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ABSTRACT 
Currently, engineers need to manually analyse requirement specifications for determining parameters to 
create geometries in generative engineering. This analysis is time-consuming, error-prone and causes 
high costs. Generative engineering tools (e.g. Synera) cannot interpret natural language requirements 
directly. The requirements need to be formalised in a machine-readable format. AI algorithms have the 
potential to automatically transform natural language requirements into such a formal, machine-readable 
representation. In this work, a method for formalising requirements for generative engineering is 
developed and implemented as a prototype in Python. The method is validated in a case example using 
three products of an automotive engineering service provider. Requirements to be formalised are 
identified in the specifications of these three products, which are used as a test set to evaluate the 
performance of the method. The results show that requirements for generative engineering are 
formalised with high performance (F1 of 86.55 %). By applying the method, efforts and therefore costs 
for manually analysing requirements regarding parameters for generative engineering are reduced. 
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1 INTRODUCTION 

Generative engineering of components requires multiple parameters to be considered for creating 

geometries. These parameters are for example available design space, materials or the manufacturing 

process to. Generative engineering is part of the automated engineering process and is carried out in 

tools like Synera (Synera GmbH, 2022). Currently, the required parameters have to be determined 

manually by engineers through analysing requirement documents and modelling them as restrictions in 

the generative engineering tool. This analysis is time-consuming, error-prone and causes high costs 

(Ambriola and Gervasi, 2006). This is especially challenging in the engineering of components for 

complex technical systems, because requirement sets can contain several hundred requirements 

(Fernandes et al., 2015; Gräßler et al., 2018; Gräßler et al., 2016). Due to the high amount of 

requirements, there is a need for an automated analysis. When engineering components of complex 

technical systems, 80 % of the requirements are recorded in natural language (Mich et al., 2004; Neill 

and Laplante, 2003). Natural language is expressive and used for communication between a wide 

range of stakeholders (Casamayor et al., 2010; Gräßler, 2017). However, natural language is 

inherently ambiguous (Ceccato et al., 2004). Even more, the use of natural language in requirements 

makes them unclear (Wilson et al., 1997). It is not possible for generative engineering tools to directly 

interpret natural language requirements (Meth et al., 2015). Therefore, there is a need for an automated 

formalisation of natural language requirements so that they can be interpreted by generative 

engineering tools. Formalisation means extracting unstructured information embedded in texts and 

formatting it in a structured and machine-readable data format (Jurafsky and Martin, 2021). 

In software engineering, algorithms based on Artificial Intelligence (AI) are applied to natural 

language processing for requirements engineering. AI algorithms have the potential to automatically 

transform natural language requirements into a formal, unambiguous representation (Giannakopoulou 

et al., 2021). These approaches can be adapted to the context of requirements in generative 

engineering of components. Based on the characterisation of parameters defined in the requirements, 

suitable approaches for formalisation must be selected and appropriate models trained. For example, it 

needs to be evaluated whether Named-Entity-Recognition is applicable for extracting the prescribed 

manufacturing process of the component. In addition, the performance of the approaches in the 

formalisation of requirements must be assessed. Only approaches with high performance are 

applicable to the problem. This research therefore aims at answering the following two research 

questions (RQ): 

• RQ 1: "Which approaches are applicable to formalise requirements in generative engineering of 

components for complex technical systems?" and 

• RQ 2: "How do approaches for formalising requirements in generative engineering of 

components perform in complex technical systems?" 

This paper is divided into seven sections. The introduction (cf. Section 1) is followed by the 

methodology chosen to answer the research questions (cf. Section 2). Subsequently, an analysis to 

identify needs of formalising requirements for generative engineering and to derive success criteria of 

a method for formalising requirements is carried out (cf. Section 3). Then, approaches for formalising 

requirements are identified (cf. Section 4). Based on the success criteria and the identified approaches, 

a method for formalising requirements in generative engineering of components is developed (cf. 

Section 5). The performance of the developed method is evaluated (cf. Section 6). Finally, a summary 

of the results and an outlook on further research perspectives is given (cf. Section 7). 

2 METHODOLOGY 

This paper is part of the Federal Ministry for Economic Affairs and Climate Action funded research 

project BIKINI: bionics and artificial intelligence for sustainable integration in product development 

for resource efficient lightweight design (03LB3018C, https://bikini-projekt.de/). The research follows 

the approach for application-bound sciences according to Ulrich (Ulrich, 1982). The approach by 

Ulrich is chosen due to its application-orientation and the integrative consideration of engineering and 

management sciences. The approach is depicted in Figure 1.  

The first step is to identify problems of practical relevance. The scientific need and research questions 

of the contribution are derived. Success criteria of formalising requirements for generative engineering 

are elicited via literature study and interviews with practitioners. Two interviews are conducted, each 

with a requirements engineer from the engineering service providers EDAG Engineering GmbH 
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(short: EDAG). As a second step, a literature survey according to Machi and McEvoy (Machi and 

McEvoy, 2012) is carried out to specify problem-relevant procedures. Thus, existing approaches for 

the formalisation of natural language are identified. Among those, relevant ones are selected. Based on 

the success criteria and the selected approaches, a method for formalising requirements for generative 

engineering is developed in the third step. This method is implemented as a prototype in Python. 

Requirements data are prepared (labelling of parameters and formatting the data) to develop the 

method and to form a training set for models for formalising requirements. For this purpose, 

requirement specifications from three past development projects of EDAG are used. The method is 

validated in a case example using the products "assembly latch hood", "adjustable stopper hood" and 

"trunk curtain roller blind". 76 requirements to be formalised are identified in these three 

specifications of EDAG, which are used as a test set to evaluate the performance of the method. In 

addition, an interview is conducted with the same two requirements engineers from EDAG to discuss 

the implemented method and results. The results are presented to them and they evaluate whether the 

method adds value to generative engineering in practice. 

 

Figure 1. Methodology for application bound sciences based on (Ulrich, 1982) 

3 GENERATIVE ENGINEERING AND SUCCESS CRITERIA 

In the following, generative engineering is described and success criteria of the method for formalising 

requirements for generative engineering are determined (cf. Section 2). For this, two semi-structured 

interviews (each 30 minutes) are performed with two requirements engineers from EDAG to capture 

needs from industrial practice. 

Generative engineering: In generative engineering, geometries are generated automatically based on 

restrictions. The restrictions are derived from requirements that are contained in requirement 

specifications. Generated geometries are optimised with regard to certain criteria. For example, a door 

module can be optimised with regard to the criterion "mass" and at the same time comply with 

restrictions regarding different load cases. In generative engineering the goal is to define a workflow, 

which generates the component automatically, based on specific parameters. Since the process of 

modelling a component manually is very time-consuming, the generative approach saves time through 

providing a high level of automation (Gräßler, 2003). Software tools like Synera enable such an 

approach. An exemplary view of a Synera workflow for generating geometries (in this case for a door 

module) is shown in Figure 2. 
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Figure 2. Generative engineering of a door module in Synera 

4 STATE OF RESEARCH 

A literature review is conducted to determine the state of research in natural language formalisation 

(cf. Section 4.1) and approaches that formalise natural language requirements (cf. Section 4.2). The 

review is performed to be able to select relevant approaches, to distinguish the approach from current 

research and to show the degree of novelty. 

4.1 Formalising natural language 

For formalising natural language text, Jurafsky and Martin divide approaches into three types of tasks 

(Jurafsky and Martin, 2021). Relation Extraction means recognising entities and relations among entities, 

such that a graph structure, e.g. a knowledge graph, can be constructed. The graph construction can 

either be executed from scratch, or alternatively the found entities can be linked with existing nodes to 

extend the graph. Event Extraction is described as identifying mentions of events in text, including 

recognising participating entities. Additionally, the temporal expression of the particular point, or 

interval, in time of the event has to be extracted as well as normalised in a structured format. In Template 

filling, a template is defined as a set of semantic keys and corresponding data types. Each template key 

has to be filled with concepts like time intervals, amounts, or ontology entities of the source text, which 

have the correct data type and are as a value compliant with the expected semantic of the key. A key with 

an assigned value is referred to as key-value pair (Du et al., 2021). 

In the formalisation of requirements, events are negligible but knowledge graph construction through 

relation extraction and template filling are applicable approaches. Knowledge graphs are a very 

comprehensive formalisation of text, in which as much information as possible is contained, while 

key-value pairs are a very narrow but concrete formalisation. The selection of a text formalisation 

approach depends on the question how well-known the future questions are that will be answered via 

the extracted and formalised information. Both tasks have in common that an approach for entity 

recognition is necessary, such that the entities can either be analysed with regards to relationships in 

graphs or as possible values for keys. In this context, entities are words or phrases from the source 

text, and they belong to a named category, e.g. person, location, or organisation. Therefore, these 

entities are also called by the term Named-Entities and the recognition is called Named-Entity-

Recognition (NER) (Jurafsky and Martin, 2021). For example, NER models enable detecting the 

phrase “Robert Bosch GmbH” in a text and automatically classify it as "supplier". Common 

algorithms for training a NER model based with appropriate training data are for example (Jurafsky 

and Martin, 2021): 

• Hidden Markov Models 

• Conditional Random Fields 

• Recurrent Neural Networks 

• Transformer 
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A widely adopted benchmark for NER models is the CoNLL 2003 NER Task, in which persons, 

locations, organisations, and miscellaneous entities must be extracted from news reports (Sang, Tjong 

and Meulder, 2003). Currently, the best benchmark results from an approach using transformer-based 

embeddings (Wang et al., 2021). 

4.2 Approaches for formalising natural language requirements 

In the area of formalisation of requirements, the construction of entities and dependency-based structure, 

e.g. a graph, representing the natural language source text is often used as an intermediate step. The 

result of such graph transformation approaches is a graph that represents the object-oriented model of 

components of the target domain (Ilieva and Ormandjieva, 2005) or an entity relationship graph for a 

domain data model (Kashmira and Sumathipala, 2018). Another approach is chosen in the ARSENAL 

tool, which uses a graph with relationships and dependencies between entities to create a representation 

of requirements using Linear Temporal Logic (LTL) (Ghosh et al., 2014). The goal of other approaches 

is likewise to transfer natural language requirements into a logical formalism, e.g. a hierarchical 

clustering used to structure recognised entities and relationships/dependencies (Giantamidis et al., 2021) 

or a rule-based approach based on the found entities and grammatical dependencies (Koscinski et al., 

2021). In another approach, product ideas (e.g. "Rolling toy as a point-of-sale device") are generated by 

AI using keywords, which are input manually (Zhu and Luo, 2023). AI constraint networks are used in 

SPARK to enable engineering despite incomplete information (Young et al., 1991). 

In summary, the analysis of related work shows that there are no approaches for formalising 

requirements in the context of generative engineering of components of complex technical systems. So 

far, the performance of formalising approaches have not been assessed for this research area. 

5 METHOD FOR FORMALISING REQUIREMENTS 

Success criteria of the method: Resulting from literature study (cf. Section 1) and interviews, a total of 

eight success criteria are elicitated (cf. Table 1). Success criteria form requirements of the method: the 

term "success criteria" is used instead of "requirements" to improve readability, as the objects of 

research are also requirements. The success criteria are categorised as related to "input", “model 

capabilities", "model use" and "output" (Hamraz et al., 2013). The support needs to be able to process 

requirements in natural language. The requirements shall not need to follow a fixed template (e.g. 

templates like (Joppich et al., 2016)) and they must be in an industry-standard format (SC 1). The 

language of the specification needs to be English (SC 2). Relevant restrictions of generative 

engineering need to be formalised (SC 3). These restrictions were collected during the interviews. The 

requirements engineers noted that for generative engineering it should be possible to assess the 

sustainability of the component. For this purpose, additional parameters that enable a sustainability 

assessment need to be extracted (SC 4). Since results from interviews and literature study (Fernandes 

et al., 2015; Mich et al., 2004; Neill and Laplante, 2003) indicate that extracting parameters from 

requirements requires high effort, parameters need to be extracted automatically (SC 5). Information 

needed to apply the support have to be available in an industry-standard manner (e.g. only a realistic 

amount of training data is required) to be usable in practice was noted in the interviews (SC 6). The 

requirements engineers have expressed that the accuracy of formalisation must be high (SC 7) and that 

a common interchange format (SC 8) must be chosen for allowing import into generative engineering 

tools with low manual effort. Results of the literature review indicate that high accuracy in formalising 

requirements is hindered by the ambiguity of natural language (Casamayor et al., 2010). 

Table 1. Success criteria for formalising requirements 

ID Category Success Criteria 

SC 1 Input Process natural language requirements 

SC 2 Input Process English requirements 

SC 3 Model capabilities Formalise restrictions 

SC 4 Model capabilities Formalise criteria for sustainability assessment 

SC 5 Model use Reduce effort through automation 

SC 6 Model use Information in industry standard manner 

SC 7 Output Sufficient accuracy 

SC 8 Output Common interchange format 
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The method for formalising requirements for generative engineering is developed based on the 

success criteria and the findings from analysing state of research. In generative engineering, various 

parameters must be extracted from the requirements. A narrow formalisation is needed so that the 

extracted information is machine-readable and can be interpreted using generative engineering tools. 

For this reason, a template filling approach in combination with NER is chosen (cf. Section 4). 

Transformer models are applied for this task, because they show best results for NER (Wang et al., 

2021). The developed method is a combination of data-based AI and a rule-based approach. 

To formalise requirements, key-value pairs are recognised in natural language requirements. An 

example of a key-value pair is visualised in Figure 3. The key-value pair of the requirement "The 

lifespan of the system must be at least 300.000 km." must be extracted. In this example, the key is 

"lifespan_range". The lifespan is specified as a unit of distance. The value of the key is "at least 

300.000 km". Thus the key-value pair is "lifespan_range: ≥ 300.000 km". Various structure rules and 

text indicators are used to detect the key-value pair, which are defined in the domain lexicon. Value 

classes are defined per key-value pair. In this example, the value is a number (in combination with the 

relational operator "at least", or "≥" and the unit kilometer, or "km"). Values do not necessarily have to 

be real numbers in the context of formalising requirements. In the example requirement "The door 

module is to be manufactured using additive manufacturing", the key is "manufacturing process" and 

the value is "additive manufacturing". 

 

Figure 3. Formalising a requirement of a door module (example) 

The method for formalising requirements consists of three steps. Step 1: The requirement candidates 

must be identified (cf. Figure 4). To reduce the runtime and extracting false positive results of the 

algorithm for formalising requirements, only certain requirements should be checked for containing 

certain key-value pairs. A requirement is only examined for a key-value pair if all structure rules are 

fulfilled. Requirements that meet these conditions are called requirement candidates. Structure rules 

are defined per key-value pair. These structure rules are used as a positive or negative list. For 

example, structure rules for the requirement regarding the lifespan of the door module are: 

• Structure rule 1: "The key "lifespan_range" can only occur in a requirement if a unit of distance 

is present". (positive) 

• Structure rule 2: "The key "lifespan_range" cannot occur in a functional requirement." (negative) 

If a unit of distance (e.g. "km") is not present in a requirement, then the requirement is not checked 

whether a key-value pair exists for the key "lifespan_range" (structure rule 1). In addition, meta-data 

of the requirements can be used to form structure rules. A key-value pair of the key "lifespan_range" 

cannot occur in a functional requirement, which is why functional requirements are not checked for 

this key-value pair (structure rule 2). 

Step 2: The requirement candidates are filtered by comparing them with text indicators of keys. Text 

indicators for "lifespan_range" are e.g. "lifespan" or "durability". These text indicators are defined 

manually in the domain lexicon. The definition can be partially automated, by identifying synonyms 

from lexical databases like WordNet (Fellbaum, 2005). All words of the requirement candidates (after 

removing stop words) are used as candidates for key-value pairs. The key-value pair candidates are 

lemmatised and compared directly with the lemmas of text indicators and searched for matches. 
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Step 3: If at least one match is found, the key-value candidates are checked whether they contain a 

value for the matching key. Depending on the key, different approaches for recognising values are 

used. For example, the key "lifespan_range" can take on the values 0 to n and a unit of distance (like 

"km" or "kilometer"). This class of values is called "number with unit". Regular Expressions (RegEx) 

are used for recognition. If there are multiple possible values for a key, which do not follow a fixed 

syntax like the value class "number with units", NER is used. For example, the key 

"manufacturing_site" requires a value of the location of the manufacturing site (e.g. country 

"Germany" or city "Paderborn"). Pre-trained models exist for some NER tasks. In this approach, 

spaCy´s NER models are used for value class "location". For other value classes like "material" or 

"manufacturing_process", NER models are specifically trained. If there are few possible values for a 

key, a string matching approach is used. A list of strings for this value is manually defined. The 

lemmatised strings are matched with the lemmatised value candidates. For example, the key 

"energy_type" requires a value of the type of energy needed by a vehicle (e.g. "diesel" or "electric"). If 

the key-value pair candidate does not contain a value, which matches the key it is discarded as a 

candidate for this key. If the requirement contains a single matching value, it is used as the value for 

the key-value pair. If it is not possible to determine a unique value, then all value candidates must be 

verified manually. The procedure is illustrated in Figure 4. 

 

Figure 4. Procedure for formalising requirements 

6 VALIDATION 

To validate the method for formalising requirements, eight key-value pairs are identified and metrics 

are calculated within a case example to assess the performance of the method. The key-value pairs to 

be analysed were chosen so that all of the different formalisation approaches of the method can be 

tested. A semi-structured interview is conducted with two requirements engineers. The method and 

results of formalising requirements are presented to them and they evaluate the benefit for generative 

engineering when applying the method in practice. 

 

Performance metrics 

Requirements from three requirement specifications of EDAG ("assembly latch hood", "adjustable 

stopper hood" and "trunk curtain roller blind") are formalised to extract key-value pairs. The 

performance for extracting key-value pairs is measured. For this purpose, a test set of key-value pairs 

to be formalised is created. To create the test set, key-value pairs from the domain lexicon are labelled 

in the requirements of EDAG. The test set is used to assess the performance of the method using 

classifier metrics. In the labelled requirements of EDAG, there are eight different key-value pairs that 

have to be extracted from requirements. The key-value pairs are explained in Table 2. 
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Table 2. Key-value pairs used in validation 

Key Value class Explanation 

manufacturing_process NER model (own) Manufacturing process to be used 

manufacturing_site NER model (spaCy) Site to be manufactured in (location) 

material NER model (own) Material to be used 

energy_type string matching Energy type like fuel or electrical 

mass number with unit Mass of the product 

lifespan_range number with unit Lifespan of the product in unit of range 

lifespan_time NER model (own) Lifespan of the product in unit of time 

supplier_selected NER model (spaCy) Supplier of the product 

own: trained NER model with EDAG data; spaCy – pre-trained NER model by spaCy 

 

For measuring the performance in formalising requirements, the classifier metrics precision, recall and 

F1 are used (Alpaydın, 2019). The method is used to formalise 76 requirements from three specifications 

of EDAG extracting the key-value pairs described in Table 2. For each key, a set of requirements is 

selected, which contain values of the respective keys. The results are shown in Table 3. 

Table 3. Results for formalising requirements 

Key-value pair Precision Recall F1 Num. req. for 

Test/Training 

manufacturing_process 93.33 % 77.78 % 84.85 % 18/68 

manufacturing_site 100.00 % 100.00 % 100.00 % 3/- 

material 100.00 % 60.00 % 75.00 % 10/59 

energy_type 100.00 % 100.00 % 100.00 % 4/- 

mass 100.00 % 90.00 % 94.74 % 10/- 

lifespan_range 100.00 % 100.00 % 100.00 % 10/- 

lifespan_time 100.00 % 75.00 % 85.71 % 11/9 

supplier_selected 100.00 % 77.78 % 87.50 % 9/- 

Macro average 99.26 % 76.73 % 86.55 % 76/146 

Num. req.: "Number of requirements" 

 

Overall, the results show that the method extracts the key value pairs in the requirements with high 

performance (macro average F1 of 86.55 %). Especially the precision is high (99.26 %), which means 

that hardly any false positives have been detected. This indicates that the text indicators for detecting 

keys have been defined correctly. The "string matching" and "number with unit" approaches perform 

well (avg. F1 100 % and 97.97 %). The pre-trained spaCy models for extracting "manufacturing_site" 

and "supplier_selected" also perform well in this context (F1 of 100.00 % and 87.50 %). 

 

Interview 

A semi-structured interview was conducted with two requirements engineers from EDAG. The method 

and results were presented to the requirements engineers and questions (Q 1 to Q 3) were asked. The 

results are summarized by the engineers' responses (R 1 to R 3). Direct quotes are printed in italic. 

Q 1: "Is the information sufficient to perform generative engineering? Is further information needed?" 

R 1: The method is applicable to extracting relevant parameters for generative engineering including 

sustainability assessment. The formalisation approaches within the method (e.g. "number with unit") 

are transferable to other parameters, e.g. "volume of components". "Not all parameters can be read 

directly from the requirements. Some of them have to be derived". These parameters are material 

properties, e.g. waterproof. Due to the expressiveness of natural language, not all requirements can be 

parameterised. 

Q 2: Is the method adding value to generative engineering? 

R 2: Because of the amount of parameters needed for engineering a specific part in complex technical 

systems, extracting the parameters manually is time-consuming. Especially by integrating the 

formalisation into the workflow of generative engineering, time is saved. 

Q 3: Is the method applicable? What information is needed to enable applicability in practice? 

R 3: The requirements specification needed for the application of the method is available in our company 

as the basis for engineering." Internally, a process has to be defined for formalising the requirements, as 
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the Synera engineer does not have access to the requirements specification. Since NER models only 

require a low amount of training data, effort for generating data in practice is acceptable. 

 

Conclusion 

The method supports formalising natural language requirements in English that do not follow a fixed 

template (SC 1 and SC 2 are fulfilled). Because of multiple approaches (like NER models or "number 

with unit"), the method is transferable to different types of parameters. Nevertheless, some parameters 

e.g. material properties, need to be manually derived from experts and cannot be formalised directly 

using this approach (SC 3 and SC 4 are partially fulfilled). The effort of formalising requirements is 

reduced. An implemented interface for generative engineering tool is required to further decrease effort 

(SC 5 is partially fulfilled). The information needed is available in practice and the effort for generating 

training data is low (SC 6 is fulfilled). In validation, only 146 requirements for training were needed to 

achieve the displayed high performance (F1 of 86.55 %, SC 7 is fulfilled). The extracted parameters are 

exportable in CSV format allowing import in generative engineering tools (SC 8 is fulfilled). 

7 SUMMARY AND OUTLOOK 

In this research, a method for formalising requirements for generative engineering of components for 

complex technical systems is developed. Within the method, the approaches "string matching", "number 

with unit" and NER models are used to formalise requirements for generative engineering (RQ 1). The 

validation is carried out via formalising requirements from three EDAG specifications and conducting an 

interview with two requirements engineers. Requirements of generative engineering are formalised with 

high performance (F1 of 86.55 %, RQ 2). By applying the method, effort of manually analysing 

requirements regarding parameters for generative engineering is reduced. The research presented 

contributes to the application of AI methods in engineering. Further research potential lies in using 

formalised requirements for dependency analysis (Gräßler et al., 2020; Gräßler and Yang, 2016) as well 

as importing formalised requirements into system modelling tools for impact analysis of requirement 

changes (Gräßler et al., 2022; Gräßler and Pöhler, 2020). Moreover, the potential of applying NLP 

approaches to automatic elicitation of requirements needs to be explored. This benefits engineers through 

creating candidate solutions of generative systems using fewer constraints and enabling an explorative 

approach. The approach needs to be tested with a higher number of requirements from different 

companies to assess effects of different requirement representations on the results. 
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