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SUMMARY

The necessary and sufficient conditions for the stability of the equi-
librium point with no linkage disequilibrium are obtained for the three
locus model with multiplicative fitnesses. It is shown that there are six
inequalities that must be satisfied in order for this equilibrium to be
stable. Three of the inequalities require that there be heterozygotic
superiority at all loci. The other three are exactly those inequalities
which are required for each pair of loci to be stable with linkage equi-
librium if they are considered to be an isolated two locus system. Thus,
all the information needed to determine the stability of this equilibrium
with three loci is contained in one and two locus theory.

1. INTRODUCTION

One of the simplifying assumptions made in classical population genetics is that
there is only one locus. In recent years this assumption has been somewhat
relaxed by the development of two locus theory (Lewontin & Kojima, 1960;
Bodmer & Parsons, 1962). Two models of fitness values have been studied exten-
sively, the symmetric selection model (Karlin & Feldman, 1970) and the multipli-
cative fitness model (Bodmer & Felsenstein, 1967).

The multiplicative model arises naturally if loci which affect the viability act at
different times in the life cycle. For this reason the multiplicative fitness model has
been used in computer studies with more than two loci (Lewontin, 1964 ; Franklin
& Lewontin, 1970; Slatkin, 1972). For the two locus model with arbitrary multipli-
cative fitness values only the conditions for the stability of the equilibrium with no
linkage disequilibrium have been obtained. The other equilibrium points and their
stability properties can be determined if the fitness values are symmetric (Karlin &
Feldman, 1970).

In this paper the necessary and sufficient conditions for the stability of the
equilibrium with no linkage disequilibrium are obtained for the three locus model
with multiplicative fitnesses. From these results some insight is gained into the
n locus problem.

2. THEORY

The model which will be developed is a three locus model with two alleles at
each locus. The two alleles at the three loci will be denoted by 4, and A4, B, and B,,
and C, and C,. Let X, (4,4, k = 0, 1) be the frequency of the gamete A4,B;C,
in the population. The relative fitness of the genotype 4;4,B,B,C,,C, will be
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denoted by @;y; rirmsn and will be taken to equal wf;wg, w5, Where, for
instance w® is the relative fitness of the genotype B, B;. For all loci w; is assumed
equal to 1.

The recombination value between the first and second loci will be defined to be
r, and between the second and third loci, r,. If there is no interference, the re-
combination between the first and third loci is 7, + 7, — 2,7, and the frequency of
double cross-overs is 7, 7,.

With these definitions the recurrence equations for the eight gametic types are
given in Table 1.

Instead of using the gametic frequencies, which are subject to the constraint
that they must add to one, as variables; it will be convenient to define the following
seven independent variables:

1 = Xin+ Xz + Xaor + Xioos
Py = Xy + Xy
X+ X0+ Xy + X0’
Py = Xon +Xoio
X o1+ Xoro+ Xoor + Xooo’
Py = Xy
Xyn+ X5 (1)
X,p1
Py = g0,
3 X+ Xaoo
Xo1y
Pe Xon+Xoo’
KXoy
Py =,
T X+ Xooo

In these variables the gametic frequencies are:

X111 = P1P2Pss KXo = (1—2,)P326
Xy10 = P122:(1 =1y, Xowo = (1 =21)p3(1— 1), 2)
X1 = P1(1—22) D5, Xoor = (1=p,) (1 — D3}y,

X0 = P1(1=p2)(1=15), Xopo = (1—py)(1—p;)(1—1p,)

The recurrence equations for the p; can be obtained by substituting equations (2)
into the equations given in Table 1 and using the relationships between the gametic
frequencies and the variables p; given in (1).

The equilibrium point with linkage equilibrium is given by

= bl

pl - a1+b1,
_ — 2

P = B = 5 3)
P

Pu=Bs = B0 = B = 5,

where a; = wg —wi! and b, = wg —wi' and similarly for the second and third loci.
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Table 1. Equations for selection with three loci

WXlll = Xlll W111 —8y3o7 Dy — Gy 11 Hy — Qo 79 Dy — Gy 7o Hy — gy (7 + 7, — 27y 7) DYy @y 7y 7o H
WX;m = X1 Wno —Gy197y DYy + @317y Hy +@01y73 Dy + Guyy 1o Hy ++ @y (1 + 73— 27y 73) DYy — @y 7y 1 H
WXiol = Xin W101 + a7 Dl — aul’lH + 8517 Dis— alu"zH —8y01 {71+ 72— 2ry79) DYy +ayyy vy H
IVXiao = Xy00 Wao+ 11071 DYy + 01117 Hy — Gayy 7 Dy + 041 7 Hy + gy (7 75— 20y 79) DYy — a7y mo H
WX(’]ll = X Wou + @157 DY+ @13 Ty Hy — @011 7 DYy + 0411 7o Hy + Gy (71 + 75 — 271 70) D}y — @yyy 7 7 H
WX(Iuo = Xo1o I1’010 + 831071 DYy — @' Hy + Go11 79 D3y — Gy 1o Hy — Gy (ry + 75 — 2y 75) DYy + @y 1y 7 H
WX:m = Xon Ii’o ~ @127 D+ @101 71 Hy + 8013 7, DYy 4+ @iy 7y Hy + Gy (ry + 73 — 21y 75) DYy — ayyy 7, H
WX{mo = Xooo Wooo — @11071 D — @1u T Hy — Gona 1, D3y — @yy 1o Hy — Gy (71 + 75 — 271 75) DY+ @y i e H

D%z = X111 X001 — X101 Xon Dm = X110 X000 — X100 X010

Dy = X111X100"'X110X101 DY, = X011X000_X010X001
D%s = X111 X010~ X110 X012 Dga = X301 X000~ X100X 001
H, = X113 Xo00 = Xo11X100 H; = X131 X000 — X110 X001
Hy = X101 X010 — X110 X001 Hy = X101 Xo10— Xo11 X100

H = XlllXOOO+X101X010_X110X001—XOIIXIOO
Wlmn = ZZ Z al+s m+j, ni+k XUk

W= 2 Z Z Xy Wipe

The criterion for the stability of this equilibrium point can be obtained from
the eigenvalues of the Jacobian
- (a)
op;

evalvated at this equilibrium point. This is the matrix

A0 O
J=10 B 0
0 0 C

K,
where A= (1+ TR )
(K, +9,) Ky—714, G Ky+7,4,
1+ K){(1+K,)° (1+K,))(1+K,)
P Ky+7,D, 1+(K1+§1)K2—"1ﬁ1
(1+K;,)(1+K,) (1+K)(1+K,)

14+

and C is a 4 x4 matrix with the elements given in Table 2. In these matrices
9y = 1—p; and

which is negative if the heterozygote is fitter than both homozygotes.
The eigenvalues of B and C can be found by noting that

m () e ne (3

14 GRH 22
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are the eigenvectors of B and

1 a, Qo ay Gy

_I1 — 1 _| -0 _ | b

53 - 11’ €4 - _ bl ] gs = ay ’ gﬁ - — bl @,
1 —b, —b, b,b,

are the eigenvectors of C.

Table 2. Elements of the matriz G

(K +5,) (Ko +80) Ky — 118142 (1 + Ky — 1y (14 K, )y — (ry 4+ 70— 271 73)8, (K + 8,) + 117281 e

¢, =1

u=1I+ (1+ K;) (1+ Kp) (1 +Ko)

Con = (K + 803 Ky + 718,82 Ky -+ 7y (K + 808 + 7172014,

“ (1+EK) (1 +K,y) (1+Ky)

con = G1 (Kg+82) Ky + 714,85 (1 + Ky) + (ry +75 — 21, 75)G, (Ko +Ba) — 717241 G2
1 (14 K,) (14 Ky) (1+Ky)

P G180 K3 —710142 Ka+ 726142 — 71724, 4,

1 (1+K,) (1+K,) (1+ Ky)

o = (K + )P Ky +7,G,Pa Ky + 175 (K + 8Py + 717241 By

- (1+K,) (1+ Ky)(1+ Ky

Cow = 1+ (K +81) (Ko +G5) Ky~ 71§, 5o (1 + Kg) —ry (1 + KBy — (ry 4+ 75— 2r179)§y (Ko +8) +7172G, D,
22 (1+K,) (14+K,)(1+K,)

Con = G162 Ky — 110102 K+ 1281 B2 — 717261 B2

® (1+Ky) (1+ K,) (1+Ky)

Cor = G (Ko +0) Ky + 714G, P2 (14 Ky) + (ry 75— 201 79) Gy (Ko +do) — 11794, 5,
“ (1+K) (1+K,) (1+Ky)

- D1 (Ko +P02) Ky 47,0100 (1 + Kyp) + (7, + 15— 2r175) Py (Ko + B5) — 11738, 4
- (1+EK) (1+K) (1+Ky)

Con = D18 Ky —r1 5,0 Ky + 120, 8p — 1170142

- (1+K,) (1+K,) (1+ K;)
Con = 14 (K1 +§1) (Ko + o) Ky — 718145 (1 + Kp) —rp (1 + K)o — (71 + 70— 2y 73) Py (K + By) + 7172514
33 (1+ Ky (14 Ky) (1+K,)

- (K + 31§ K+ 710, G Ky + 75 (Ky + G+ 7172514

o (1+K;) (1+K,) (1 +Ky)

Cor = DP1Pa Ky =11 D10 K+ 725,03 — 71736, By

i (1+K) (1+K,) (1+Ky)

Con = D1 (Kot o) K3+ 718,02 (1 + Kp) 4 (ry 4+ 15— 27 7) 51 (K + §o) — 717051 P2
“ (1+K,) (1+Ey) (1 +K))

o = (K 4418 Ko+ 110, 0 Ky + 75 (K +G)Ps + 7172518

“ (1+K,) (1+K,) (1+Ky)

o = 14 (K1 +8,) (Ko +d) Ky~ 8,0, (1 + Kp) — 13 (1 4+ K )Py — (ry 475 — 21 70) 5, (K + o) + 71725, B
o (1+ K (L+ K) (1+K,)
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The eigenvalues of J, arranged in a natural order, are therefore

A= 1+1f.11{1’
A = 1+1f;{3’
e s aLiEv.al
As = 1+(1—:T{;{Tﬁ1“—:3]{—3),

K, Ky—(ry+19—2r175)

(1+K)(1+K,) ’
+K1K2K3—"'1 B3+ Kp)—r(34+K,)—(r,+7,—2r,15) (3 + K,)
(1+K)(1+K,)(1+K;) *

Ag =1+

A =1

For the equilibrium point given in (3) to be stable all of the eigenvalues must be
less than one in absolute value.
The first three eigenvalues A, A,, and A, lead to the conditions

K,<0, K,<0 and K, <0

which must be satisfied if the equilibrium point is to be stable. These conditions
are satisfied if there is heterozygotic superiority at each locus and are not satisfied
if there is heterozygotic inferiority.

The eigenvalues A,, A;, and A4 lead to the conditions

r > K, K,,
ry > K, K,
i+ re—2r7r, > K, K,

which must be satisfied if the equilibrium is to be stable. These conditions result
from the two loci interactions. They are exactly the same inequalities which would
result if each pair of loci were considered as an isolated two locus system (Bodmer
& Felsenstein, 1967).

The last eigenvalue A, can be shown to always be less than one in absolute value
if there is heterozygotic superiority at each locus. This follows from the fact that
—3% < K, < 0 if there is a heterozygotic advantage at each locus. From this it
can easily be seen the A, must be less than one. In order to show that A, > —1
we must show that

+ K\ K,K;—7,(34+ K3)—7,(3 4+ K,) — (r1 + 75— 2r,7,) (3 4+ K,) S

? T+ Ky (11 Ko) (1 + Ky

0.

14-2
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Upon multiplying through by the denominator and rearranging, the left-hand side
of the inequality becomes

P+ KKK+ (3—7r) 3+ K+ (3-72) 3+ Ky) + (37— 72+ 2r175) (3 + K))
+ G+ E)G+HE)+ G+ K) G+ EKy) + (3+Kp) 3+ Kp) +2(3+ Ky) (3 + Ky) (3 + Ky).

This can be seen to be always positive since —3 < K, < 0 and r; < 3. Thus A,
does not lead to any new condition which must be satisfied in order for the equi-
librium to be stable.

It has therefore been shown that, for the three locus model with multiplicative
fitnesses, the conditions for stability of the equilibrium with no linkage dis-
equilibrium are (a) three conditions which require heterozygotic superiority at
each of the three loci, and (b) three conditions resulting from the three pairs of
two loci interactions which are exactly the same as if each pair is considered as an
isolated two locus system. There is no new condition resulting from the three loci
interactions.

It therefore seems likely that for the » locus model with multiplicative fitnesses
the conditions for stability of the equilibrium with no linkage disequilibrium will be
(@) n conditions requiring there to be heterozygotic superiority at each of the

n loci, and (b) (Z) conditions for each pair of loci which are exactly the same as if

each pair is considered an isolated two locus system.
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