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Abstract

Shiga toxin-producing Escherichia coli (STEC) transmission occurs in ruminant contact
settings and can lead to post-diarrheal hemolytic uremic syndrome (HUS). We investigated
whether exposure setting (ruminant exposure from living or working on a farm, visiting a
farm or animal contact venue, or both) influenced HUS development among individuals with
laboratory-confirmed STEC infections using Minnesota surveillance data from 2010 to 2019.
Logistic regression was performed to determine whether exposure setting was associated with
HUS independent of age, gender, stx2 gene detection, and county ruminants per capita.
Among confirmed STEC cases, ruminant exposure only from living or working on a farmwas
not significantly associated with HUS compared to cases without any ruminant exposure
(OR: 1.25; 95% CI: 0.51, 3.04). However, ruminant exposure only from visiting a farm or
public animal contact venue was associated with HUS (OR: 2.53; 95% CI: 1.50, 4.24).
Exposure from both settings was also associated with HUS (OR: 3.71; 95% CI: 1.39, 9.90).
Exposure to ruminants when visiting farms or animal contact venues is an important
predictor of HUS, even among people who live or work on farms with ruminants. All people,
regardless of routine ruminant exposure, should take care in settings with ruminants to avoid
infection with STEC.

Introduction

Shiga toxin-producing Escherichia coli (STEC) transmission can occur at animal contact venues,
which include agricultural fairs, petting zoos, and farm tours [1]. Ruminant animals, including
cattle, sheep, and goats, are natural reservoirs of STEC [2]. Direct and indirect contact with these
ruminants can increase the risk of STEC infection in humans [3, 4]. From 2009 to 2018, there
were 64 reported STEC outbreaks associated with animal contact in theUnited States, resulting in
618 illnesses and 125 hospitalizations [5]. Infection with STEC can lead to the development of
post-diarrheal hemolytic uremic syndrome (HUS), which is characterized by a triad of micro-
angiopathic hemolytic anemia, thrombocytopenia, and acute renal injury. Progression to HUS is
especially evident in younger age groups and among cases exposed to STEC strains that carry
Shiga toxin 2 (Stx2), particularly when encoded by stx2a or stx2d genes [6].

A previous study identified an association between farm animal contact and progression to
HUS among STEC cases in Indiana [7]. This association, which was independent of known risk
factors for HUS (age, infection with an STEC strain that possesses stx2), indicates that the source
of exposure could have implications for virulence [7]. Although earlier studies suggest that
routine exposure to domesticated animals through living or working on a farm confers acquired
immunity to STEC and its associated toxins, it is unknown whether HUS risk among STEC cases
varies by the extent of prior exposure to farm animals [8, 9].

In this study, we aimed to determine, using surveillance data from theMinnesota Department
of Health (MDH), whether ruminant exposure setting influences HUS risk.

Methods

Data collection and inclusion criteria

Laboratory-confirmed STEC cases reported to MDH from 2010 to 2019 were reviewed for
analysis. STEC infection is required to be reported to MDH, and a clinical specimen or bacterial
isolate must be submitted to the MDH Public Health Laboratory [10]. Latex agglutination or O
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antigen gene detection was used to conduct serotyping. Standard-
ized polymerase chain reaction assay was used to determine stx
gene profiles.

STEC cases were deemed confirmed based on the Council of
State and Territorial Epidemiologists case definitions associated
with the year of disease notification. Evidence of confirmation
included either isolation of E. coli O157:H7 or non-O157 strains
accompanied by either stx gene detection or evidence of Shiga
toxin production [11]. Among cases with confirmed STEC, HUS
case classification was in accordance with the national surveil-
lance case definition, which mandates acute illness diagnosed as
HUS or thrombotic thrombocytopenic purpura accompanied by
anemia and renal injury [12]. HUS is reportable to MDH imme-
diately upon diagnosis [13]. We restricted this analysis to cases
who tested positive for either stx1 and stx2 bacterial genes or stx2
only, given that HUS is primarily associated with Stx2-producing
strains [14, 15].

As part of routine surveillance activities, all STEC cases were
interviewed with a standard case investigation questionnaire. Cases
were asked whether they lived on, worked on, or visited a farm in
the 7 days prior to illness onset, or visited a petting zoo, educational
exhibit, fair, or other venue with animals in the week prior to illness.
Those responding ‘yes’ to any of the above were asked about contact
with specific animals (e.g., cattle, goats, sheep), including an ‘other’
category (Supplementary Material).

Statistical analysis

The primary outcome of interest was HUS development, a binary
categorical variable. Because HUS risk among people who lived,
worked, or visited a farm without ruminants (3.3%) was similar to
HUS risk among people who did not live, work, or visit a farm
(4.1%), we classified our primary exposure variable as follows:
(1) cases without any ruminant animal exposure; (2) cases whose
only exposure to ruminants was because they lived or worked on a
farm with ruminants; (3) cases whose only exposure to ruminants
was because they visited a farm or animal contact venue with
ruminants; and (4) cases who had exposure to ruminants because
they both lived or worked on a farm with ruminants AND visited a
farm or animal contact venue with ruminants. Visiting a venue did
not distinguish between visiting a private farm and a public animal
contact venue. Public animal contact venues in Minnesota include
travelling petting zoos, pumpkin patches and cornmazes with farm
animals, zoos with barnyard exhibits, agritourism farms, goat yoga,
indoor petting zoos, and county and state fairs. Ruminant exposure
was defined as direct contact with a ruminant or contact with a
ruminant animal’s environment.

A descriptive analysis of the data was performed to determine
the distribution of cases by STEC serogroup, detection of stx genes,
age group, gender, and exposure setting. We also examined the
distribution of ruminants per capita in each county [16–18].
Ruminants per capita were generated using cattle, sheep, and goat
inventory from the United States Department of Agriculture
(USDA) 2017 Census of Agriculture and population estimates from
the Minnesota State Demographic Center [19, 20]. For continuous
outcomes, bivariate comparisons were made using a two sample t-
test for binary predictors and one-way analysis of variance
(ANOVA) for categorical predictors with three or more categories.
For binary outcomes, bivariate comparisons weremade using a chi-
squared test for binary categorical predictors.

We performed multiple imputations by chained equations to
handle missing data using the R package ‘mice’ (Supplementary

Methods) [21]. We confirmed the relationship between any rumin-
ant exposure and progression to HUS by fitting a logistic regression
on each of the imputed datasets, adjusting for age and stx profile, and
pooled the results (Supplementary Material). For our primary ana-
lysis, we fit a logistic regression on each of the imputed datasets with
HUS development as the dependent variable and exposure setting as
an independent variable adjusted for age, gender, stx profile of the
STEC strain, and county ruminants per capita. We conducted a
sensitivity analysis to compare model estimates using STEC O157
cases only to all serogroups. Estimates were not vastly different; thus
all serogroups were included in our final model. Results were pooled
across datasets. We examined the interaction between age and
exposure setting and used a likelihood ratio test to assess the change
in residual deviance between the full and reduced model. The inter-
action term was dropped from our final model after it was deter-
mined that the difference between the two models was not
significant. Regression coefficients were exponentiated to obtain
odds ratios (ORs), and 95% confidence intervals (CIs) were calcu-
lated from pooled standard errors obtained using Rubin’s rules [22].

Results

From 2010 to 2019 in Minnesota, there were 1 660 STEC-confirmed
cases with strains that tested positive for either stx1 and stx2 or stx2
only. Of these, 377 (23%) were aged 5 years or under. Themajority of
cases (1 147; 69%) tested positive for STEC O157. In total, 103 cases
(6%) developed HUS. Of children aged 5 years or under, 58 (15%)
developed HUS (Table 1). There was a significant difference in mean
county ruminants per capita by exposure setting (F=9.96,p<0.0001).
Mean county ruminants per capita were significantly higher in coun-
ties where cases with ruminant exposure lived or worked on a farm
compared to caseswith no ruminant exposure (p< 0.0001). Therewas
a significant association between cases who tested positive for stx2
only andHUSdevelopment compared to caseswho tested positive for
both stx1 and stx2 (Chi-square = 18.2, p < 0.0001).

In our sample, 1 350 cases (81%) did not report any ruminant
exposure, 88 (5%) only had exposure to ruminants because they lived
orworked on a farmwith ruminants, 194 (12%) only had exposure to
ruminants because they visited a farm or other animal venue with
ruminants, and 28 (1.7%) both lived or worked on a farm with
ruminantsANDvisited a farmorother animal venuewith ruminants
(Table 1). In our final adjusted model, ruminant exposure only from
living or working on a farm was not significantly associated with
HUS compared to STEC cases without any ruminant contact or
exposure (OR: 1.25; 95% CI: 0.51, 3.04). Conversely, having rumin-
ant exposure only from visiting a farm or other venue was associated
with HUS (OR: 2.53; 95% CI: 1.50, 4.24). Ruminant exposure from
both visiting a farmor other animal venueAND living orworking on
a farm was also associated with HUS (OR: 3.71; 95% CI: 1.39, 9.90).
Relative to strains positive for both stx1 and stx2, strains positive for
only stx2 were significantly associated with HUS (OR: 3.04; 95% CI:
1.91, 4.83). As expected, younger age was associated with HUS
development (OR: 0.97; 95% CI: 0.96, 0.98). Female gender was also
linked to HUS development (OR: 0.54; 95% CI: 0.35, 0.83). County
ruminant per capita was not associated with HUS in the final model
(OR: 0.97; 95% CI: 0.84, 1.12) (Table 2).

Discussion

Our findings demonstrate that visiting a farm or other animal
venue significantly increases the risk of HUS among individuals
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infected with STEC, with the magnitude of the risk differing some-
what based on whether they also had contact with ruminants at
home or work. This is independent of traditional risk factors for
HUS, including age and presence of stx2.

While several studies have established an increased risk of STEC
infection due to direct ruminant contact [23, 24], living in a
ruminant-dense area [16–18], and visiting farms or petting zoos
[25–28], whether ruminant exposure is also associated with
increased risk of HUS among individuals with STEC infections is
less clear. More recent evidence indicated that the HUS rate in
animal contact STEC outbreaks (9%) was significantly higher than
the HUS rate in STEC outbreaks with other modes of transmission
(6%) [29]. Our findings corroborate findings from Indiana that
ruminant animal exposure increases the risk of HUS development
among people with STEC infection independent of known risk

factors [7]. Specifically, HUS risk significantly increased among
people who were exposed to ruminants while visiting a farm or
other animal venue. Although county ruminants per capita have a
large effect on STEC infection risk, it had no effect on our estimates
of HUS risk from animal exposure. This could be a consequence of
either specifically examining HUS risk or from accounting for
direct exposure in our model.

There are several potential explanations for why exposure to
ruminants is associated with an increased risk of progression to
HUS among confirmed STEC cases. Stress associated with trans-
portation and unfamiliar surroundings may cause ruminant ani-
mals to shed higher bacterial volumes at animal contact venues
[30]. This would impact the exposure dose at such events. The
commingling of a variety of animals also increases the diversity of
bacterial strains contained in a single location [31]. STEC isolated

Table 1. Descriptive summary of laboratory-confirmed Shiga toxin-producing Escherichia coli cases by exposure setting, age group, serogroup, Shiga toxin gene (stx)
profile, county ruminant per capita, and hemolytic uremic syndrome (HUS) status – Minnesota, 2010–2019

Cases without any ruminant
animal exposure

Cases whose only exposure to
ruminants was because they
lived or worked on a farm with

ruminants

Cases who had exposure to
ruminants because they both
lived or worked on a farm with
ruminants AND visited a farm or

other animal venue with
ruminants

Cases whose only exposure to
ruminants was because they
visited a farm or other animal

venue with ruminants

Total n % HUS % HUS n % HUS % HUS n % HUS % HUS n % HUS % HUS

1 350 81.3 67 5.0 88 5.3 6 6.8 28 1.7 6 21.4 194 11.7 24 12.4

Age Group

≤5 years 280 20.7a 35 12.5b 24 27.3 4 16.7 10 35.7 5 50.0 63 32.5 14 22.2

6–10 years 104 7.7 11 10.6 5 5.7 1 20.0 4 14.3 1 25.0 31 16.0 5 16.1

11–18 years 189 14.0 4 2.1 13 14.8 0 0.0 9 32.1 0 0.0 36 18.6 2 5.6

19–45 years 406 30.1 5 1.2 18 20.5 0 0.0 2 7.1 0 0.0 49 25.3 2 4.1

46–65 years 198 14.7 3 1.5 23 26.1 1 4.3 1 3.6 0 0 6 3.1 0 0.0

65+ years 173 12.8 9 5.2 5 5.7 0 0.0 2 7.1 0 0 9 4.6 1 11.1

Gender

Male 595 44.1 23 3.9 36 40.9 3 8.3 10 35.7 1 10.0 84 43.3 8 9.5

Female 754 55.9 44 5.8 52 59.1 3 5.8 18 64.3 5 27.8 110 56.7 16 14.5

Serogroup

O157 928 77.5 63 6.8 59 71.1 5 8.5 21 77.8 3 14.3 139 77.2 20 14.4

O103 19 1.6 0 0.0 1 1.2 0 0.0 0 0.0 0 – 3 1.7 0 0.0

O26 26 2.2 0 0.0 1 1.2 0 0.0 0 0.0 0 – 2 1.1 0 0.0

O111 67 5.6 2 3.0 7 8.4 0 0.0 1 3.7 0 0.0 17 9.4 3 17.6

O145 60 5.0 0 0.0 4 4.8 0 0.0 4 14.8 2 50.0 8 4.4 1 12.5

O121 66 5.5 0 0.0 8 9.6 0 0.0 0 0.0 0 – 7 3.9 0 0.0

O45 5 0.4 0 0.0 0 0.0 0 – 0 0.0 0 – 0 0.0 0 –

Other 27 2.3 1 3.7 3 3.6 0 0.0 1 3.7 0 0.0 4 2.2 0 0.0

stx Profile

stx1 and stx2 608 45.0 17 2.8 35 39.8 2 5.7 11 39.3 0 0.0 118 60.8 8 6.8

stx2 742 55.0 50 6.7 53 60.2 4 7.5 17 60.7 6 35.3 76 39.2 16 21.1

County Ruminant per Capita Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR Med. IQR

0.21 0.86 0.24 1.17 1.3 = 38 1.69 1.05 0.66 0.80 1.22 0.25 0.92 0.38 1.22 0.27 0.93

Abbreviations: HUS, hemolytic uremic syndrome; Med., median; stx, Shiga toxin bacterial gene.
aColumn percentage is taken to determine case distribution by age group.
bRow percentage is taken to determine %HUS by age group.
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from ruminants harbour known virulence factors that contribute to
clinical severity [32]. Greater diversity of bacterial strains and
virulence factors could also contribute to more severe disease
manifestations among those infected with STEC at animal contact
venues.

Our findings suggest that acquired immunity to home farm-
specific STEC strains is not protective against other strains thatmay
be present at animal contact venues, particularly among young
children. We support this by showing that exposure to ruminants
from both living or working on a farmAND visiting a farm or other
public animal contact venue was associated with an increased HUS
risk, with a higher odds ratio than that observed with visiting a farm
or public animal contact venue only. However, all HUS cases in
both categories were aged 10 or younger. This is consistent with
evidence of acquired immunity to STEC and its associated toxins
among adults who live or work on farms [8, 9], as acquired
immunity is commonly not present yet in younger children who
live on farms [4]. These findings are understandable given that,
generally, adults havemore developed immune systems than young
children [33].

The results of this study have implications for individual
prevention, clinical awareness, and public health intervention.
Parents of young children should remain cautious in all exposure
settings with live ruminant animals given that immune mechan-
isms from routine exposure to these animals may not protect
against severe clinical outcomes from STEC. Healthcare pro-
viders treating young children or older adults for acute STEC
infections should be aware of the increased risk of HUS among
cases who visited an animal contact venue with ruminants.
Venue operators should make the public aware that exposure
to farm animals and livestock from animal contact venues
places one at an increased risk of severe clinical consequences
from infection, regardless of prior exposure or experience with

animals. While there are many sources of STEC infections, and
only 19% of cases in our study had ruminant contact, we have
demonstrated that ruminant contact significantly increases the
likelihood of infection progressing to HUS, with 35% of HUS
cases reporting ruminant contact. Thus, measures to reduce
infections through ruminant contact have the potential for an
outsized impact on HUS burden.

This study was limited to STEC infections identified through
pathogen-specific surveillance. Surveillance limitations, such as
care-seeking biases, may impact the generalizability of our results.
Inadequate sample size prevented us from examining non-linear
relationships between age and HUS risk. The creation of four
exposure-setting categories was necessary, despite the smaller num-
ber of HUS cases in each category, given the differences between
them. However, since the number of events was low, particularly in
categories where people lived or worked on a farm, model estimates
were relatively imprecise.Wewere also unable to examine potential
mediation by known virulence factors. Additionally, we could not
examine the effect of exposure to different stx subtypes on HUS
development given that subtyping informationwas not available for
all isolates.

In addition to being a risk factor for STEC infection, exposure to
ruminant animals could be an important predictor of HUS among
individuals with STEC infection. Visiting a farm or other animal
venue with ruminant animals may increase the likelihood of high-
risk STEC exposure. All members of the public should take add-
itional care at public animal contact venues to avoid infection from
animal contact. This can be done by practicing more frequent
handwashing, avoiding food consumption or other hand-to-mouth
contact in animal areas, and limiting strollers and other inanimate
objects in animal areas.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268824000773.
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