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THE RUDIN–KEISLER ORDERING OF P-POINTS UNDER b = c

ANDRZEJ STAROSOLSKI

Abstract. M. E. Rudin (1971) proved, under CH, that for each P-point p there exists a P-point q strictly
RK-greater than p. This result was proved under p = c by A. Blass (1973), who also showed that each
RK-increasing�-sequence of P-points is upper bounded by a P-point, and that there is an order embedding
of the real line into the class of P-points with respect to the RK-ordering. In this paper, the results cited
above are proved under the (weaker) assumption that b = c. A. Blass asked in 1973 which ordinals can
be embedded in the set of P-points, and pointed out that such an ordinal cannot be greater than c

+. In
this paper it is proved, under b = c, that for each ordinal α < c

+, there is an order embedding of α into
P-points. It is also proved, under b = c, that there is an embedding of the long line into P-points.

§1. Introduction. In [10], M. E. Rudin proved that, under CH, for each P-point
p there exists a P-point q strictly RK-greater than p. A. Blass showed the same [1]
assuming that p = c;1 moreover, he proved that if p = c, then each RK-increasing
�-sequence of P-points is upper bounded by a P-point, and there exists an order-
embedding of the real line into the class of P-points with respect to the RK-ordering.
Since then, the RK-ordering of P-points has been thoroughly investigated; however,
most of the obtained results were proved underMA�–centr, or stronger assumptions,2

usually with complicated proofs and using sophisticated techniques. We prove the
results mentioned above under b = c. Perhaps more importantly, we present a
method of proof that turns out be effective in the study of P-points under b = c. The
ideas used in the present paper were originally presented in an unpublished paper
[12], where the RK-ordering concerned the ultrafilters in the classes of the so-called
P-hierarchy, the first class of which coincides with that of P-points. The method
is based on the use of contours and quasi-subbases, which enables us to employ
surprisingly concise arguments, in contrast with the approaches of some other papers
on similar topics.
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1Actually, all results from [1] quoted in this paper were stated under MA, but the proofs also work

under p = c, as pointed out by A. Blass in [2]; definitions of p, c and few other cardinal invariants are
recalled on page 3.

2Note that A. Blass asks [1, Question 5]: What can be proved about P-points without using MA?
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1692 ANDRZEJ STAROSOLSKI

After a scrutiny of mechanisms underlying our proofs, we introduce an apparently
new cardinal invariant q, the use of which enables us to weaken the set-theoretic
assumptions of most of our results. Finally, we show that q is an instance of a general
method of constructing useful variants of cardinal invariants.

In a recent paper, D. Raghavan and S. Shelah [8] proved (under p = c) that there
is an order-embedding of P(�)/fin into the set of P-points ordered by ≥RK , and
gave a short review of earlier results concerning embeddings of different orders into
the class of P-points.

A. Blass also asked [1, Question 4] which ordinals can be embedded in the set
of P-points, and pointed out that such an ordinal cannot be greater than c+. We
show that under b = c each ordinal less than c+ is order-embeddable into P-points.
A recent paper by B. Kuzeljević and D. Raghavan [6] answers the question of the
embedding of ordinals into P-points under MA.

§2. Tools. A free ultrafilter u is a P-point if and only if, for each partition (Vn)n<�
of�, there exists a setU ∈ u such that eitherU ⊂ Vn for some n < � or elseU ∩ Vn
is finite for all n < �. A filter F is said to be Rudin–Keisler greater (RK-greater)
than a filter G (written as F ≥RK G) if there exists a map h such that G ∈ G if and
only if h–1(G) ∈ F . Let

W = {Wn : n < �} (1)

be a partition of a subset of � into infinite sets. A filter K is called a contour if there
exists a partition W such thatK ∈ K if and only if there is a cofinite set I ⊂ � such
thatK ∩Wn is cofinite onWn for each n ∈ I . We call K a contour of W , and denote
K =

∫
W .3

A fundamental property used in the present paper is the following reformulation
of [11, Proposition 2.1].

Proposition 2.1. A free ultrafilter is a P-point if and only if it does not include a
contour.

As usual, c denotes the cardinality of the continuum. If f, g ∈ ��, then we say
that f dominates g (and write f ≥∗ g) if f(n) ≤ g(n) for almost all n < �. We say
that a family F of �� functions is unbounded if there is no g ∈ �� that dominates all
functions f ∈ F . The minimal cardinality of an unbounded family is the bounding
number b. We also say that a family F ⊂ �� is dominating if, for each g ∈ ��, there
is somef ∈ F that dominates g. The dominating number d is the minimal cardinality
of a dominating family. The pseudointersection number p is the minimal cardinality
of a free filter without pseudointersection, which is a set almost included in each
element of the filter. Finally, the ultrafilter number u is the minimal cardinality of
a base of a free ultrafilter. It is well known that b ≤ d ≤ c, and p ≤ b ≤ u ≤ c, and
that there are models for which p < b (see, for example, [5]).

We say that a familyA is centered (has fip) if the intersection of any finite subfamily
is nonempty; a family A is strongly centered (has sfip) if the intersection of any finite
subfamily is infinite. If A and B are families of sets, then we say that A and B are
compatible if A ∪ B is centered. If A = {A} we say that A is compatible with B.

3See [3] and the last section of [4] for a systematic presentation of contours.
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If a family A is centered, then we denote by 〈A〉 the filter generated by A. Let A
be an infinite subset of�. A filter F on� is said to be cofinite on A wheneverU ∈ F
if and only if A \U is finite. A filter F is said to be cofinite if it is cofinite on some
A ⊂ �. It is well-known that a filter is free on A if and only if it includes the cofinite
filter of A.

2.1. A relation between sets and functions. Let W be a partition (1). For each
n < �, let

(
wnk

)
k<�

be an increasing sequence such that

Wn = {wnkk < �} .

For each f ∈ �� and m < �, let

EW (f,m) = {wnkf (n) ≤ k,m ≤ n} . (2)

If F ∈
∫
W , then, by definition, there exists the least nF < � such thatWn \ F is

finite for each n ≥ nF . Now, for each n ≥ nF , there exists a minimal kn < � such
that wnk ∈ F for each k ≥ kn. Let ffF denote the set of those functions f for which

n ≥ nF =⇒ f (n) = kn. (3)

Then EW (f, nF ) is the same for each f ∈ ffF , and it is the largest set of the form
(2) included in F. Sure enough, EW (fF , nF ) ∈

∫
W .

Conversely, for every function f ∈ ��, we define a family Wf of subsets of � as
follows: F ∈ Wf if there is nF < � such that F = EW (fF , nF ). Therefore, we can
state the following.

Proposition 2.2. The family
⋃
f∈��Wf is a base of

∫
W .

2.2. Quasi-subbases. We say that a family A is finer than B if 〈B〉 ⊂ 〈A〉.
Moreover, A is called a quasi-subbase of (a filter) F if there exists a countable
family C such that 〈A ∪ C〉 = F . Accordingly, A is quasi-finer than B if there exists
a countable family C such that A ∪ C is centered and B ⊂ 〈A ∪ C〉. Finally we say
that a family is a P+ -family if it is quasi-finer than no contour.

If W is a partition (1), then for each i < �, let

W̃i =
⋃
n≥i
Wn and W̃ = {W̃i : i < �}.

Proposition 2.3. Let W be a partition and let A be a centered family. Then the
following are equivalent:

(1)A is quasi-finer than
∫
W ,

(2) there exists a set D such that A ∪ W̃ ∪ {D} is centered, and
∫
W ⊂ 〈A ∪ W̃ ∪

{D}〉.

Proof. The implication 2 ⇒ 1 is evident. We will show 1 ⇒ 2. Suppose the
contrary, and let B be a countable family of sets such that

∫
W ⊂ 〈A ∪ B〉. Taking

finite intersections
⋂
i≤n Bi instead of Bn, we obtain a decreasing sequence so that,

without loss of generality, we can assume that B = {Bn}n<� is decreasing. Since (2)
is false, for each n there exists An ∈

∫
W such that An �∈ 〈A ∪ W̃ ∪ {Bn}〉.
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1694 ANDRZEJ STAROSOLSKI

Without loss of generality, for each n there is k(n) ≥ n such that An ∩Wi
is empty for all i < k(n) and Wi \ An is finite for all i ≥ k(n). Define A∞ =⋃
i<�

(⋂
{n:k(n)≤i}An ∩Wi

)
and note that A∞ ∈

∫
W .

We will show that A∞ �∈ 〈A ∪ B ∪ W̃〉 ⊃ 〈A ∪ B〉. For this purpose, it suffices
to show that A∞ �∈ 〈A ∪ W̃ ∪ {Bn}〉 for each n < �. Indeed, note that A∞ ⊂
An ∪ W̃ c

k(n) for each n < �. From (An ∪ W̃ c
k(n)) ∩ W̃k(n) ⊂ An �∈ 〈A ∪ W̃ ∪ {Bn}〉,

we infer that (An ∪ W̃ c
k(n)) �∈ 〈A ∪ W̃ ∪ {Bn}〉, and so A∞ �∈ 〈A ∪ W̃ ∪ {Bn}〉. 

Remark 2.4. Let A be finer than
∫
W . Then there exists a partition V such that∫

V ⊂ 〈A ∪ Ṽ〉.
Proof. Take Vi to be the i-th infiniteWj ∩D, with D from Proposition 2.3(2).

Theorem 2.5. Let (Aα)α<�<b be an increasing sequence of P+-families. Then,⋃
α<� Aα is a P+-family.

Proof. By way of contradiction, {Aα}α<�<b be as in the assumptions, and let∫
W be a contour and B be a countable family of sets such that

∫
W ⊂ 〈A ∪ B〉.

By Proposition 2.3 and Remark 2.4, without loss of generality, we may assume that
B = {Bn}n<� = W̃ is decreasing. Let Cα = 〈Aα ∪ B〉. Clearly Cα does not include∫
W for each α < � . Thus, for each α < � , there exists a set Dα ∈

∫
W such that

Dα �∈ Cα . Let gα ∈ ffDα for each α < � . As � < b, the family {gα}α<� is bounded
by some function g. Let G ∈ Wg . We will show that G �∈

⋃
α<� Cα , hence G �∈ Cα

for each α < � . Suppose not, and let α0 be a witness. By construction, there exists
n0 < � such thatG ⊂ Bcn0

∪Dα0 . As (Dα0 ∪ Bcn0
) ∩ Bn0 ⊂ Dα0 �∈ Cα0 , it follows that

Dα0 ∪ Bcn0
�∈ Cα0 , and so G �∈ Cα0 . 

The anonymous referee noticed that Corollary 2.6 easily follows from [7,
Proposition 2.28] by A. R. D. Mathias by argument pointed out in Mathias’ proof.
One can also prove Corollary 2.6 inductively using Theorem 2.5 and Proposition 2.1.

Corollary 2.6 [7] (b = c). If A is a strongly centered P+-family of subsets of �,
then there exists a P-point p such that A ⊂ p.

Let us recall a well-known theorem (see, for example, [1, Corollary 1]).

Theorem 2.7. Let u be an ultrafilter. If f(u) =RK u, then there exists U ∈ u such
that f is one-to-one on U.

§3. Applications: RK-ordering of P-points. M. E. Rudin [10] proved that, under
CH, for each P-point p there exists a P-point q strictly RK-greater than p. Some
years later, A. Blass [1, Theorem 6] proved this theorem under p = c.

The referee also noticed that Theorem 3.1 is easily derivable from [7, Proposition
2.28] by A. R. D. Mathias combined with [1, Theorem 6] by A. Blass. Nevertheless
we present our original proof because its methods will be used in the sequel.

Theorem 3.1. (b = c).4 If p is a P-point, then there exists a P-point q that is strictly
Rudin–Keisler greater than p.

4Note that all theorems in this section are proved, in fact, under (possibly) weaker assumptions, what
we will discuss in detail in Section 4.
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Proof. Let f ∈ �� be a finite-to-one function such that

lim supn∈P card (f–1(n)) = ∞

holds for all P ∈ p. We define a family A as follows: A ∈ A if and only if there exist
i < � and P ∈ p such that card (f–1(n) \ A) < i for each n ∈ P. Then, Theorem
2.7 ensures that the ultrafilters we are building are strictly RK-greater than p.

We claim that
{
f–1(p)

}
∪ A is a P+-family. Suppose not, and take a witness∫

W . From Remark 2.4, without loss of generality, we may assume that
∫
W ⊂

〈f–1(p) ∪ A ∪ W̃〉. Consider two cases:
Case 1: There exists a sequence (Bn)n<� and a strictly increasing k ∈ �� such

that Bn ⊂Wk(n), f(Bn) �∈ p, and B is compatible with f–1(p) ∪ A ∪ W̃ , where
B =

⋃
n<� Bn. Take a sequence (f(

⋃
i≤n Bn))n<� . This is an increasing sequence,

and it is clear that
⋃
n<� f(

⋃
i≤n Bn) = f(B) ∈ p. Make a partition of f(B) by

taking f(
⋃
n≤i+1 Bn) \ f(

⋃
n≤i Bn) for i < �. As p is a P-point, there exists some

P ∈ p such that P ∩ (f(
⋃
n≤i+1 Bn) \ f(

⋃
n≤i Bn)) is finite for all i < �, and thus

f–1(P) ∩ Bn is finite for all i < �. Therefore, f–1(P) ∩Wi ∩ B is finite, and thus
(f–1(P) ∩ B)c ∈

∫
W , which means that

∫
W is not compatible with 〈f–1(p) ∪

{B}〉.
Case 2: Otherwise without loss of generality f(Wi) ∈ p for each i < �, since

we are not in Case 1. Define sets V1 =W1, Vi =Wj ∩ f–1(
⋂
k<i f(Wk)), and

note that
⋃
i<� Vi ∈ 〈A ∪ f–1(p)〉 since we are not in Case 1. Then, (f(Vi))i<�

is a decreasing sequence, and because f is finite-to-one, (f(Vi) \ f(Vi+1))i<� is a
partition off(V1) ∈ p. As p is a P-point, there existsP ∈ p such thatPi = (f(Vi) \
f(Vi+1)) ∩ P is finite for each i < �. Let g : � → � be defined by g(i) = E

(
i+1

2

)
,

where E (x) stands for the integer part of x. Let

R =
⋃
i<�

(f–1(Pi) ∩
⋃
j∈[g(i),...,i ]

Vi).

Note that R ∩ Vi is finite for each i < �, and that

lim supn∈P̃ card (f–1(n) ∩R) = ∞

for all P̃ ∈ p and P̃ ⊂ P. Thus,Rc �∈ 〈A ∪ f–1(p) ∪ W̃〉, althoughRc ∈
∫
W , which

completes Case 2.
To complete the proof of the theorem use Corollary 2.6. 

The following two, probably known, facts will be needed for Theorem 3.4 that
extends, under CH, Theorem 3.1.

Fact 3.2. Let A be a centered family of subsets of � such that A ∪ {F } is not an
ultrafilter subbase for any F compatible withA. LetF be a countable family compatible
with A. Then A ∪ F is not an ultrafilter subbase.

Proof. Without loss of generality, we may assume that (Fn)n<� is a decreasing
sequence of sets, such that Fn+1 �∈ 〈A ∪ {Fn}〉. Put Bn = Fn \ Fn+1 and define B1 =⋃
n<� B2n, B2 =

⋃
n<� B2n+1. Clearly at least one of sets B1, B2 interact A—say B1

does. If B1 �∈ 〈A ∪ F〉 then we are done. Suppose that B1 ∈ 〈A ∪ F〉, and denote
by n0, the minimal n < � that B1 ∈ 〈A ∪ {Fn}〉. But Fn0+1 ∩ B1 = Fn0+2 ∩ B1 and
so Fn0+2 ∈ 〈A ∪ Fn0+1〉, which is a contradiction. 
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1696 ANDRZEJ STAROSOLSKI

Fact 3.3. Let Y ,Z be centered families of subsets of �, which are not ultrafilter
subbases. If h ∈ ��, then there exist sets Y and Z such that Y is compatible with Y ,
Z is compatible with Z, and h(Z) is not compatible with Y.

Proof. Take any O such that O and Oc are compatible with Y .
If h–1(O) is not compatible with Z then Y = O, Z = (h–1(O))c ;
if h–1(Oc) is not compatible with Z then Y = Oc , Z = h–1(O);
if h–1(O) is compatible with Z and h–1(Oc) is compatible with Z then Y = O,

Z = (h–1(O))c . 

Theorem 3.4 (CH). If p is a P-point, then there exists a set U of cardinality c of
Rudin–Keisler incomparable P-points with u >RK p for each u ∈ U.

Proof. First repeat the proof of Theorem 3.1 except for the last line. Then
continue as follows.

We arrange all contours in a sequence (
∫
Wα)α<b and �� in a sequence (f�)�<b.

We will build a family {(F�α )α<b}�<b of increasing b-sequences (F�α )α<b of filters
such that:

1) EachF�α is generated byA together with some family of sets of cardinality< b;
2) F�0 = A for each � < b;
3) For each α, � < b, there exists F ∈ F�α+1 such that F c ∈

∫
Wα ;

4) For every limit α and for each � , let F�α =
⋃
�<α F

�
� ;

5) For eachα, � < α, �1, �2 < α, there exists a setF ∈ F�1
α+1 such that (f�(F ))c ∈

F�2
α+1.

The existence of such families follows by a standard induction with sub-inductions
using Theorem 2.5 and Fact 3.3 for Condition 5. It follows from the proof of Fact
3.2 that F�α is not an ultrafilter subbase for each α and � . It suffices now to take for
each � < c, any ultrafilter extending

⋃
�<c F

�
α and note that, by Proposition 2.1, it

is a P-point. 

A. Blass [1, Theorem 7] also proved that, under p = c, each RK-increasing
sequence of P-points is upper bounded by a P-point. By Level n(T ) we denote
level n in the tree T.

Theorem 3.5 (b = c). If (pn)n<� is an RK-increasing sequence of P-points, then
there exists a P-point u such that u >RK pn for each n < �.

Proof. For each n < � we let fn to be a finite-to-one function that witnesses
pn+1 >RK pn. Consider a sequence (Tn)n<� of disjoint trees such that for each n < �

1) the root of Tn is equal to n ∈ �;
2) Levelm(Tn) = {f–1

m (k) : k ∈ Levelm–1(Tn)} for 1 ≤ m ≤ n;
3) Levelm(Tn) = ∅ for m > n.

Since L∞ =
⋃
n<� maxTn is countably infinite we treat it as � as well as Lm =⋃

n<� Levelm(Tn). Let gm : L∞ \
⋃
k<m Lk → Lm be a function defined by order of

the trees Tn.
On L∞ we define a family of sets: B =

⋃
n<� g

–1
m (pm).
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To conclude it suffices, by Corollary 2.6, to show that B is a P+-family, thus by
Theorem 2.5 it suffices to prove that g–1

m (pm) is a P+-family, for any m. But this is
an easier version of the fact which we established in the proof of Theorem 3.1. 

In [1], A. Blass asked (Question 4) which ordinals could be embedded in the set of
P-points, noticing that such an ordinal could not be greater than c+. The question
was also considered by D. Raghavan and S. Shelah in [8] and answered, under MA,
by B. Kuzeljević and D. Raghavan in a recent paper [6].

We prove that, under b = c, there is an order embedding of each ordinal
less than c+ into P-points. To this end, we need some (probably known) facts
associated with the following definition: we say that a subset A of �� is sparse if
lim n<� |f(n) – g(n)| = ∞ for each f, g ∈ A such that f �= g.

Fact 3.6. There exists a strictly <∗-increasing sparse sequence F = (fα)α<b ⊂
�� of nondecreasing functions such that fα (n) ≤ n for each n < � and α < b.

Proof. First, we build, from the definition of b, an<∗ -increasing sparse sequence
(gα)α<b ⊂ �� of nondecreasing functions that fulfill the following condition: if α <
� < b, then gα(n) > g�(2n) + n for almost all n < �. Then a b-sequence (fα)α<b
defined by fα(m) = m – max {n : gα(n) < m} is as desired. 

Fact 3.7. If an ordinal number α can be sparsely embedded in ��, under identity,
as nondecreasing functions, thenα can be sparsely embedded in ��, under any function
f that converges to ∞.

Proof. Let h < f be a nondecreasing function such that h(n + 1) – h(n) ≤ 1.
Let (g�)�<α be an embedding of α. Define (f�)�<α by:f(α)(k) = gα(n) if and only
if h(k) = n. 

Fact 3.8. If an ordinal numberα can be sparsely embedded in �� as nondecreasing
functions that are less than any function f ∈ ��, then α can be sparsely embedded as
nondecreasing functions between any sparse pair of functions g <∗ h ∈ ��.

Proof. Without loss of generality, we assume f to be nondecreasing. Let (f�)�<α
be an embedding of α under f. Clearly, it suffices to prove that there is an embedding
under s defined by s(n) = h(n) – g(n) if h(n) ≥ g(n) and s(n) = 0 otherwise.

Define a sequence (k(n))n<� by k(0) = min {m : s(i) ≥ f(0) for all i ≥ m},
k(n + 1) = min {m : m > k(n) & s(i) ≥ f(n + 1) for all i ≥ m}. Finally define gα
as follows: gα(n) = fα(m) if and only if k(n) ≤ m < k(n + 1). 

Fact 3.9. For each � < b+, there exists a strictly <∗-increasing sparse sequence
F = (fα)α<� ⊂ �� of nondecreasing functions.

Proof. Facts 3.6 and 3.8 clearly imply that the first ordinal number which cannot
be embedded as a sparse sequence in �� under id � is equal to α or to α + 1 where
α is a limit number. Facts 3.6 and 3.8 also imply that the set of ordinals less than α
is closed under b sums.

Indeed, let � be the minimal ordinal number < b+ that may not be embedded
under identity as an <∗-increasing sparse sequence. Clearly cof (�) ≤ b. Take an
increasing sequence (α�)�<cof � that converges to � . Clearly for each α < � there is
(gα� )�<α—an embedding of α into �� as a sparse sequence under identity. By Fact
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3.8 for each α < � there is an <∗-increasing sparse sequence of (fα� )�<α such that
fα <

∗ fα� <
∗ fα+1 (forfα ,fα+1 from the proof of Fact 3.6). Now (fα� )α<cof (�),�<α

with lexicographic order is a required embedding of � .
Thus, this number is not less than b+. 
Theorem 3.10 (b = c). For each � < b+, for each P-point p there exists an RK-

increasing sequence {pα : α < �} of P-points such that p0 = p.

Proof. Note that cof (�) ≤ b. Consider a set of pairwise disjoint trees Tn such
that each Tn has a minimal element, each element of Tn has exactly n immediate
successors, and each branch has the highest �.

Let {fα}α<� ⊂ �� be a sparse, strictly <∗-increasing sequence, the existence of
which is demonstrated by Fact 3.9. For each α < �, define

Xα =
⋃
n<�

Level fα(n)Tn.

For each α < � ≤ �, define

f�α :
⋃

{n<�:fα(n)<f� (n)}
Level f� (n)Tn →

⋃
{n<�:fα(n)<f� (n)}

Level fα(n)Tn

that agrees with the order of trees Tn for n < � such that fα(n) < f�(n). Note that
domf�α is cofinite on X� for each α < � .

Let p = p0 be a P-point on X0 =
⋃
n<� Level 0Tn. We proceed by recursively

building a filter p� on X� . Suppose that pα are already defined for α < � . If � is a
successor, then it suffice to repeat a proof of Theorem 3.1 for P�–1 and f��–1.

So suppose that � is limit. Let R ⊂ � be cofinite with � and of order type less
than or equal to b. Define a family

C =
⋃
α∈R

{(f�α)–1(pα)},

which is obviously strongly centered.
Clearly each filter that extends C is RK -greater than each pα for α < � . But we

need a P-point extension. Thus, by Corollary 2.6 it suffices to prove that C is a
P+-family. Thus, by Theorem 2.5 it suffices to prove that

⋃
�∈R,�≤α{(f�� )–1(p�)} ⊂

(f�α)–1(pα) is a P+-family, for each α ∈ R. But it is (an easier version of) what we
did in the proof of Theorem 3.1. 

By Theorems 3.5 and 3.10 the following natural question arises:

Question 3.11. What is the least ordinal α such that there exists an unbounded
embedding of α into the set of P-points?5

A. Blass [1, Theorem 8] also proved that, under p = c, there is an order-embedding
of the real line into the set of P-points. We will prove the same fact, but under b = c.
Our proof is based on the original idea of set X defined by A. Blass. Therefore, we
quote the beginning of his proof, and then use our machinery.

5A recent paper by D. Raghavan and J. L. Verner [9] showed that under ♦, the cardinal �1 is the
answer, but we still do not know the answer in terms of cardinal invariants which, as we suppose, play
an important role in this domain.
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Theorem 3.12 (b = c). There exists an order-embedding of the real line into the
set of P-points.

Proof. ———————— (beginning of quotation) ————————
Let X be a set of all functions x : Q → � such that x(r) = 0 for all but finitely

many r ∈ Q; here Q is the set of rational numbers. As X is denumerable, we may
identify it with � via some bijection. For each 	 ∈ R, we define h	 : X → X by

h	(x)(r) =
{
x(r) if r < 	,

0 if r ≥ 	.
Clearly, if 	 < �, then h	 ◦ h� = h� ◦ h	 = h	 . The embedding of R into P-points

will be defined by 	 → D	 = h	(D) for a certain ultrafilter D on X. If 	 < �, then
D	 = h	(D) = h	 ◦ h�(D) = h	(D�) ≤ D�.
We wish to choose D in such a way that
(a) D	 �∼= D� (therefore, D	 < D� when 	 < �), and
(b) D	 is a P-point.
Observe that it will be sufficient to choose D such that
(a’) D	 �∼= D� when 	 < � and both 	 and � are rational, and
(b’) D is a P-point.
Indeed, (a’) implies (a) because Q is dense in R. If (a) holds, then D	–1 < D	 , so

D	 is a nonprincipal ultrafilter ≤ D; hence (b’) implies condition (b).
Condition (a’) means that, for all 	 < � ∈ Q and all g : X → X , D� �= g(D	) =

gh	(D�). By Theorem 2.7, this is equivalent to {x : gh	(x) = x} �∈ D�, or by our
definition of D�,

{x : gh	(x) = h�(x)} = h–1
� {x : gh	(x) = x} �∈ D. (a”)

We now proceed to construct a P-point D satisfying (a”) for all 	 < � ∈ Q and
for all g : X → X ; this will suffice to establish the theorem.

————————– (end of quotation) —————————–

List all pairs (	, �), 	 < � ∈ Q in the sequence (	i , �i)i<� . For each g ∈ XX ,
	 < � ∈ Q, define Ag,	,� = {x ∈ X : gh	(x) �= h�(x)}, Ai = A	i ,�i = {Ag,	i ,�i : g ∈
XX}, and A =

⋃
i<� Ai . Clearly, A is strongly centered.

We claim that A is a P+-family.
Indeed, by Theorem 2.5, it suffices to prove that for each n < �,

⋃
i<n Ai is a

P+-family. Suppose not and take (by Remark 2.4) the witnesses i0 and
∫
W such

that
∫
W ⊂ 〈

⋃
i<i0

Ai ∪ W̃〉. For each n < �, consider the condition (Sn):

∃xn : ∀i < i0 :
(
xn ∈ h	i (W̃1) & card (h�i (h

–1
	i

(xn)) ∩ h�i (W̃n)) > n
)
.

Case 1: Sn is fulfilled for all n < �. Then, for each n < �, j < n, choose
xjn ∈ W̃n such that h	i (x

j
n ) = xn and h�i (x

j0
n ) �= h�i (x

j1
n ) for j0 �= j1. Define E =⋃

n<�

⋃
j≤n{x

j
n}. Clearly Ec ∈

∫
W , but E �⊂

⋃
i<i0

⋃
g∈G(Ag,	i ,�i ) ∪

⋃
l<m Wl for

any choice of finite family G ⊂ XX and for any m < �.
Case 2: Sn is not fulfilled for some n0 < �. Then, there exist functions

{gn,i}n≤n0,i<i0 ⊂ XX such that W̃1 ⊂
⋃
n≤n0

⋃
i<i0

(Agn,i ,	i ,�i ) ∪
⋃
n≤n0
Wn, i.e.,∫

W¬ is not compatible with 〈
⋃
i<i0

Ai ∪ W̃〉.
Corollary 2.6 completes the proof. 
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The long line is defined asL = �1 × (0, 1] ordered lexicographically. Iff : Y → �,
then the support of f is defined as

supp (f) = {y ∈ Y : f(y) �= 0}.
Lemma 3.13 (b = c). For each P-point p, there exists an order-embedding of the

real line into the set of P-points above p.

Proof. We will combine ideas form proofs of Theorems 3.1 and 3.12 with some
new arguments.

Again, let X be a set of all functions x : Q → � such that x(r) = 0 for all but
finitely many r ∈ Q. Since X is infinitely countable, we treat it as �.

Let p be a P-point on X such that for each q ∈ Q and for each P ∈ p there exists
x ∈ P such that max supp (x) < q. Letf ∈ XX be a finite-to-one function such that
lim supx∈P card (f–1(x)) = ∞ for allP ∈ p and that max suppx < max suppf(x).
Again, we define a family A as follows: A ∈ A if and only if there exist i < � and
P ∈ p such that card (f–1(x) \ A) ≤ i for each x ∈ P. For each 	 ∈ R, we again
define functions h	 : X → X by

h	(x)(r) =
{
x(r) if r < 	,

0 if r ≥ 	.

List all rational numbers in �-sequence Q = (qi)i<� . Let Bi = h–1
qi

(A ∪ f–1(p))
and let B =

⋃
i<� Bi .

Our aim is to prove thatB can be extended to such a P-point Q that h	(Q) �= h�(Q)
for each 	 �= � ∈ Q (and thus for each 	 �= � ∈ R). (4)

To this end, we add toB a family C defined as follows: list all pairs (	, �), 	 < � ∈ Q
in the sequence (	i , �i)i<� . For each g ∈ XX , 	 < � ∈ Q, define Cg,	,� = {x ∈ X :
gh	(x) �= h�(x)}, Ci = C	i ,�i = {Cg,	i ,�i : g ∈ XX}, and C =

⋃
i<� Ci .

Thus to prove (4), it suffices by Corollary 2.6 to prove that B ∪ C is a P+-family.
Thus, by Theorem 2.5, in order to prove (4), it suffices to prove that:

Di is a P+-family for Di defined for i < � as follows:

Di =
⋃
j≤i

Bi ∪
⋃
j≤i

Ci . (5)

First, to prove it, we notice that Di is strongly centered. Indeed, define
qm = min {qj : j ≤ i}, qM = max {qj : j ≤ i}, and 	m = min {	j : j ≤ i} and note
that h–1

qM
(x) ⊂ h–1

qj
(x) for each j ≤ i and for each x such that max supp (x) <

min {qm, 	m}. It is easy to see that h–1
qM

(x) ∪
⋃
j≤i Ci is strongly centered, hence

Di is strongly centered.
Fix i, and suppose that (5) does not hold. So take a witness

∫
W . From Remark

2.4, without loss of generality, we may assume that
∫
W ⊂ 〈Di ∪ W̃〉.

Let AW ∈ A, PW ∈ p, nW ∈ �, CWn ∈ C for n ≤ nW , and lW ∈ �. Define

W ∗(AW ,PW ,CW1 , ... , C
W
nW
, W̃lW ) =

⋂
n≤nW

CWn ∩
⋂
j≤i
h–1
	j

(AW ∩ PW ) ∩ W̃lW .

Define W ∈ W– if and only if W ∈
∫
W and W is co-finite or empty on

each Wi . We will say that a set W ∈ W is attainable (by (nA, PW , nW , lW ))
if there exist AW ∈ AnA , {CWk ∈

⋃
j≤i Cj : k ≤ nW } such that the condition
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W ∗(AW ,PW ,CW1 , ... , C
W
nW
, W̃lW ) ⊂W is satisfied. The complement (to W̃1) of

the attainable set is called removable and sometimes we indicate which variables,
sets, functions.

Since
∫
W ⊂ 〈Di〉, thus each setW ∈ W– is attainable.

Consider a sequence of possibilities:
1) l cannot be fixed, i.e., for each l ∈ � there existsW ∈ W– such that W is not

removable by any (nA, PW , nW , l);
2) l can be fixed, but nA cannot, i.e., for eachW ∈ W–, W is attainable by some

(nAW ,PW , n
C
W , l), but for each nA there exists W ′ ∈ W– such that W ′ is not

attainable by any (nA, PW ′ , nC
W ′ , l);

3) l and nA can be fixed, but nC cannot;
4) l, nA and nC can be fixed, but P cannot;
5) l, nA, nC , and P can be fixed.
Note that each setW ∈ W– is attainable if and only if an alternative of cases 1)

to 5) holds.
In case 1) for each l, let Wl ⊂ W̃l and Wl ∈ W– be a witness that l may not

be fixed. Note that
⋃
l<� Wl ∈ W– and that

⋃
l<� Wl may not be removed by any

(nAW ,PW , n
C
W , lW ).

In case 2) we proceed like in case 1). Note that if l ′ ≥ l and nA
′
and a setW ∈ W–

is not removable by any (nA
′
, PW , n

C
W , l

′) then the set W is also not removable
by any (nA, PW , nCW , l). Thus it suffices to consider cases when l = nA. For each
l, let Wl ⊂ W̃l and Wl ∈ W– be a witness that l and nA = l may not be fixed.
Again note that

⋃
l<� Wl ∈ W– and that

⋃
l<� Wl may not be removed by any

(nAW ,PW , n
C
W , lW ).

In case 3) we proceed just like in case 2), not using that nA is fixed.
In case 4) for k < �, letXk be the set of those x ∈ X that for allU ⊂ f–1(x) such

that card (f–1(x) \U ) ≤ nA, for all partitions of a set
⋃i
j=1(	–1

j (X ) ∩ (̃Wk)) on
the sets Xm,n, form < n ≤ i , there existm0, n0 such thatm0 < n0 ≤ i and there exist
x1, ... , xnC+1 ∈ Xm0,n0 that for 	(min) = min {	m0 , 	n0}, 	(max) = max {	m0 , 	n0} there
is 	(min)(xr) = 	(min)(xj) for r, j ≤ nC + 1 and 	(max)(xr) �= 	(max)(xj) for r, j ≤
nC + 1, r �= j.

Clearly, (Xk) is a decreasing sequence. If there exists k such that Xk �∈ p then
putting l = k there exists a set P = (Xk)c such that allW ∈ W– may be attained by
(nA, P, nC , l) so we would be in case 5), so, without loss of generality, Xk ∈ P for
each k < �.

Thus take a partition of X by (Xk \ Xk+1). Since p is a P-point, and since Xk ∈ p
thus there exists P0 ∈ p such that Pk = P0 ∩ (Xk \ Xk+1) is finite for all k < �.

For each x ∈ Pk there exists a finite(!) set Kk,x ⊂ (̃Wk) ∩
⋃
j≤i h

–1
	i

that may not be
removed by (nA,X, nC , k). (The proof that Kk,x may be chosen finite is analogical,

but easier, to that of case 5)). TakeK =
⋃
k<�,x∈Pk Kk,x and notice that (̃W1) \K ∈

W– and that (̃W1) \K is not removable by (nA, P, nC , l) for any P ∈ p.
In case 5) arrange

⋃
j≤i h

–1
	j

(P) ∩ W̃l into a sequence (xk)k<� . Let R(x) =( card (f–1(x))
card (f–1(x))–nC

)
, where

(
n
k

)
denotes a binomial coefficient, and let (Ax,r)r≤R be

a sequence of all subsets of f–1(x) of cardinality equal to card (f–1(x) – nC ).
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Consider a tree T, where the root is ∅ and on a level k the nodes are pairs of
natural numbers j, r such that j ≤ i and r ≤ R(f(xk)) and, for each branch T̃ of T,

2(T̃ (k1)) = 
2(T̃ (k2)) if f(xk1 ) = f(xk2 ), where T̃ (k) is an element of level k of
a branch T̃ and 
2 is a projection on the second coordinate. We see j as a choice to
which class Cj does a set C (.)

(.) belongs and we see r as a choice of one of sets Af(x),r

that C (.)
(.) together with Af(x),r removes xk .

Clearly, the complements of all finite sets belong to
∫
W , so each finite set is

removable. (6)
The maximal element of the branch T̃ has no successors if and only if

there is j ≤ i such that there is no n sets in Cj that remove all xt such that
T̃ (k) = j andf(xk) ∈ Af(xk ),
2(T̃ (k)). It implies that the set {xk : T̃ (k) = j, f(xk) ∈
Af(xk ),
2(T̃ (k))} contains more than n different elements, say x1, ... , xn+1, such that
h	j (xs1) = h	j (xs2) and h�j (xs1) �= h�j (xs2 ) for s1 �= s2, s1, s2 ∈ {1, ... , n + 1}.

By König Lemma if all branches are finite, then the height of the tree T is finite,
and so there are irremovable finite sets in contrary to (6). Thus there is infinite
branch and the whole set

⋂
j≤i h

–1
	i

(P) ∩ W̃l is removable. 

As an immediate consequence of Lemma 3.13 (with the use of Theorem 3.5) we
have the following:

Theorem 3.14. (b = c). For each P-point p, there exists an order embedding of the
long line into the set of P-points above p.

Remark 3.15. Note that there is a potential chance to improve Theorem 3.14 in
the virtue of Question 3.11, i.e., if, in some model, for each α < κ (for some cardinal
invariant κ) each RK-increasing α -sequence of P-points is upper bounded by a
P-point, then (in that model) if b = c, then, above each P-point, there is an order
embedding of a κ-long-line into the set of P-points.

§4. Cardinal q. An inspection of our proofs indicates a possibility of refinement
of most results with the aid of an, a priori, new cardinal invariant. We define q to
be the minimal cardinality of families B, for which there exists a family A such that
〈A ∪ B〉 includes a contour, and 〈A ∪ C〉 includes no contour for every countable
family C.6

If P is a collection of families such that P ∈ P whenever 〈P〉 includes a contour,
then q fulfills

q = min {card (B) : ∃
A
A ∪ B ∈ P ∧ ∀

C

(
card (C) ≤ ℵ0 =⇒ A∪ C /∈ P)}.

Each contour has a base of cardinality d, which, by the way, is the minimal
cardinality of bases of contours [13, Theorem 5.2]. Therefore, taking into account
Theorem 2.5, we have

Theorem 4.1. b ≤ cof (q) ≤ q ≤ d.

6We may express this in terms of P+-families: q is the minimal cardinality of families B, for which
there exists a P+-family A such that 〈A ∪ B〉 includes a contour.
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Using the cardinal q, we are in a position to formulate stronger versions, if b < q

is consistent, of several of our theorems with almost unchanged proofs. Indeed, by
the proof of Theorem 3.1 we get the following theorem:

Theorem 4.2 (q = c). For each P-point p there exists a P-point q strictly RK-
greater than p.

By the proof of Theorem 3.5, we have

Theorem 4.3 (q = c). If (pn)n<� is an RK-increasing sequence of P-points, then
there exists a P-point u such that u >RK pn for each n < �.

By the proof of Theorem 3.10, we get

Theorem 4.4 (q = c). For each P-point p, for each α < b+, there exists an order
embedding of α into P-points above p.

By the proof of Theorem 3.12, we obtain

Theorem 4.5 (q = c). Above each P-point, there exists an order-embedding of the
real line in the set of P-points.

By the proof of Theorem 3.14, we have

Theorem 4.6 (q = c). Above each P-point, there exists an order embedding of the
long line into the set of P-points.

A relative importance of the facts formulated above depends on answers to the
following quest.

Question 4.7. Is q equal to any already defined cardinal invariant? Is b < q

consistent? Is q < d consistent?

§5. Variants of invariants. The cardinal q can be seen as an instance of cardinal
invariants, which can possibly be defined in order to refine certain types of theorems,
by scrutinizing the mechanisms underlying their proofs. In our approach, such
cardinals represent “distances” between certain classes of objects. They carry some
obvious questions about their relation to the usual cardinal invariants, and in
particular to those that they are supposed to replace in potentially refined arguments.

Let S and T be collections of families (of sets or functions, or possibly other
objects) such that for each S ∈ S there exists T ∈ T such that S ⊂ T . For each
S ∈ S, we define

dist(S,T) = min {card (B) : S ∪ B ∈ T}.
Let D(S,T) = {dist(S,T) : S ∈ S}. As a set of cardinal numbers, D(S,T) is well
ordered, hence we can define dist�(S,T) to be the �-th element of D(S,T).7

7Equivalently, distα(S,T) can be defined recursively by dist0(S,T) = 0, and if dist� (S,T) is already
defined for all � < α, then distα(S,T) is equal to

min
{

card (B) : ∃
S∈S

[
S ∪ B ∈ P ∧ ∀

C
∀
�<α

(
card (C) ≤ dist� (S,T) =⇒ S ∪ C /∈ P

)]}
.
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Moreover, if α is a limit ordinal, and the cardinals dist�(S,T) are defined for all
� < α, then dist<α(S,T) = sup �<αdist�(S,T).

In particular, if S denotes the collection of compatible with a contour families of
subsets of �, and T stands for the collection of families including a subbases of a
contour, then we write qα = distα(S,T). In order to show that (qα)α are variants
of q, we need the following Alternative Theorem [4, Theorem 3.1]. A relation A ⊂
{(n, k) : n < �, k < �} is called transversal if A is infinite, and {l : (n, l) ∈ A} and
{m : (m, k) ∈ A} are at most singletons for each n, k < �. 

Theorem 5.1. Let (Fn)n and (Gk)k be sequences of filters on a set X, and let

F :=
⋃
m<�

⋂
n>m

Fn, and G :=
⋃
m<�

⋂
k>m

Gk.

If F is compatible with G, then the following alternative holds :
Fn is compatible with Gk for a transversal set of (n, k), or
F is compatible with Gk for infinitely many k, or
Fn is compatible with G for infinitely many n.

Proposition 5.2. q0 = 0, q1 = 1, q2 = ℵ0, q3 = q, and qα ≤ d for all α.

Proof. By taking S ∈ T and B = ∅, we infer that q0 = 0.
To see that q1 = 1, let A, B be disjoint countably infinite sets. Let SA be a contour

on A and let SB be a cofinite filter on B. Define a filter S on A ∪ B by S ∈ S if and
only if S ∩ A ∈ SA and S ∩ B ∈ SB . Clearly S is not finer than a contour (since is
RK-smaller than a cofinite filter SB), and S ∪ {A} is a subbase of a contour.

Clearly, q2 cannot be finite. To see that q2 = ℵ0, let W = (Wn)n<� be a partition
of � into infinite sets. We define a family S so that S ∈ S if and only if S is
cofinite on eachWn. Suppose that there is a partition V = (Vn)n<� such that

∫
V ⊂

〈S ∪ S0〉 for some set S0 such that S ∪ S0 is strongly centered. Let Nfin = {n <
� : card (Wn ∩ S0) < �} andN∞ = � \Nfin. Define Sfin = S0 ∩

⋃
n∈Nfin Wn and

S∞ = S0 ∩
⋃
n∈N∞Wn. Since Scfin ∈ S, without loss of generality, we can assume

that S0 = S∞ and so without loss of generality we can assume that S0 = �.
Note also that

⋃
n<� Vn ∩Wi is infinite for infinitely many i, and so

∫
W is

compatible with
∫
V . Thus we meet the assumptions of Theorem 5.1, and in each

of the three cases there exist i, j < � such that Vi ∩Wj is infinite. But � \ Vi ∈
∫
V

and thus � \ (Vi ∩Wj) ∈ S, contrary to the definition of S. On the other hand, by
adding W̃ to S, we obtain a subbase of

∫
W .

That q3 = q follows directly from the definition of q.
Finally, qα ≤ d since each contour has a base of cardinality d, as we have shown

in [13, Theorem 5.2].

If S is the collection of strongly centered families, but T is the collection of free
ultrafilter subbases, then, taking S as an empty family, clearly dist(S,T) = u and so
distα(S,T) = u for some α, thus we obtain variants of u. By Fact 3.2,

Fact 5.3. u0 = 0, u1 = 1, u2 ≥ ℵ1.

By the proof of Theorem 3.4, we obtain:

Theorem 5.4 (q = u2 = c). If p is a P-point, then there is a set U of Rudin–Keisler
incomparable P-points such that cardU = c and u >RK p for each u ∈ U.
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A similar approach can be carried out for all other cardinal invariants. Its
usefulness, however, depends on the way these cardinals are used in specific
arguments.
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