.5.

3 An Example

In this section, we restrict our attention to a special class of spaces, namely, the spaces

X = {1, . . . , n} totally ordered by ≤ for n ∈ N. We let

[a, b] := {x ∈ X | a ≤ x ≤ b}.
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for a, b ∈ Z. We equip X with the Alexandrov topology, so that the open subsets are

[a, n] for all a ∈ X; the closed subsets are [1, b] with b ∈ X, and the locally closed

subsets are those of the form [a, b] with a, b ∈ X and a ≤ b. Any locally closed subset

of X is connected.

3.1 Computations with the Order Complex

Since any subset of X is totally ordered, the space Ch([a, b]) is just a closed simplex

of dimension b − a for any b ≥ a. We denote the corresponding face of Ch(X) by

∆[a,b]. This is understood to be empty for a > b.

From now on, we let

Y = [a1, b1], Z = [a2, b2], with 1 ≤ a1 ≤ b1 ≤ n and 1 ≤ a2 ≤ b2 ≤ n.

Then Ỹ = [a1, n], ∂̃Y = [b1 + 1, n], Z = [1, b2], and ∂Z = [1, a2 − 1]. Lemma 2.10

yields S(Y,Z) = ∆[a1,b2] \ (∆[a1,a2−1] ∪∆[b1+1,b2]).

Now we distinguish three cases.

Case 1: If a2 ≤ a1 ≤ b2 ≤ b1, then S(Y,Z) = ∆[a1,b2] is a nonempty closed simplex.

Hence NT∗(Y,Z) ∼= K∗
(

S(Y,Z)
)
∼= Z[0] (this means Z in degree 0).

Case 2: If a2 − 1 ≤ b1, a1 < a2, and b1 < b2, then S(Y,Z) is obtained from

a closed simplex by removing two disjoint, nonempty closed faces. Excision yields

NT∗(Y,Z) ∼= K∗
(

S(Y,Z)
)
∼= Z[1] (this means Z in degree 1).

Case 3: In all other cases, S(Y,Z) is either empty, a difference of two closed sim-

plices, or a difference σ \ (τ1 ∪ τ2) for two nonempty closed faces τ1 and τ2 of a sim-

plex σ that intersect. Then τ1 ∪ τ2 and σ are both contractible, so that NT∗(Y,Z) ∼=
K∗(S(Y,Z)) ∼= 0.

Summing up, we get

(3.1) NT∗(Y,Z) =





Z[0] if a2 ≤ a1 ≤ b2 ≤ b1,

Z[1] if a2 − 1 ≤ b1, a1 < a2, and b1 < b2,

0 otherwise.

3.2 Products of Natural Transformations

Our next task is to identify the natural transformations that correspond to the gen-

erators of the groups in (3.1); this also allows us to compute products in NT.

First we study the grading preserving transformations that appear in the first case.

We introduce a partial order ≥ and a strict partial order ≫ on LC(X) by

[a1, b1] ≥ [a2, b2] ⇐⇒ a1 ≥ a2 and b1 ≥ b2,

[a1, b1] ≫ [a2, b2] ⇐⇒ a1 > b2.
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Our computation shows that NT0(Y,Z) 6= {0} if and only if Y ≥ Z but not Y ≫ Z.

This is equivalent to Y ∩ Z being nonempty, closed in Y , and open in Z. Under these

assumptions, there is a natural non-zero ∗-homomorphism given by the composition

µZ
Y : A(Y ) ։ A(Y ∩ Z) ֌ A(Z),

because A(Y ∩Z) is a quotient of A(Y ) and an ideal in A(Z). The natural transforma-

tion FKY ⇒ FKZ induced by µZ
Y maps ξY ∈ FKY,0(RY ), which is the class of the trivial

line bundle over S(Y,Y ) = ∆[a1,b1], to the trivial line bundle over S(Y,Z) = ∆[a1,b2].

Since this is the generator of FKZ,0(RY ) = K0
(

S(Y,Z)
)
∼= Z[0], the natural trans-

formation µZ
Y generates NT0(Y,Z).

If Y ≫ Z, then we let µZ
Y : A(Y ) → A(Z) be the zero map, which induces the zero

transformation FKY ⇒ FKZ . With this convention, we get µZ
Y ◦ µY

W = µZ
W for all

Y,Z,W ∈ LC(X) with W ≥ Y ≥ Z, also if W ≫ Z; this equation holds on the level

of ∗-homomorphisms and, therefore, also for the induced natural transformations.

We can sum this up as follows.

Lemma 3.1 The category NT0 of grading-preserving natural transformations FKY ⇒
FKZ for Y,Z ∈ LC(X) is the pre-additive category generated by natural transformations

µZ
Y : FKY ⇒ FKZ for all Y ≥ Z with the relations µZ

Y ◦ µY
W = µZ

W for W ≥ Y ≥ Z and

µZ
Y = 0 for Y ≫ Z.

This list of generators is longer than necessary. Clearly, we can write any µZ
Y as a

product of the transformations µ[a−1,b]
[a,b] for 2 ≤ a ≤ b ≤ n and µ[a,b−1]

[a,b] for 1 ≤ a <
b ≤ n. Moreover, these transformations themselves are indecomposable, that is, they

cannot be written themselves as products in a non-trivial way.

Now we turn to the natural transformations of degree 1. For any b ∈ X and any

C∗-algebra A over X, we have a natural C∗-algebra extension

A([b, n]) ֌ A([1, n]) ։ A([1, b − 1]),

which generates an odd natural transformation δb : FK[1,b−1] ⇒ FK[b,n]. Compos-

ing with the grading preserving natural transformations µ above, we get a natural

transformation of degree 1

(3.2) δZ
Y : FKY = FK[a1,b1]

µ
=⇒ FK[1,a2−1]

δa2
=⇒ FK[a2,n]

µ
=⇒ FK[a2,b2] = FKZ ,

whenever b1 ≥ a2 − 1.

Equation (3.1) predicts that this transformation vanishes if a1 ≥ a2 or b1 ≥ b2.

This can be verified as follows. Vanishing for a1 ≥ a2 is clear because then [a1, b1] ≫
[1, a2 −1]. By the naturality of the boundary map, the transformation in (3.2) agrees

with the composition of µ : FK[a1,b1] ⇒ FK[a1,a2−1] with the boundary map for the

extension

(3.3) A([a2, b2]) ֌ A([a1, b2]) ։ A([a1, a2 − 1]).

If b1 ≥ b2, then µ[a1,a2−1]
[a1,b1] factors through the quotient map in (3.3). But the com-

posite of two maps in a six-term exact sequence vanishes.
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Equation (3.2) produces a natural transformation δZ
Y ∈ NT1(Y,Z) whenever

a1 < a2, b1 < b2, and a2 − 1 ≤ b1, that is, whenever (3.1) predicts NT1(Y,Z) to

be non-zero. We claim that δZ
Y generates this group. This follows because the nat-

ural transformation δZ
Y maps the class of the trivial line bundle over S(Y,Y ) to the

generator of K1
(

S(Y,Z)
)
∼= Z.

Notice that NT1([a2, n],Z) = {0} for any Z ∈ LC(X). Since the natural transfor-

mation (3.2) factors through FK[a2,n], any product of two odd natural transformations

vanishes. Thus the category NT is a split extension of NT0 by the bimodule NT1. The

bimodule structure on NT1 is very simple: a product µZ
Y ◦ δY

W or δZ
Y ◦ µY

W is equal

to δZ
W whenever all three natural transformations are defined, and zero otherwise.

Example 3.2 To make our constructions more concrete, we now consider the ex-

ample n = 2, which corresponds to extensions of C∗-algebras. There are only three

nonempty locally closed subsets: 1 = [1, 1], 12 = [1, 2], and 2 = [2, 2]. The or-

der complex is an interval; we label its end points 1 and 2. The map (m,M) from

Ch(X) = [1, 2] to Xop × X maps

1 7→ (1, 1), 2 7→ (2, 2), ]1, 2[ 7→ (1, 2).

Correspondingly, we have

S(1, 1) = {1}, S(1, 2) = ]1, 2[, S(1, 12) = [1, 2[,

S(2, 1) = ∅, S(2, 2) = {2}, S(2, 12) = {2},

S(12, 1) = {1}, S(12, 2) = ]1, 2], S(12, 12) = [1, 2].

Taking K-theory, we get

NT(1, 1) = Z[0], NT(1, 2) = Z[1], NT(1, 12) = 0,

NT(2, 1) = 0, NT(2, 2) = Z[0], NT(2, 12) = Z[0],

NT(12, 1) = Z[0], NT(12, 2) = 0, NT(12, 12) = Z[0].

3.3 Ring-Theoretic Properties of the Natural Transformations

We now observe some general ring-theoretic properties of NT for X = {1, . . . , n}
with the total order. We exclude the trivial case n = 1. We may replace NT by

a Z/2-graded ring by taking the direct sum of NT∗(Y,Z) for all Y,Z ∈ LC(X)∗

and defining the product as usual for a category ring. Then NT-modules become

Z/2-graded modules over this Z/2-graded ring, and ring-theoretic notions such as

the Jacobson radical and the balanced tensor product ⊗NT make sense.

Definition 3.3 Let NTnil ⊆ NT be the subgroup spanned by the natural transfor-

mations µZ
Y with Y 6= Z and δZ

Y with arbitrary Y,Z. Let NTss ⊆ NT be the subgroup

spanned by the natural transformations µY
Y with Y ∈ LC(X)∗.
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Lemma 3.4 The subgroup NTnil is the maximal nilpotent ideal in NT; it is the nil-

radical and the Jacobson radical of NT. The subgroup NTss is a semi-simple subring,

and NT decomposes as a semi-direct product NTnil ⋊NTss.

Proof Since all µY
Y are idempotent, NTss is a subring isomorphic to ZLC(X)∗ with

pointwise multiplication. It is easy to see that NTnil is an ideal in NT. It is nilpotent,

that is, NT
k
nil = {0} for some k ∈ N, because LC(X)∗ is finite and ≥ is a partial order

on it. Since NT = NTnil ⊕ NTss as Abelian groups, we get the desired semi-direct

product decomposition. Since the Jacobson radical of NTss vanishes, NTnil is both

the nilradical and the Jacobson radical of NT.

We are going to use Lemma 3.4 to characterise the projective NT-modules. This

characterisation involves the following two definitions.

Definition 3.5 We call an NT-module M exact if the chain complexes

· · · → M(U )
µY

U

−−→ M(Y )
µ

Y\U
Y

−−−→ M(Y \U )
δU

Y\U

−−→ M(U ) → · · ·

are exact for all Y ∈ LC(X), U ∈ O(Y ) as in (1.5).

Proposition 3.6 Let K ֌ E ։ Q be an extension of NT-modules. If two of the

modules K, E,Q are exact, so is the third one.

Proof Given U and Y as above and a module M, let C•(M) be the chain complex

· · · → M(U )[m] → M(Y )[m] → M(Y \U )[m] → M(U )[m − 1] → · · · .

Then C•(K) ֌ C•(E) ։ C•(Q) is an extension of chain complexes. The long exact

homology sequence shows that all three of these chain complexes are exact once two

of them are exact.

Definition 3.7 Given an NT-module M, we let

NTnil · M = {x · m | x ∈ NTnil, m ∈ M}, Mss := M/NTnil · M.

We call Mss the semi-simple part of M.

Since the tensor product over NT is right exact, Mss
∼= NTss ⊗NT M. We need the

following more concrete description of Mss or, equivalently, of NTnil · M.

Lemma 3.8 Let M be an NT-module and let Y = [a, b] with 1 ≤ a ≤ b ≤ n. Then

(NTnil ·M)(Y ) =





µY
[a+1,b](M[a + 1, b]) + µY

[a,b+1](M[a, b + 1]) if a < b < n,

µY
[a,b+1](M[a, b + 1]) if a = b < n,

µY
[a+1,b](M[a + 1, b]) + δY

[1,a−1](M[1, a − 1]) if 1 < a < b = n,

µY
[a+1,b](M[a + 1, b]) if 1 = a < b = n,

δY
[1,a−1](M[1, a − 1]) if a = b = n.
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If M is exact, then

(NTnil · M)(Y ) =

{
ker(δ[a+1,b+1]

[a,b] : M[a, b] → M[a + 1, b + 1]) if b < n,

ker(µ[1,a]
[a,b] : M[a, b] → M[1, a]) if b = n.

Proof The first assertion holds because any natural transformation FKZ ⇒ FKY

with Z 6= Y factors through µY
[a+1,b] or µY

[a,b+1] if a < b < n, through µY
[a,b+1] if

a = b < n, and so on. Here we use that the natural transformations µ[a−1,b]
[a,b] for

2 ≤ a ≤ b ≤ n, µ[a,b−1]
[a,b] for 1 ≤ a < b ≤ n, and δ[a,n]

[1,a−1] for 2 ≤ a ≤ n already

generate NT∗, that is, all other transformations µZ
Y or δZ

Y with Y 6= Z can be written

as products of these generators. By the way, these natural transformations even form

a basis for the subquotient NTnil/NT
2
nil.

Now assume that M is exact. If a = b < n, then

(NTnil · M)[a, a] = range
(
µ[a,a]

[a,a+1]

)
= ker

(
δ[a+1,a+1]

[a,a]

)
.

Similarly, we get

(NTnil · M)[n, n] = ker
(
µ[1,n]

[n,n]

)
, (NTnil · M)[1, n] = ker

(
µ[1,1]

[1,n]

)
.

Given f1 : A1 → B and f2 : A2 → B and exact sequences

A1

f1

−−→ B
g1

−−→ C1, A2

g1 f2

−−→ C1

g2

−−→ C2,

we have

(3.4) range( f1) + range( f2) = ker(g1) + range( f2)

= {x ∈ B | g1(x) ∈ range(g1 ◦ f2) = ker(g2)} = ker(g2 ◦ g1).

If a < b < n, then we apply this to the maps on M induced by f1 = µY
[a+1,b] and

f2 = µY
[a,b+1] with Y = [a, b]. We get g1 = µ[a,a]

Y , g1 ◦ f2 = µ[a,a]
[a,b+1], and hence g2 =

δ[a+1,b+1]
[a,a] and g2 ◦ g1 = δ[a+1,b+1]

[a,b] . This yields the desired formula for (NTnil ·M)[a, b]

for a < b < n, using the exactness of M. If a < b = n, then we apply the same

reasoning to f1 = µY
[a+1,b] and f2 = δY

[1,a−1]. Here we get g1 = µ[a,a]
Y as above,

g1 ◦ f2 = δ[a,a]
[1,a−1], and hence g2 = µ[1,a]

[a,a] and g2 ◦ g1 = µ[1,a]
[a,b]. This yields the desired

formula for (NTnil · M)[a, b] for a < b = n.

Remark 3.9 The natural transformation δ[a+1,b+1]
[a,b] for b < n or µ[1,a]

[a,n] for b = n

is the longest natural transformation out of [a, b] in the following sense: it factors

through δZ
[a,b] or µZ

[a,b] whenever the latter is defined and non-zero. Thus Lemma 3.8

identifies NTnil ·M(Y ) with the largest proper subgroup of M(Y ) that is the kernel of

some δZ
[a,b] or µZ

[a,b].
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The following proposition is a rather trivial variant of the Nakayama Lemma. Un-

like in the usual Nakayama Lemma, we do not assume the module to be finitely gen-

erated. This is no problem because the relevant ideal NTnil is nilpotent.

Proposition 3.10 Let M be an NT-module with Mss = 0. Then M = 0.

Proof By assumption, M = NTnil ·M. By induction, this implies M = NT
j
nil ·M for

all j ∈ N. Since NT
k
nil = 0 for some k, we get M = 0.

3.4 Characterisation of Free and Projective Modules

Definition 3.11 For Y ∈ LC(X), the free NT-module on Y is defined by

PY (Z) := NT∗(Y,Z) for all Z ∈ LC(X).

An NT-module is called free if it is isomorphic to a direct sum of degree-shifted free

modules PY [ j], j ∈ Z/2.

Theorem 3.12 Let M be an NT-module. Then the following are equivalent:

(i) M is a free NT-module.

(ii) M is a projective NT-module.

(iii) Mss(Y ) = NTss ⊗NT M(Y ) is a free Abelian group for all Y ∈ LC(X) and

TorNT

1 (NTss,M) = 0.

(iv) M(Y ) is a free Abelian group for all Y ∈ LC(X) and M is exact.

Here, TorNT

1 denotes the first derived functor of ⊗NT . The first three conditions remain

equivalent when we replace NT by any ring that is a nilpotent extension of the ring ZN

for some N ∈ N.

Proof The Yoneda Lemma asserts that Hom(PY ,M) ∼= M(Y ) for all Y ∈ LC(X) and

all NT-modules M. Hence free modules are projective, that is, (i) ⇒ (ii). A functor of

the form M 7→ R ⊗S M for a ring homomorphism S → R always maps free modules

to free modules and hence maps projective modules to projective modules. Further-

more, derived functors like TorNT

1 automatically vanish on projective modules. This

yields the implication (ii) ⇒ (iii). We are going to prove that (iii) implies (i).

Since Mss(Y ) is a free Abelian group for all Y , Mss is a free module over NTss
∼=

ZLC(X)∗ . Hence P := NT ⊗NTss
Mss is a free NT-module. The canonical projec-

tion M → Mss splits by an NTss-module homomorphism because Mss is free. This

induces an NT-module homomorphism f : P → M because of the adjointness rela-

tion

HomNT(NT ⊗NTss
X,Y ) ∼= HomNTss

(X,Y ).

We claim that f is invertible, so that M ∼= P is a free module as asserted. We have

Pss = NTss ⊗NT NT ⊗NTss
Mss

∼= NTss ⊗NTss
Mss

∼= Mss.

Inspection shows that this isomorphism is induced by f . Since the functor M 7→ Mss

is right-exact, this implies coker( f )ss = 0 and hence coker( f ) = 0 by the Nakayama

Lemma (Proposition 3.10). That is, f is an epimorphism.
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Let K := ker( f ). Then we get an exact sequence of NT-modules K ֌ P ։ M.

The derived functors of NTss ⊗NT provide a long exact sequence

(3.5) 0 → TorNT

1 (NTss,M) → Kss → Pss

f

−→
∼=

Mss → 0.

This exact sequence ends at TorNT

1 (NTss, P) = 0 because P is projective. Since

TorNT

1 (NTss,M) = 0 by assumption, we conclude that Kss = 0. Hence another

application of the Nakayama Lemma shows that ker( f ) = 0 as well. Thus f is in-

vertible. This finishes the proof of the implication (iii) ⇒ (i), showing that the first

three conditions are equivalent. Furthermore, our argument so far works for any

split nilpotent extension of ZN for some N ∈ N because this is the only information

about NT that we have used. Nilpotent extensions of the ring ZN always split because

we can lift orthogonal idempotents in nilpotent extensions.

Free NT-modules are exact, and they consist of free Abelian groups by (3.1). This

yields the implication (i) ⇒ (iv). We are going to prove that (iv) implies (iii). This

will finish the proof of the theorem. Since we will use this once again later, we state

half of this argument as a separate lemma:

Lemma 3.13 Let M be an exact NT-module. Then TorNT

1 (NTss,M) = 0.

Proof Let π : P → M be an epimorphism with a projective NT-module P, and let

K := kerπ. Since projective modules are exact and K ֌ P ։ M is a module

extension, Proposition 3.6 shows that K is exact. We still have an exact sequence as

in (3.5).

Since K and P are exact, Lemma 3.8 identifies Kss(Y ) and Pss(Y ) in a natural way

with subspaces of K(Z) and P(Z) for suitable Z; here we use A/ ker( f ) ∼= range( f )

for a group homomorphism f : A → B. Since the map K(Z) → P(Z) is injective, so

is the map Kss(Y ) → Pss(Y ). Hence the map Kss → Pss is a monomorphism, forcing

TorNT

1 (NTss,M) = 0 by (3.5).

To finish the proof of the implication (iv) ⇒ (iii) in Theorem 3.12, it remains

to check that Mss(Y ) is free for all Y if M is exact and M(Y ) is free for all Y . We

use Lemma 3.8 once again to describe Mss(Y ) as the range of a canonical element in

NT∗(Y,Z) for a suitable Z. Thus Mss(Y ) is isomorphic to a subgroup of M(Z), which

is a free group by assumption. Hence Mss(Y ) is free as well.

4 Homological Algebra in KK(X)

Let X be a sober topological space. We are going to apply to KK(X) the general ma-

chinery for doing homological algebra in triangulated categories discussed in [9].

This theory goes back to the work on relative homological algebra by Samuel Eilen-

berg and John Coleman Moore [4], which was carried over to the setting of triangu-

lated categories by Daniel Christensen [3] and Apostolos Beligiannis [1].
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4.1 An Ideal in KK(X)

Our starting point is a rough idea of the invariant we want to use. This rough idea is

expressed by a homological ideal in the triangulated category. The ideal I in KK(X)

relevant for us is defined by

(4.1) I(A,B) :=
{

f ∈ KK(X; A,B)
∣∣

f∗ : K∗(A(Y )) → K∗(B(Y )) vanishes for all Y ∈ LC(X)
}
.

It makes no difference if we use LC(X) or LC(X)∗ here.

We claim that I is a homological ideal in the triangulated category KK(X), that

is, it is the kernel (on morphisms) of a stable homological functor from KK(X) to

some stable Abelian category; stability means that the functor intertwines the sus-

pension automorphism on KK(X) with a given suspension automorphism on the

target Abelian category.

Our starting point is a bare form of filtrated K-theory. Recall the functors

FKY : KK(X) → Ab
Z/2, A 7→ K∗(A(Y ))

for Y ∈ LC(X) from Definition 2.1, and let

F := (FKY )Y∈LC(X) : KK(X) →
∏

Y∈LC(X)∗
Ab

Z/2, A 7→
(

K∗(A(Y ))
)

Y∈LC(X)∗
.

The target category
∏

Y∈LC(X)∗ Ab
Z/2 of F is Abelian and carries an obvious suspen-

sion functor that shifts the Z/2-grading. The functor F is a stable homological func-

tor, that is, it intertwines the suspension automorphisms and maps exact triangles to

long exact sequences. By definition,

(4.2) I =
⋂

Y∈LC(X)∗
ker FKY = ker F,

that is, f ∈ I(A,B) if and only if F( f ) = 0. Hence I is a homological ideal with

defining functor F.

We also have I = ker FK with FK as in Definition 2.4: the two functors F and FK

only differ through their target categories. For the time being, we pretend that we do

not yet know anything about filtrated K-theory beyond the ideal I it defines. The

general machinery will automatically lead us to the functor FK.

As explained in [9], the homological ideal I yields various notions of homological

algebra. The following descriptions of these notions follow from [9, Lemmas 3.2, 3.9,

and Definition 3.21].

• A morphism f ∈ KK∗(X; A,B) is

– I-epic if the induced maps K∗(A(Y )) → K∗(B(Y )) are surjective for all Y ∈
LC(X);

– I-monic if the induced maps K∗(A(Y )) → K∗(B(Y )) are injective for all Y ∈
LC(X);
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– an I-equivalence if the induced maps K∗(A(Y )) → K∗(B(Y )) are bijective for

all Y ∈ LC(X).

• A homological functor F : KK(X) → C to some Abelian category C is I-exact if

F( f ) = 0 for all f ∈ I; equivalently, F maps I-epimorphisms to epimorphisms

or F maps I-monomorphisms to monomorphisms.
• An object A ∈∈ KK(X) is

– I-contractible if K∗

(
A(Y )

)
= 0 for all Y ∈ LC(X);

– I-projective if the functor KK∗(X; A, ) is I-exact; equivalently, I(A,B) = 0

for all B ∈∈ KK(X), or any I-epimorphism B → A splits (see [9] for more

equivalent characterisations).

• A chain complex

· · · → An+1

δn+1

−−→ An

δn

−→ An−1

δn−1

−−→ An−2 → · · ·

in KK(X), that is, An ∈∈ KK(X) and δn ∈ KK(X; An,An−1) for all n ∈ Z, subject

to the condition δn−1 ◦ δn = 0, is I-exact (in some degree n) if the induced chain

complexes of Z/2-graded Abelian groups

· · · → K∗(An+1(Y ))
(δn+1)∗
−−−−→ K∗(An(Y ))

(δn)∗
−−−→ K∗(An−1(Y )) → · · ·

are exact (in degree n) for all Y ∈ LC(X).
• An I-projective resolution of A ∈∈ KK(X) is an I-exact chain complex

· · · → P2

δ2

−→ P1

δ1

−→ P0

δ0

−→ A → 0 → · · ·

with I-projective entries Pn for all n ∈ N.

We shall soon see that there are enough I-projective objects in the sense that any

object of KK(X) has an I-projective resolution. Such resolutions are unique up to

chain homotopy equivalence once they exist.

We use projective resolutions to define derived functors (see [9, Definition 3.27]):

just apply the functor to be derived to an I-projective resolution and take homology.

In particular, this yields extension groups Extn
I(A,B) for all A,B ∈∈ KK(X). Unlike

in usual homological algebra, Ext0
I(A,B) may differ from the morphism space in

KK(X); compare the exact sequence in [6, (4.8)].

4.2 Enough Projective Objects

A strategy to find enough projective objects is outlined in [9, §3.6]. The idea is to

study the left adjoint functor FK⊢
Y of FKY ; this is defined on P ∈∈ Ab

Z/2 if there is

FK⊢
Y (P) ∈∈ KK(X) and a natural isomorphism

(4.3) Hom(P, FKY (B)) ∼= KK(X; FK⊢
Y (P),B)

for all B ∈∈ KK(X). Notice that FK⊢
Y need not be defined for all P.
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Objects of the form FK⊢
Y (P) are automatically I-projective because the functor

KK(X; FK⊢
Y (P), ) factors through FKY by (4.3) and vanishes on I by (4.2).

The simplest case to look for FK⊢
Y (P) is P = Z[0] (this means Z in degree 0). The

defining property of FK⊢
Y (Z[0]) is a natural isomorphism

KK(X; FK⊢
Y (Z[0]),B) ∼= Hom(Z[0], FKY (B)) ∼= FKY,0(B) = K0(B(Y )).

In other words, FK⊢
Y (Z[0]) must represent the covariant functor FKY . Theorem 2.5

provides such representing objects, and yields the following result.

Proposition 4.1 For any Y ∈ LC(X), the adjoint functor FK⊢
Y is defined on a

Z/2-graded Abelian group G = G0 ⊕ G1 if G0 and G1 are free and countable. More

precisely,

FK⊢
Y

(⊕
i∈I

Z[εi]
)
=

⊕
i∈I

RY [εi],

where I is a countable set and εi ∈ Z/2 for all i ∈ I.

Proof We have just observed that FK⊢
Y (Z[0]) = RY . Since FKY is stable, this implies

FK⊢
Y (Z[1]) = RY [1]. It is a general feature of left adjoint functors that they commute

with direct sums. Since countable direct sums exist in KK(X), we get the existence

of FK⊢
Y on any free countable Z/2-graded Abelian group.

Corollary 4.2 There are enough I-projective objects in KK(X), and the class of I-pro-

jective objects in KK(X) is generated by the objects RY for Y ∈ LC(X)∗. More precisely,

any I-projective object is a retract of a direct sum of suspensions of these objects.

Proof This follows from Proposition 4.1 and [9, Proposition 3.37].

Often we do not need retracts here, that is, any I-projective object is a direct sum

of suspensions of RY for Y ∈ LC(X)∗; for the totally ordered spaces studied in §3,

this follows from Theorem 3.12.

Since our ideal I is compatible with countable direct sums, the I-contractible ob-

jects form a localising subcategory of KK(X), that is, they form a class NI of objects

that is closed under countable direct sums, retracts, isomorphisms, exact triangles,

and suspensions. Furthermore, NI is the complement of the localising subcategory

that is generated by the I-projective objects. These two subcategories contain much

less information than the ideal itself. Roughly speaking, they will be the same for any

reasonable choice of invariant on KK(X) of K-theoretic nature.

Proposition 4.3 The localising subcategory that is generated by the I-projective ob-

jects is the bootstrap category B(X). It consists of all objects of KK(X) that are

KK(X)-equivalent to a tight, nuclear, purely infinite, stable, separable C∗-algebra over X

whose simple subquotients belong to the bootstrap category B ⊆ KK.

Proof By definition, B(X) is the localising subcategory of KK(X) that is generated

by the objects ix(C) for x ∈ X; see [8]. These generators are I-projective because they

represent the functors FKUx
, cf. the proof of Theorem 2.5. The proof of this theorem

also shows that the representing objects RY belong to the triangulated subcategory
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of KK(X) generated by RUx
for x ∈ X and hence to B(X). Now Corollary 4.2 shows

that all I-projective objects belong to B(X). Hence the localising subcategory they

generate is contained in the bootstrap class.

Conversely, since the generators of the bootstrap class ix(C) are I-projective, the

localising subcategory generated by the I-projective objects must contain the whole

bootstrap class. This yields the first statement. The second one is contained in [8,

Corollary 5.5].

4.3 The Universality of Filtrated K-Theory

The next step in the general programme is to determine the universal defining func-

tor for I. This functor is characterised by the universal property that it is I-exact

and stable homological and that any I-exact homological functor on KK(X) factors

through it uniquely (up to natural isomorphism).

The advantage of using the universal functor is that it describes I-projective reso-

lutions and the associated I-derived functors in KK(X) by projective resolutions and

derived functors in its target Abelian category. This is the crucial step to compute

these derived functors.

In the presence of enough projective objects, Theorem 3.39 in[9] characterises the

universal functor by an adjointness property. In our case, this yields the following

theorem.

Theorem 4.4 The filtrated K-theory functor FK: KK(X) → Mod(NT)c is the uni-

versal I-exact stable homological functor; here Mod(NT)c denotes the category of all

countable graded NT-modules.

The ring of natural transformations NT comes in automatically at this point.

Proof This is best explained as a special case of a general result on certain homolog-

ical ideals. Let T be any triangulated category with countable direct sums, and let G

be an at most countable set of objects of T. Let IG be the stable homological ideal

defined by the functor

FG : T →
∏

G∈G

Ab
Z, A 7→

(
T∗(G,A)

)
G∈G

.

We assume that FG(A) is countable for all A ∈∈ T.

We are dealing with the case where T = KK(X) and G = {RY | Y ∈ LC(X)∗};

Theorem 2.5 identifies T∗(RY ,A) = KK∗(X;RY ,A) ∼= K∗(A(Y )) = FKY (A) for all

Y ∈ LC(X)∗, so that IG = I with I as in (4.1).

Viewing G as a full subcategory of T, it becomes a Z-graded pre-additive cate-

gory, so that we get a corresponding category Mod(Gop)c of countable graded right

modules. We can enrich the functor FG to a functor F ′
G : T → Mod(Gop)c, because

the composition in T provides maps T∗(G ′,A) ⊗ T∗(G,G ′) → T∗(G,A) for all

G,G ′ ∈ G, A ∈∈ T, which form a right G-module structure on (T∗(G,A))G∈G. We

claim that the functor F ′
G is the universal IG-exact functor.

In the case at hand, our description of the natural transformations FKY ⇒ FKZ

in §2.1 means that Mod(Gop)c = Mod(NT)c and F ′
G = FK is filtrated K-theory as
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defined in Definition 2.4. Hence, to finish the proof of Theorem 4.4, it suffices to

establish the claim above.

To do this, we check the conditions in [9, Theorem 3.39]. Idempotent morphisms

in KK(X) split, because this happens in any triangulated category with countable

direct sums (see [10]). Call F ′
G(G) = T( ,G) for G ∈ G the free Gop-module on G.

Direct sums of free modules are projective, and any object of Mod(Gop)c is a quotient

of a countable direct sum of free modules. Hence Mod(Gop)c has enough projective

objects. Moreover,

HomGop

(
F ′

G(G), F ′
G(A)

)
∼= F ′

G(A)(G) = T(G,A)

shows that the left adjoint F ⊢ of F := F ′
G maps F ′

G(G) to G ∈∈ T. Since the domain

of F ⊢ is closed under suspensions, countable direct sums, and retracts, the adjoint

is defined on all projective modules. Furthermore, F ◦ F ⊢(P) ∼= P holds for free

modules and hence for all projective modules P. Having checked all the hypotheses

of [9, Theorem 3.39], we can conclude that F ′
G is indeed universal.

Since FK: KK(X) → Mod(NT)c is universal, [9, Theorem 3.41] now tells us,

roughly speaking, that homological algebra in KK(X) with respect to I is equivalent

to homological algebra in the Abelian category Mod(NT)c:

• An object A of KK(X) is I-projective if and only if FK(A) ∈ Mod(NT)c is projec-

tive and

KK∗(X; A,B) ∼= HomNT(FK(A), FK(B))

for all B ∈∈ KK(X).

Another equivalent condition is that FK(A) ∈ Mod(NT)c is projective and A

belongs to the localising subcategory generated by the I-projective objects; the

latter agrees with the bootstrap class by Proposition 4.3.
• The functor FK and its partially defined left adjoint FK⊢ restrict to an equivalence

of categories between the subcategories of I-projective objects in KK(X) and of

projective objects in Mod(NT)c.
• For any A ∈∈ KK(X), the functors FK and FK⊢ induce bijections between iso-

morphism classes of I-projective resolutions of A and isomorphism classes of

projective resolutions of FK(A) in Mod(NT)c. That is, a projective resolution

in Mod(NT)c lifts to a unique I-projective resolution in KK(X). This provides

the “geometric resolutions” that are used in connection with the usual Universal

Coefficient Theorem for KK.
• For all n ∈ N, there is a natural isomorphism

Extn
I(A,B) ∼= Extn

NT

(
FK(A), FK(B)

)
,

where the right-hand side denotes extension groups in the Abelian category

Mod(NT)c.
• For any homological functor G : KK(X) → C, there is a unique right-exact func-

tor Ḡ : Mod(NT)c → C with Ḡ ◦ FK(P) = G(P) for all I-projective P. The

left derived functors of G with respect to I are LnḠ ◦ FK for n ∈ N, where

LnḠ : Mod(NT)c → C denotes the n-th left derived functor of Ḡ.
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4.4 The Universal Coefficient Theorem

In the general theory, the next step is to construct a spectral sequence whose E2-term

involves the extension groups Extn
I(A[m],B); it converges, in favourable cases, to

KK∗(X; A,B). This spectral sequence is constructed in [3, 6]. Since we aim for an

exact sequence, not for a spectral sequence, we only need the special case considered

in [9, Theorem 4.4]. This provides the Universal Coefficient Theorem we want, under

the assumption that FK(A) has a projective resolution of length 1 in Mod(NT)c.

Theorem 4.5 Let A,B ∈∈ KK(X). Suppose that FK(A) ∈∈ Mod(NT)c has a pro-

jective resolution of length 1 and that A ∈∈ B(X). Then there are natural short exact

sequences

Ext1
NT

(
FK(A)[ j + 1], FK(B)

)
֌ KK j(X; A,B) ։ HomNT

(
FK(A)[ j], FK(B)

)

for j ∈ Z/2, where HomNT and Ext1
NT

denote the morphism and extension groups in

the Abelian category Mod(NT)c and [ j] and [ j + 1] denote degree shifts.

The bootstrap class appears here because of Proposition 4.3, which identifies it

with the localising subcategory generated by the I-projective objects.

Corollary 4.6 Let A,B ∈∈ B(X) and suppose that both FK(A) and FK(B) have

projective resolutions of length 1 in Mod(NT)c. Then any morphism FK(A) → FK(B)

in Mod(NT)c lifts to an element in KK0(X; A,B), and an isomorphism FK(A) ∼= FK(B)

lifts to an isomorphism in B(X).

Proof The lifting of a homomorphism follows from Theorem 4.5. Given an isomor-

phism f : FK(A) → FK(B), we can lift f and f −1 to elementsα and β of KK0(X; A,B)

and KK0(X; B,A), respectively. Since β ◦ α lifts the identity map on FK(A), the dif-

ference id − β ◦ α belongs to Ext1
NT

(
FK(A)[ j + 1], FK(A)

)
. The latter is a nilpotent

ideal in KK(X; A,A) because of the naturality of the exact sequence in Theorem 4.5.

Hence (id − βα)2
= 0, so that β ◦ α is invertible. The same argument shows that

α ◦ β is invertible, so that α is invertible.

This corollary is what is needed for the classification programme, and it depends

on resolutions having length 1. Conversely, if there is A for which FK(A) has no

projective resolution of length 1, then it is likely that there exist non-isomorphic

B,D ∈∈ B(X) with FK(B) ∼= FK(D). The following theorem provides such a coun-

terexample, but under a stronger assumption.

Theorem 4.7 Let I be a homological ideal in a triangulated category T with enough

I-projective objects. Let F : T → AIT be a universal I-exact stable homological func-

tor. Suppose that I2 6= 0. Then there exist non-isomorphic objects B,D ∈∈ T for which

F(B) ∼= F(D) in AIT.

Proof Since I2 6= 0, there is A ∈∈ T with I2(A, ) 6= 0, that is, A is not I2-projec-

tive. The ideal I2 has enough projective objects as well, so that there is an exact

triangle

ΣN2

γ2

−→ Ã2

α2

−→ A
ι2
−→ N2
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with ι2 ∈ I2 and an I2-projective object Ã2 (this is part of the phantom castle con-

structed in [6], where the same notation is used).

Since ι2 ∈ I, this triangle is I-exact and hence provides an extension

F(N2)[1] ֌ F(Ã2) ։ F(A)

in AIT. Even more, this extension splits because ι2 ∈ I2. This follows because the

canonical map

I(A,N2) → Ext1
I(A,N2[1])

implicitly used above factors through I/I2 and hence annihilates ι2 (see [6, Equa-

tion (4.9)]). As a result, F(Ã2) ∼= F(A) ⊕ F(N2)[1].

But Ã2 cannot be isomorphic to A ⊕ N2[1]. If this were the case, then A would

be I2-projective, as a retract of the I2-projective object Ã2. Then I2(A, ) = 0,

contradicting our choice of A. Hence Ã2 6∼= A ⊕ N2[1].

If I2
= 0, then the ABC spectral sequence constructed in [6] degenerates at the

third stage, that is, E3
= E∞. But E2 and E3 differ unless projective resolutions have

length 1. Hence the vanishing of I2 is probably not sufficient for isomorphisms on

the invariant to lift because the boundary map d2 on the second stage of the ABC

spectral sequence may provide further obstructions.

Whether or not filtrated K-theory gives rise to projective resolutions of length 1

depends on the space in question: we will find positive and negative cases below. Be-

fore we turn to examples, we discuss another important issue: does filtrated K-theory

exhaust all of Mod(NT)c? This is definitely not the case because of the additional ex-

actness conditions that hold for objects of the form FK(A). The following result is

not optimal but sufficient for our purposes.

Theorem 4.8 Let G ∈∈ Mod(NT)c have a projective resolution of length 1. Then

there is A ∈∈ B(X) with FK(A) ∼= G, and this object is unique up to isomorphism in

B(X).

Proof Any projective resolution of length 1 in Mod(NT)c is isomorphic to one of

the form

· · · → 0 → FK(P1)
FK( f )

−−−→ FK(P0) → G

for suitable I-projective objects P1, P0 ∈∈ KK(X) and some f ∈ KK0(X; P1, P0).

Here we use that FK restricts to an equivalence of categories between the subcate-

gories of I-projective objects of KK(X) and of projective objects of Mod(NT)c by

the first paragraph of [9, Theorem 3.41].

We may embed the morphism f in an exact triangle

ΣA
h
−→ P1

f

−→ P0

g

−→ A.

Since FK( f ) is injective, the map f is I-monic; thus g is I-epic and h ∈ I. Therefore,

the long exact sequence for FK applied to the above triangle degenerates to a short

exact sequence

FK(P1) ֌ FK(P0) ։ FK(A).
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This yields FK(A) ∼= G as desired. The uniqueness of A is already contained in Corol-

lary 4.6.

It remains to understand which objects of the category Mod(NT)c have a projec-

tive resolution of length 1.

4.5 Resolutions of Length 1 in the Totally Ordered Case

We return to the example of the space X = {1, . . . , n} totally ordered by ≤ studied

in §3. Let NT be the graded pre-additive category of natural transformations de-

scribed in §3, and let C = Mod(NT)c be the Abelian category of NT-modules. The

following theorem characterises NT-modules with projective resolutions of length 1.

Theorem 4.9 Let M ∈∈ C. The following assertions are equivalent:

(i) M = FK∗(A) for some A ∈∈ KK(X);

(ii) M is exact in the sense of Definition 3.5;

(iii) TorNT

i (NTss,M) = 0 for i = 1, 2;

(iv) M has a free resolution of length 1 in C;

(v) M has a projective resolution of length 1 in C;

(vi) M has a projective resolution of finite length in C.

Proof The exact sequence (1.4) shows that (i) implies (ii). Theorem 4.8 contains the

implication (v) ⇒ (i), and the implications (iv) ⇒ (v) ⇒ (vi) are trivial. We will

show (ii) ⇒ (iii) ⇒ (iv) and (vi) ⇒ (ii), and this will establish the theorem.

First we show that (vi) implies (ii). Let 0 → Pm → · · · → P0 → M be a projective

resolution of finite length. By a standard “stabilisation” trick, we can turn this into a

free resolution of the same length. Let

Z j = ker(P j → P j−1) ∼= range(P j+1 → P j).

Thus Zm = 0, P0/Z0
∼= M, and we have exact sequences Z j ֌ P j ։ Z j−1 because

our chain complex is exact. Since Zm = 0, the exactness of the projective modules Pm

and Proposition 3.6 show recursively that Z j is exact for j = m − 1,m − 2, . . . , 0, so

that M is exact. Thus (vi) implies (ii).

Now we prove (ii) ⇒ (iii) ⇒ (iv). Let P be a countable free module for which

there is an epimorphism π : P ։ M, and let K := kerπ. We have an extension of

NT-modules K ֌ P ։ M. Proposition 3.6 shows that K is exact because P and M

are exact. Furthermore, Tori+1(NTss,M) ∼= Tori(NTss,K) for all i ≥ 1 because P is

projective. Lemma 3.13 applied to M and K yields Tori(NTss,M) = 0 for i = 1, 2
if M is exact, that is, (ii) ⇒ (iii). Now assume (iii). The argument above yields

Tor1(NTss,K) = 0. Since P is projective, the Abelian groups P(Y ) are free for all

Y ∈ LC(X). The exact sequence in (3.5) yields the same for K(Y ). The criterion in

Theorem 3.12(iii) shows that K is projective.

Now we combine the existence of projective resolutions of length 1 with Theo-

rem 4.5, which still required this as a hypothesis.
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Theorem 4.10 Let X be the topological space associated with a totally ordered finite

set, and let A and B be C∗-algebras over X. If A ∈∈ B(X). Then there is a natural short

exact sequence

Ext1
NT

(
FK(A)[1], FK(B)

)
֌ KK∗(X; A,B) ։ HomNT

(
FK(A), FK(B)

)
.

In particular, any NT-module morphism FK(A) → FK(B) lifts to an element in

KK∗(X; A,B). If both A and B belong to the bootstrap class B(X), then an isomorphism

FK(A) ∼= FK(B) lifts to a KK-equivalence A ≃ B.

Proof Use Theorem 4.5 and Corollary 4.6 together with the existence of projective

resolutions of length 1 ensured by Theorem 4.9.

Theorem 4.11 Let X be the topological space associated with a totally ordered finite

set, and let A and B be tight, purely infinite, stable, nuclear, separable C∗-algebras

over X whose simple subquotients belong to the bootstrap category. Then an isomor-

phism FK(A) ∼= FK(B) lifts to an X-equivariant ∗-isomorphism A ∼= B.

Furthermore, any countable exact NT-modules is the filtrated K-module of some

tight, purely infinite, stable, nuclear, separable C∗-algebra over X with simple subquo-

tients in the bootstrap category.

Proof A nuclear C∗-algebra over X belongs to the bootstrap category B(X) if and

only if its fibres belong to the non-equivariant bootstrap category B (see [8, Corol-

lary 4.13]). For a tight C∗-algebra over X, these fibres are the same as the simple

subquotients. It was also shown in [8, Corollary 5.5] that any object of B(X) is

KK(X)-equivalent to a tight, nuclear, purely infinite, simple, separable C∗-algebra

over X whose simple subquotients belong to the bootstrap category B. A deep clas-

sification result of Eberhard Kirchberg shows that any KK(X)-equivalence between

such objects lifts to an X-equivariant ∗-homomorphism. Now the first assertion fol-

lows from Theorem 4.10. The second assertion also uses Theorem 4.8.

5 A Counterexample

Now we let X := {1, 2, 3, 4} with the partial order 1, 2, 3 < 4 and no relation among

1, 2, 3. Hence the open subsets of X are

O(X) =
{
∅, {4}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

}
,

that is, a nonempty subset is open if and only if it contains 4. The associated directed

graph is

• 1

4 • //

$$II
II

::uuuu
• 2

• 3.

We frequently denote subsets of X simply by 124 := {1, 2, 4}, and so on.
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A C∗-algebra over X is a C∗-algebra A with four distinguished ideals

I1 := A(14), I2 := A(24), I3 := A(34), I4 := A(4),

such that I1 + I2 + I3 = A and Ii ∩ I j = I4 for all 1 ≤ i < j ≤ 3 (see [8, Lemma 2.35]).

Equivalently, the ideals I j/I4 for j = 1, 2, 3 decompose A/I4 into a direct sum of

three orthogonal ideals. The other distinguished ideals are

A(124) = I1 + I2, A(134) = I1 + I3, A(234) = I2 + I3.

Any subset of X is locally closed. But a connected locally closed subset is either

open or one of the singletons {1}, {2}, and {3}. Hence the set of connected locally

closed subsets is

LC(X)∗ = {4, 14, 24, 34, 124, 134, 234, 1234, 1, 2, 3}.

The order complex Ch(X) is a graph with four vertices 1, 2, 3, 4 and edges joining

the first three to the last one:

Ch(X) =

/.-,()*+1

LL
LL

LL

/.-,()*+2 /.-,()*+4

/.-,()*+3

rrrrrr

Both maps m,M : Ch(X) → X map the vertices to the corresponding points in X.

Whereas M maps the interior of each edge to 4, the map m maps the interior of the

edge [ j, 4] to j for j = 1, 2, 3.

Recall that the space of natural transformations FKY ⇒ FKZ is given by

NT∗(Y,Z) ∼= K∗
(

S(Y,Z)
)
, S(Y,Z) := m−1(Y ) ∩ M−1(Z) ⊆ Ch(X).

It is straightforward to compute these K-theory groups, and the results are listed in

Table 1. Here the rows are labelled by Y , the columns by Z. For instance, the entry Z at

(14, 1) means that NT∗(14, 1) ∼= Z. The trivial 1-dimensional bundle over S(14, 1)

generates this group. Hence Remark 2.12 shows that the generator is the natural

transformation that we get from the quotient map A(14) ։ A(1). Similar arguments

show that all the natural transformations of degree 0 are induced by the familiar

restriction and extension ∗-homomorphisms for closed and open subsets. Moreover,

the odd natural transformations arise by composing these ∗-homomorphisms with

boundary maps in K-theory long exact sequences. All relations that they satisfy are

predicted by morphisms of extensions and exactness of the sequences (1.4).

The computations in §3 were based on a description of indecomposable mor-

phisms in the category NT∗. For the space X in question, these are the maps in the
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Y
Z@@ 4 14 24 34 124 134 234 1234 1 2 3

4 Z Z Z Z Z Z Z Z 0 0 0

14 0 Z 0 0 Z Z 0 Z Z 0 0

24 0 0 Z 0 Z 0 Z Z 0 Z 0

34 0 0 0 Z 0 Z Z Z 0 0 Z

124 Z[1] 0 0 Z[1] Z 0 0 Z Z Z 0

134 Z[1] 0 Z[1] 0 0 Z 0 Z Z 0 Z

234 Z[1] Z[1] 0 0 0 0 Z Z 0 Z Z

1234 Z[1]2 Z[1] Z[1] Z[1] 0 0 0 Z Z Z Z

1 Z[1] 0 Z[1] Z[1] 0 0 Z[1] 0 Z 0 0

2 Z[1] Z[1] 0 Z[1] 0 Z[1] 0 0 0 Z 0

3 Z[1] Z[1] Z[1] 0 Z[1] 0 0 0 0 0 Z

Table 1: The ring of natural transformations

following diagram:

(5.1)

14
i

//

i

##H
HH

HH
HH

HH
124

i

$$I
II

II
II

II
1

◦
DD

DD
δ

""D
DD

D

4

i
<<yyyyyyyyy i
//

i

""E
EE

EE
EE

EE
24

i
;;vvvvvvvvv

i

##H
HH

HH
HH

HH
134

i
// 1234

r

;;vvvvvvvvv
r

//

r

##H
HH

HH
HH

HH
H

2 ◦
δ

// 4

34
i

//

i
;;vvvvvvvvv
234

i
::uuuuuuuuu

3

◦zzzz

δ
<<zzzz

Here we write i for the extension transformation for an open subset, r for the restric-

tion transformation for a closed subset, and δ for boundary maps in K-theory long

exact sequences.

The indecomposable morphisms in (5.1) provide a minimal set of generators for

the graded ring NT. To describe NT completely, we list the relations. They are gen-

erated by the following cases:

• the cube with vertices 4, 14, . . . , 1234 is a commuting diagram, that is, all the

commuting squares involving arrows with label i commute;
• the following composite arrows vanish:

124
i
−→ 1234

r
−→ 3, 134

i
−→ 1234

r
−→ 2, 234

i
−→ 1234

r
−→ 1,

1
δ
−→ 4

i
−→ 14, 2

δ
−→ 4

i
−→ 24, 3

δ
−→ 4

i
−→ 34;
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• the sum of the three maps 1234 → 4 via 1, 2, and 3 vanishes.

These relations imply that the diagrams

124
r

//

r

��
−

2

◦ δ

��
1 ◦

δ
// 4

134
r

//

r

��
−

3

◦ δ

��
1 ◦

δ
// 4

234
r

//

r

��
−

2

◦ δ

��
3 ◦

δ
// 4

anti-commute and that the composite of two odd maps vanishes. It is routine to

check that the universal pre-additive category with these generators and relations is

given by the groups listed in Table 1.

Define NTnil and NTss as in Definition 3.3: NTnil is the linear span of the groups

NT∗(Y,Z) with Y 6= Z and NTss is spanned by the groups NT∗(Y,Y ). Then NTnil

is a nilpotent ideal in NT and NTss
∼= ZLC(X)∗ is a semi-simple ring. Thus NTnil is

the maximal nilpotent ideal in NT and we have a semi-direct product decomposition

NT ∼= NTnil ⋊NTss as in Lemma 3.4.

The next task is to describe the submodule M ′ := NTnil · M ⊆ M for an exact

NT-module M. The following computations are done as in the proof of Lemma 3.8,

using (3.4) and that the morphisms in (5.1) generate NT.

M ′(14) = range
(

i14
4 : M(4) → M(14)

)
= ker

(
r1

14 : M(14) → M(1)
)
,

and symmetrically for 24 and 34;

M ′(124) = range
(

i124
14 : M(14) → M(124)

)
+
(

i124
24 : M(24) → M(124)

)

= ker
(
δ4

124 : M(124) → M(4)
)
,

where δ4
124 denotes a generator of NT1(124, 4) ∼= Z; symmetry provides M ′(134) and

M ′(234). We have

M ′(1) = range
(

r1
1234 : M(1234) → M(1)

)
= ker

(
δ234

1 : M(1) → M(234)
)
,

and symmetrically for 2 and 3, and

M ′(4) =

3∑

j=1

range(δ4
j : M( j) → M(4)) = ker

(
i1234
4 : M(4) → M(1234)

)
.

But something goes wrong with M ′(1234). Equation (3.4) yields

range
(

i1234
124 : M(124) → M(1234)

)
+
(

i1234
134 : M(134) → M(1234)

)

= ker
(
δ14

1234 : M(1234) → M(14)
)
.
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To take into account the range of i1234
234 as well, we need an exact sequence containing

δ14
1234 ◦ i1234

234 , which is the generator of NT1(234, 14) ∼= Z. Since there is no such exact

sequence, our method breaks down at this point.

Another symptom, but not a cause, of problems is that the map δ4
124 that describes

M ′(124) is not the longest map out of 124: that would be δ34
124.

As we shall see, the analogues of Theorems 3.12 and 4.9 become false for the

space X. First, there is a non-projective exact module M with free Mss; secondly,

there is a module that has no projective resolution of length 1; thirdly, there are

A,B ∈ B(X) with I2(A,B) 6= 0. Hence Theorem 4.7 provides non-isomorphic

objects in the bootstrap class B(X) with isomorphic filtrated K-theory. The con-

struction of these counterexamples follows the above pattern: first we find a coun-

terexample to Theorem 3.12, which we use to find one for Theorem 4.9, which is then

used to find an example as in Theorem 4.7.

We begin with the unexpected non-projective module. Let PY for Y ∈ LC(X)∗

denote the free NT-module on Y , that is,

PY (Z) = NT∗(Y,Z), HomNT(PY ,N) ∼= N(Y )

for any Y,Z ∈ LC(X)∗ and any NT-module N. A natural transformation FKY ⇒
FKZ corresponds to an element in NT∗(Y,Z) ∼= PY (Z) ∼= HomNT(Pz, PY ) and thus

induces a module homomorphism PZ → PY in the opposite direction. Hence the

three arrows 124, 134, 234 → 1234 in (5.1) induce a module homomorphism

j : P1234 → P0 := P124 ⊕ P134 ⊕ P234.

Table 1 shows that there are no module homomorphisms P0 → P1234, that is, no

non-zero natural transformations from 1234 to 124, 134, or 234.

The crucial observation is that j is a monomorphism, so that P1234 becomes a

submodule of P0. Since the longest natural transformations out of 1234 are those to

14, 24, and 34, this follows from the elementary observations that for j = 1, 2, 3 the

map

NT∗(1234, j4) → NT∗(1234 \ j, j4)

is the identity map on Z. This follows from the exactness of free modules, because

NT∗( j, j4) = 0 by Table 1.

We describe the quotient M := P0/ j(P1234) by its values M(Y ) for Y ∈ LC(X)∗ as

in (5.1):

(5.2)

0
i

//

i

  B
BB

BB
BB

BB
Z

i

!!C
CC

CC
CC

CC
Z

◦
EE

EE
EE

EE
δ

EE
EE
EE

EE

Z[1]

i

<<yyyyyyyyy
i

//

i

""E
EE

EE
EE

EE
0

i
>>|||||||||

i

  B
BB

BB
BB

BB
Z

i
// Z2

r

=={{{{{{{{{ r
//

r

!!C
CC

CC
CC

CC
Z ◦

δ
Z[1]

0
i

//

i
>>|||||||||

Z

i
=={{{{{{{{{

Z

◦yyyy
yyyy

δ
yyyy
yyyy
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The boundary maps δ act by isomorphisms on M, because M( j4) = 0 for j = 1, 2, 3.

The other maps can be understood by writing M(1234) = Z3/〈(1, 1, 1)〉 and M( j) =

Z2/〈(1, 1)〉 for j = 1, 2, 3 as quotients. The three maps Z → Z2 correspond to the

three coordinate embeddings Z ֌ Z3, the maps Z2 → Z to the projections Z3
։ Z2

onto coordinate hyperplanes.

The projective resolution

(5.3) 0 → P1234

j

−→ P0
։ M

does not split, because there exist no non-zero morphisms P0 → P1234. Hence M

is not projective. But Mss is free, and M is exact, because the exact modules form

an exact category and P1234 and P0 are exact. Thus M is a counterexample to Theo-

rem 3.12.

The module M is directly related to the problem with describing NTnil · M(1234)

encountered above. Since HomNT(PY ,N) ∼= N(Y ) for any NT-module N and any

Y ∈ LC(X)∗, the resolution (5.3) provides an exact sequence

0 → HomNT(M,N)

→ N(124) ⊕ N(134) ⊕ N(234) → N(1234) → Ext1
NT(M,N) → 0,

so that Ext1
NT

(M,N) ∼= N(1234)/NTnil · N(1234) ∼= Nss(1234).

Now we use M to construct a counterexample for Theorem 4.9. Let k ∈ N≥2 and

let Mk := M/k ·M, that is, we replace Z by Z/k everywhere in (5.2). This module has

a projective resolution of length 2 of the form

(5.4) 0 → P1234

(−k, j)
−−−→ P1234 ⊕ P0

( j,k)

−−→ P0
։ Mk,

where k denotes multiplication by k. Using this resolution, we compute

Ext2(Mk, P1234) ∼= Z/k, Ext1(Mk, P1234) ∼= Hom(Mk, P1234) ∼= 0

because there are no non-zero morphisms P0 → P1234. Of course, the generator of

Ext2(Mk, P1234) is the class of the projective resolution (5.4). Hence Mk admits no

projective resolution of length 1 and is a counterexample to Theorem 4.9.

Now we claim that Mk is the filtrated K-theory of some C∗-algebra Ak over X

in the bootstrap class B(X). To begin with, M is the filtrated K-theory of some

such C∗-algebra A by Theorem 4.8. Let Bk be a C∗-algebra in the bootstrap class

with K0(Bk) = Z/k and K1(Bk) = 0. For instance, Bk could be the Cuntz alge-

bra Ok+1. Then Ak := A ⊗ Bk has filtrated K-theory Mk by the Künneth Theorem for

the K-theory of tensor products.

Theorem 5.1 Let Ak be a C∗-algebra in the bootstrap class with FK(Ak) ∼= Mk as

constructed above. Then Ak is not I2-projective. Hence there exist B,D ∈ B(X) that

are not KK(X)-equivalent but with the same filtrated K-theory.
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Proof The second assertion follows from the first one using Theorem 4.7 applied to

the bootstrap class B(X) and the restriction of I to B(X).

It remains to prove that Ak cannot be I2-projective. To see this, we lift the resolu-

tion (5.4) to an I-projective resolution

0 ◦ //P2 ◦ //P1 ◦ //P0
//Ak

in B(X) with boundary maps of degree 1, and embed the latter in a phantom tower

(see [6]):

Ak N0

ι10
// N1

ι21
//

◦�
��

����
�

N2

ι32
//

◦�
��

����
�

N3

◦�
��

����
�

N3

◦�
��

����
�

· · ·

P0

π0

YY333333

P1

π1

YY333333

oo P2

π2

YY333333

oo 0

XX222222

oo · · ·oo

The inductive system (N j , ι
j+1
j ) becomes constant at N3 because P j = 0 for j ≥ 3.

Since Ak belongs to the bootstrap class, N3
∼= 0 (see the proof of [6, Proposition 4.5]).

This implies N2
∼= P2.

The composite map ι20 : Ak = N0 → N2
∼= P2 belongs to I2. Suppose that Ak were

I2-projective. Then ι20 = ι21◦ι
1
0 would vanish, and the long exact homology sequence

would yield that the map ι21 : N1 → N2 must factor through the map N1 → P0. But

KK∗(X; P0, P2) ∼= HomNT

(
FK(P0), FK(P2)

)
= HomNT(P0, P1234) = 0.

Here we have used that filtrated K-theory, by universality, is fully faithful on I-projec-

tive objects and that there are no non-zero module homomorphisms P0 → P1234.

Since ι21 factors through the zero group, it must be the zero map. But then the map

P1 → N1 must be a split surjection, so that N1 is I-projective. Then the I-exact

triangle ΣAk → ΣN1 → P0 → Ak provides an I-projective resolution of Ak of

length 1, which is impossible because FK(Ak) ∼= Mk has no projective resolution of

length 1. As a consequence, Ak is not I2-projective.

We can make the two non-equivalent C∗-algebras over X with the same filtrated

K-theory more explicit. One of them is Ak ⊕ ΣR1234, the other one is the mapping

cone of the map ι20 : Ak = N0 → N2
∼= R1234 in the phantom tower above. Both have

Mk ⊕ P1234[1] as their filtrated K-theory.

This counterexample shows that filtrated K-theory does not yet classify purely

infinite stable nuclear separable C∗-algebras in the bootstrap class.

Remark 5.2 Refining filtrated K-theory by taking filtrated K-theory with coeffi-

cients does not help. This gets rid of the counterexample Ak constructed above, but

other objects of B(X) without projective resolution of length 1 remain. An example

is A⊗B, where B is a C∗-algebra in the bootstrap class with K∗(B) = Q[0] such as an

appropriate UHF-algebra. Its filtrated K-theory is M ⊗ Q . This also has cohomolog-

ical dimension 2, and this is not affected much by taking K-theory with coefficients

because M ⊗ Q is torsion-free.
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5.1 A Refined Invariant

There are at least two ways to identify the source of the problem for the space X. The

first point of view is that what is missing is an exact sequence that has the generator α
of NT1(234, 14) as its connecting map. The map α corresponds to a map ΣR14 →
R234 between the representing objects, which we also denote by α. In the triangulated

category KK(X), we can embed the latter map in an exact triangle

(5.5) ΣR14

α
−→ R234 → R12344 → R14.

The notation R12344 will be explained later. The functors these objects represent sit

in a long exact sequence

· · · → FK14 → FK12344 → FK234

α
−→ FK14[1] → · · ·

which is precisely what we want. The second point of view is that the troublemaker is

the non-projective module M. Since M has a projective resolution of length 1, there is

a unique object in the bootstrap class with filtrated K-theory M. Actually, this yields

the same object as the first point of view:

Lemma 5.3 The non-projective module M above agrees with FK(R12344).

Proof The map FKY (α) vanishes for almost all Y ∈ LC(X)∗, simply because the

graded groups involved have different parity or one of them vanishes. The only ex-

ception is Y = 14. The group FK14(R14) = NT(14, 14) is generated by the identity

natural transformation. Since α is the generator of NT1(234, 14), the map FK14(α)

is invertible.

Now we apply FK to the long exact sequence for the given exact triangle. Since

FK(α) vanishes on most Y and is invertible for Y = 14, we can easily compute the

groups FKY (R12344). We get the same groups as for the module M. It remains to

check that the isomorphism can be chosen as an NT-module homomorphism. The

main step is to check that the map

Z
2 ∼= FK124(R12344) ⊕ FK134(R12344) → FK1234(R12344) ∼= Z

2

is invertible. Together with the known relations between the various natural trans-

formations, this implies the assertion. We omit the details of this computation.

The representing object R12344 is an algebra of functions on a two-dimensional

simplicial complex, which we do not describe here because it is not illuminating. The

functor that it represents, however, can be described rather nicely as follows. Let A

be a C∗-algebra over X. Pull back the extension A(14) ֌ A(124) ։ A(2) along the

quotient map A(234) ։ A(2) to an extension A(14) ֌ A(12344) ։ A(234). The

object R12344 represents the functor

(5.6) KK∗(X;R12344,A) ∼= K∗(A(12344)).

To see this, two observations are necessary. First, K∗(R12344(12344)) ∼= Z; the

generator of this group yields a natural transformation between the two functors
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in (5.6). Secondly, this natural transformation is invertible. This follows from the

Five Lemma, once we know that it extends the known natural isomorphisms

KK∗(X;RY ,A) ∼= K∗(A(Y ))

for Y = 14 and Y = 234 to a chain map between the long exact sequences that we

get from (5.5) and from the extension A(14) ֌ A(12344) ։ A(234). This extension

also explains the notation R12344.

Now we augment filtrated K-theory by adding the covariant functor

B 7→ FK12344(B) := K∗(A(12344)) ∼= KK∗(X;R12344,B).

The new invariant takes values in the category of countableNT
′-modules, whereNT

′

is the Z/2-graded category whose object set is LC
′ := LC(X)∗ ⊔ {12344} and whose

morphisms are the natural transformations between the various filtrated K-groups,

including now also FK12344. These natural transformations can be computed by the

Yoneda Lemma:

NT
′
∗(Y,Z) ∼= KK∗(X;RZ ,RY ) ∼= FKZ(RY )

holds for all Y,Z ∈ LC
′. The category ring for NT

′
∗ is simply the ring KK∗(X; R,R)

where

R :=
⊕

Y∈LC ′

RY .

We replace the ideal I in KK(X) studied above by the kernel I ′ of the enriched

filtrated K-theory functor FK ′ : KK(X) → Mod(NT
′)c. The same arguments as

above show that there are enough I ′-projective objects and that FK ′ is the universal

I ′-exact stable homological functor.

The passage from I to I ′ has improved the situation because R12344 has now been

promoted to an I ′-projective object and, therefore, ceases to cause trouble. In prin-

ciple, something similar can be done in great generality: whenever we have an object

of the Abelian approximation that has a projective resolution of length 1, we can lift it

uniquely to an object of the triangulated category and refine the ideal by intersecting

it with the kernel of the functor this lifted object represents. However, the policy to

quiet troublemakers by promotion has the tendency to encourage new troublemak-

ers, so that it is not clear whether this general strategy always resolves all problems

after finitely many steps. But in the relatively simple example at hand, this turns out

to be the case.

To check this, we must describe the category NT
′. If Y,Z ∈ LC(X)∗, then

NT
′
∗(Y,Z) = NT∗(Y,Z)

is given by Table 1. Furthermore, if Z ∈ LC(X)∗, then

NT
′
∗(12344,Z) ∼= FKZ(R12344) = M(Z)

by Lemma 5.3, and this is described in (5.2). The upshot is that:
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• there are even natural transformations from FK12344 to FK124, FK134, FK234, the

generators of the respective groups of natural transformations, such that any nat-

ural transformation FK12344 ⇒ FKZ with Z ∈ LC(X)∗ is a sum of natural trans-

formations that factor through one of these three and a natural transformation

FKi j4 ⇒ FKZ ;
• the sum of the three natural transformations FK12344 ⇒ FK1234 via FK124, FK134

and FK234 vanishes, and all other relations follow from these and the already

known ones listed after (5.1).

The exact triangle (5.5) yields a long exact sequence

· · · → NT
′
∗+1(Y, 234)

α
−→ NT

′
∗(Y, 14) → NT

′
∗(Y, 12344) → NT

′
∗(Y, 234) → · · · ,

which we may use to compute NT
′
∗(Y, 12344) for all Y ∈ LC

′. The map α induces an

isomorphism for Y = 234 and the zero map for all other Y because the source and

target have opposite parity or one of them vanishes. Thus

Y 4 14, 24, 34 124, 134, 234 1234 1, 2, 3 12344

NT
′
∗(Y, 12344) Z2 Z 0 Z[1] Z[1] Z

These groups inherit from M their invariance under permutations of 1, 2, 3. Inspect-

ing composition with natural transformations in NT, we arrive at the following:

• there are even natural transformations FK j4 ⇒ FK12344 for j = 1, 2, 3, such that

any natural transformation FKY ⇒ FK12344 with Y ∈ LC(X)∗ factors through one

of them;
• the sum of the three natural transformations FK4 ⇒ FK12344 vanishes;
• the natural transformations FK j4 ⇒ FK1234\ j via FK12344 vanish;
• all other relations follow from these and the already known ones.

As one may expect, the basic natural transformations FK14 ⇒ FK12344 ⇒ FK234 are

induced by the maps R234 → R12344 → R14 in the exact triangle (5.5).

The indecomposable morphisms of the new category NT
′ are the maps in the

following diagram:

14

""E
EE

EE
EE

E
124

""E
EE

EE
EE

E
1

◦
>>
>>

��>
>>
>

4

??~~~~~~~~
//

��@
@@

@@
@@

24 // 12344 //

;;xxxxxxxx

##F
FF

FF
FF

F
134 // 1234

=={{{{{{{{
//

!!C
CC

CC
CC

C
2 ◦ // 4

34

<<yyyyyyyyy
234

<<yyyyyyyy
3

◦����

@@����

The category ring of NT
′ again has the by now familiar structure: it is a split

nilpotent extension of the semisimple algebra NT
′
ss

∼= ZLC
′

spanned by the iden-

tity transformations on the objects and a nilpotent ideal NT
′
nil that is the subgroup

generated by NT
′(Y,Z) with Y 6= Z.
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Definition 5.4 A module over NT
′ is exact if it is exact as an NT-module and the

three sequences

· · · → N∗+1(i j4) → N∗(k4) → N∗(12344) → N∗(i j4) → · · ·

for {i, j, k} = {1, 2, 3} are exact as well.

The range of the invariant FK ′ consists of exact NT
′-modules; the three new exact

sequences are, in fact, equivalent for symmetry reasons, and the extension

· · · → N∗+1(234) → N∗(14) → N∗(12344) → N∗(234) → · · ·

is built into the definition of FK12344.

Let N be an exact NT
′-module and let N ′ := NT

′
nil · N. The description of

N ′(14), N ′(1), and N ′(4) is the same as for the category NT, so that these groups

remain kernels of certain maps, as needed. Furthermore, N ′(1234) is the kernel of

the map N(1234) → N(12344)[1] induced by the generator of NT1(1234, 12344), so

that the problem that appeared for the category NT is cured.

The computation of N ′(124) changes because this group is now the range of the

arrow N(12344) → N(124). But this is part of a long exact sequence because N is

exact, and we get N ′(124) = ker(N(124) → N(34)[1]), and similarly for N ′(134)

and N ′(234).

Finally, N ′(12344) is the sum of the ranges of the maps N( j4) → N(12344) for

j = 1, 2, 3. Using exactness, we identify this in two steps with the kernel of the map

N(12344) → N(4)[1] induced by the generator of NT
′
1(12344, 4).

As a result, the submodule NT
′
nil · N is described using kernels of maps N(Y ) →

N(Z). By the way, these arrows are the longest arrows starting at Y as in Remark 3.9.

The same arguments as for totally ordered spaces now show the following theorems.

Theorem 5.5 An NT
′-module N is free if and only if it is projective, and it is projective

if and only if it is exact and N(Y ) is a free group for all Y ∈ LC
′.

Theorem 5.6 An NT
′-module N has a projective resolution of length 1 if and only if

it is exact.

Theorem 5.7 Let A and B be C∗-algebras over the four-point space X under consid-

eration. If A belongs to the bootstrap class B(X), then there is a natural short exact

sequence

Ext1
NT ′

(
FK ′(A)[1], FK ′(B)

)
֌ KK∗(X; A,B) ։ HomNT ′

(
FK ′(A), FK ′(B)

)
.

In particular, morphisms FK ′(A) → FK ′(B) lift to elements in KK∗(X; A,B). If both A

and B belong to the bootstrap class, Then an isomorphism FK ′(A) ∼= FK ′(B) lifts to a

KK(X)-equivalence.

Corollary 5.8 The map A 7→ FK ′(A) is a bijection between the set of isomorphism

classes of tight, stable, purely infinite, separable, nuclear C∗-algebras over X with simple

subquotients in the bootstrap class and the set of isomorphism classes of countable exact

NT
′-modules.
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6 Conclusion

We have obtained a Universal Coefficient Theorem that computes KK∗(X; A,B) for

A in the bootstrap class and X of a very special form, namely, {1, . . . , n} with the

Alexandrov topology from the total order. This Universal Coefficient Theorem can be

used to carry over classification results for simple, nuclear, purely infinite C∗-algebras

to nuclear, purely infinite C∗-algebras with primitive ideal space X, using filtrated

K-theory as the invariant.

For general finite topological spaces X, we still get a spectral sequence that com-

putes KK∗(X; A,B) using filtrated K-theory, but this spectral sequence need not de-

generate to an exact sequence, so that isomorphisms on filtrated K-theory need not

lift to X-equivariant KK-equivalences. In fact, we have found a counterexample. At

the same time, we were able to fix the counterexample by refining filtrated K-theory.

It is unclear whether such a refinement is available for all finite topological spaces or

what it would look like.
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