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THE EXCEPTIONAL SETS IN THE DEFINITION 
OF THE Pn -INTEGRAL 

BY 

G. E. CROSS 

ABSTRACT. It has been recently observed by S. N. 
Mukhopadhyay that the various definitions of the Pn-integral are 
not complete unless it is shown that the exceptional scattered set 
allowed in the definition is not important. Utilizing the fact that on 
the real line a scattered set is countable, and adapting known 
methods for coping with exceptional countable sets, it is proved that 
the definitions of the Pn-integral are complete. It is then clear that 
the concept of scattered set is not essential to the definition of the 
Pn -integral. 

1. Introduction. It has recently been observed by Mukhopadhyay [11] that 
the definitions of the Pn -integral as given in [7], [9] and [4], and the definition 
of the P*-integral in [5], are not complete without some argument to show that 
the exceptional scattered set allowed in the definition of major and minor 
functions is not important. 

For if one defines major and minor functions with respect to a fixed scattered 
set Sx and obtains an integral of /, one may define major and minor functions 
with respect to another fixed scattered set S2 and obtain a new integral of /. An 
argument to show independence of the scattered set would be required. 

On the other hand if the scattered set varies from one pair of major and 
minor functions to another a difficulty arises in proving that Qi(x)-q2(x) is 
convex, where Q1 is a major function with respect to a scattered set Sx and q2 

is a minor function with respect to a different scattered set S2. One way around 
the difficulty is to impose n-smoothness everywhere on the major and minor 
functions, and then, since the union of two scattered sets is scattered, the usual 
arguments go through, and the integral is well defined. This is essentially what 
was done in the case of the original P2-integral [10] and the SCP-integral [3]. 
Insofar as application to trigometric series is concerned, this approach results in 
no loss of generality, since the sums of the series involved in the construction of 
major and minor functions are n-smooth everywhere. 

The methods of Bosanquet [1] and Grimshaw [6] for removing exceptional 
points are of course well known, as is the more recent approach of Taylor [13] 
and Mukhopadhyay [11]. The difficulty in James' definitions arose when 
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making the change from the definition in [10] to the definition in [7], the 
condition of smoothness on the major and minor functions was imposed only 
on the exceptional countable set. This same incompleteness in the definition 
was continued in [9] and by Cross in [4] and [5]. 

It is shown in the following how the exceptional sets in the various defini
tions may be removed. An argument in the context of an exceptional countable 
set is sufficient since in a second countable space a scattered set is countable 

[12]. 
It is then clear that the concept of scattered set is not an essential part of the 

definition of the Pn-integral. 

2. Preliminaries. We adopt the notations and conventions of [4]. The 
(upper, lower) Peano derivative of order 2n of F at x0 is denoted by 
(^2n(*o)> F2n(x0)) F2n(x0) and the (upper, lower) de la Vallée Poussin derivative 
of order 2n of F at x0 by (A2nF(x0), 82nF(x0)) D2nF(x0). The function F is said 
to be 2n-smooth at x0 if limh^0 hd2n(F\ x0, h) = 0, where 

a m M ((2n)\\(F(x0+h) + F(x0-h) nyl h2k \ 
62n(F; x0, h) = (-j^){ £ — D2 kF(x0)). 

The function F is said to satisfy condition A2n (n — 1) in [a, b] if it is 
continuous in [a, b], if, for l < f c < 2 n — 2, each F(k)(x) exists and is finite in 
(a, b) and if F is 2n-smooth for xe(a,b) — E where E is countable. 

There are corresponding definitions for odd indices. In the following, discus
sion will be restricted to the even case, and for simplicity in notation we shall 
use n to denote an even integer. The arguments for the odd case are similar. 

3. The Pn-integral. Detail for the argument in the case of the Pn-integral of 
[4] is provided in this section. 

DEFINITION 3.1. Let f(x) be a function defined in [a, b] and let at, i = 

1 ,2 , . . . , n, be fixed points such that a=a1<a2<- •• <an=b. The functions 
Q(x) and q(x) are called Pn-major and minor functions respectively of f(x) 
over (oj) = (a l5 a 2 , . . . , an) if 

(3.1) Q(x) and q(x) satisfy condition A* in [a, b]; 

(3.2) Q(ai) = q(ai) = 0, f = l , 2 , . . . , n ; 

(3.3) dnQ(x)>f(x)>Anq(x), xe ( a , b)-E, |J5| = 0; 

(3.4) dnQ(ft) ^ -oc , Anq(x)^+œ, Xe(a, b)-S, S a scattered set; 

(3.5) Q and q are n -smooth in S. 

(Condition (3.5) is stronger than the corresponding condition in [9] and [4] but 
seems more natural.) 

LEMMA 3.1. Given x0e (a, b) and s > 0 , there exists a Pn-major function Q(x) 
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for the function J(x) = 0 over (OJ) = (a1; a 2 , . . . , a j such that: 

(3.6) d nQ(x)>0, /or all xe(a, b); 

(3.7) 0„(Q;x, h ) > 0 , for x, x±he(a,b); 

(3.8) l im h ^ o W„(Q;x o , r ( )>0: 

(3.9) \D2kQ(x)\<e, x&{a,b), 0 < f c < ( n / 2 ) - l . 

Proof. Let 
(x, x < x 0 

g ( x ) = l o _ 
V -̂ZX X Q , X X() 

and define G(x) as the (n-2) th indefinite integral of g(x) on [a, b]: 

G(x)=—^—\x(x-tr-3g(t)dt. 

( n - 3 ) ! Ja 

Then the function Q denned by 

Q(x) = C [ G ( X ) - X A(x; a j)G(a i) 

where 

A(x ; Oi) = n (x - a^Kdi - a,-), 

satisfies the conditions of the lemma if c > 0 is chosen so that \D2kQ(x)\<e, 
0 < f c < ( n / 2 ) - l . Indeed, it is clear that d nQ(x)>0 if x^x0, and 

dnQ(x0) = cdnG(x0) > cd2(Dn_2G(x0)) = cd2g(x0) > 0. 

It follows that Q(x) is n-convex in [a, b] and (3.7) follows from Lemma 4.1 [8]. 
Moreover 

lim hOn(Q;x0, h) 
H—MD 

= lim c 
h-*0 

n - [ 2 Lk=0 (2ky.2kQ{Xo)\ 
( n - l ) ! h 

r \g(x0
Jrh) + g(x0-h)-2g(x0)~] 

= lim nc — 
H-o L 2h J 

[2(x0+h)-x0 + x0-h-2x0~\ nc 
= lim nc — ' - — 

h-o L 2h 

1 ^c „ 

LEMMA 3.2. Suppose M(x) is a Pn-major function of f(x) over (at) = 
(a1? a 2 , . . . , an) and /et e > 0 . Then there exists a Pn-major function F(x) such 
that 

\F(x)-M(x)\<e, xe[a,b]. 

and dnF{x)>-™, for all x in (a, b). 
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Proof. Let E be the set of points where dnM(x) = -oo. Then E is scattered 
and hence, as noted in the introduction, E is countable. Moreover, by defini
tion, M(x) is n-smooth for xeE. 

Let the points of E be enumerated 

and let {ej}r=1 be a sequence such that Xf=i e i < e . Let Mt(x) be the major 
function defined by Lemma 3.1 with e, x0 replaced by e,, xt. Let G be defined 
by 

oo 

G ( J C ) = X M(x) , XG[O, ft]. 
i = l 

Then G(x) is the sum of a uniformly convergent series of continuous functions 
and so G(x) is continuous. Also |G(x) |<e, G(at) = 0, i = 1, 2 , . . . , n. For 
x G (a, b), we have, 

0n(G;x,h)= £ en(Mi;x,h\ 

where for each i, On(Mj ; x, fi) > 0. Therefore for each N and x, x ± h e (a, fc), we 
have 

N 

e n ( G ; x , h ) ^ X 0n(M i ;x,h) 

and 

a n G(x) - l im 0n(G;x, h)> X 1™ 0n(Mt; x, h ) > 0 , 

for x e ( a , b). 
For xioeE, h>0. 

oo N 

W n (G; Xfe, h) = I he„(A^; x^, h ) > X hOn(Mt; x^, h). 

It follows that 

lim hOn(G;xio, h ) > X Um ^ n ( M t ; x^, h ) > 0 , 

since N can be chosen so that i0 = N. 
Now define F(x) = M(x) + G(x). Then 

dnF(x) > dnM(x) + dnG(x) > f(x) a.e. in [a, 6], 
and 

anF(x)>-oo if %iE. 
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At points xio G E. 

lim [hO^Fix^h)]^ lim [h0n(M;x io,h)] + ljm [n0n(G; x^, h)] 
h->0+ h-^0+ h-*0+ 

> lim [W n (G;x i o ,h) ]>0, 

since M is n-smooth in F . 

Therefore ]imH^0+ IA(F; *i0>
 n ) l = +00-

But from the format of 0n(F;xio, h), with n even, this is the same as 
limH^0- [0„(F; xio, h)]. Therefore dnF(xio) = +00. 

LEMMA 3.3. Suppose E is a set of measure zero contained in (a, b) and e > 0 . 
Then there exists a Pn-major function Fx(x) for the function J(x) = 0 over 
(Oj) = (a1? a 2 , . . . , a») such that 

(3.10) anF!(x)>0, for allxe(a, b); 

(3.11) anF t(x) = +00,/or x G E ; 

(3.12) 0 < F ! ( x ) < e , / o r x e [ a , 6 ] . 

Proof. This follows using the same technique as in the proof of Theorem 16 
of [2]. 

Given e > 0 let x be a function on [a, b] such that 
(i) x is absolutely continuous; 

(ii) x is differentiable; 
(iii) x'(x) = oo, X G F ; 

(iv) 0<x ' (x )<°° , x ^ F , 
(v) *(a) = 0, 0<*(i>) < e / ( 6 - a)""1 , 

Define ^P(x) as the ( n - l ) t h integral of x(0: 

*W = 7-^\X(x-<)n~2x(t)dt, 
( n - 2 ) ! Ja 

and 

F1(x) = c ( ^ ( x ) - I A(x i ,o i mo i ) ) 

with c chosen that (3.12) is satisfied. 

LEMMA 3.4. Suppose M(x) is a Pn-major function and m(x) a Pn-minor 
function of f(x) over (ai) = (a1, a 2 , . . . , an) in [a, fc]. Then there exists a Pn-
major function Q(x) and a Pn-minor function q(x) such that for all xe(a, b): 

anQ(x)>/(x)>Anq(x) 

dnQ(x) > -00, Anq(x) < +00 

|Q (x ) -M(x ) |<e , and |q (x ) -m(x) |<e . 
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Proof. The result for major functions follows directly by setting 

Q(x) = F(x) + F1(x). 

No new construction is needed in the case of a minor function. Merely use 
the major function case applied to -m(x) and —f(x). 

THEOREM 3.1. If M(x) and m(x) are Pn-major and minor functions of f(x) 
over (ai) = (au a2,..., an) then the difference M(x)-m(x) is n-convex in [a, b]. 

Proof. Let M(x) and m(x) be given major and minor functions. By Lemma 
3.4 there is a sequence Mk(x) of major functions and a sequence mk(x) of 
minor functions such that Mk(x)- mk(x) converges (uniformly) to M(x) -m(x ) 
on [a, b] and such that, everywhere in (a, b). 

d nM k(x)^f(x)^A nm k(x) 

dnMk(x)>-oo? Anmk(x)<+oo, for each k. 

It follows that the difference M k (x) -m k (x) is n-convex for each k, and 
hence so is M(x) -m(x) . 

4. The P*-integral. The exceptional sets in the definition of the P*-integral 
may be disposed of similarly as is shown below. 

DEFINITION 4.1. The functions Q(x) and q(x) are called P*-major and minor 
functions, respectively, of f(x) on [a, b] if 

(4.1) Q(x) and q(x) satisfy condition A* on [a, b]; 

(4.2) Q (k)(a+) = qk(a+) = 0 ; 0 < f c < n - l ; 

(4.3) dnQ(x)>/(x)>Anq(x), in [ a , b - E , |E| = 0; 

(4.4) dnQ(x)>-oo, Anq(x)<+oo, x e [ a , 6 ] - S , S a scattered set; 

(4.5) Q(x) and q(x) are n-smooth in S. 

LEMMA 4.1. Given x0e(a,b) and e > 0 , there exists a P*-major function 
Q(x) for the function J(x) = 0 on [a, b] such that 

(4.6) d n Q(x)^0 , forxe(a,b); 

(4.7) 0n(Q;x, fe)>0, /orx, x±he(a, b); 

(4.8) l i m h ^ o h e n ( Q ; x o , h ) > 0 ; 

(49) |Q ( k )(x) |<8, x e [ a , fc], l < k < n - l . 

Proof. Let h be defined on [a, b] by 

f ( x - a ) 2 , x < x 0 , 
n(x) = < 

(.2(x - a)2 - ( x 0 - a)2 , x > x0. 
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Then if Q is defined by 

Q W = r ~ ^ 7 \X(x-t)n-3h(t)dt9 ( n - 3 ) ! Ja 

where c > 0 is chosen so that (4.9) holds, it is clear that Q satisfies the 
conditions required. 

Now using the same approach as in the preceding section we obtain the 
following: 

THEOREM 4.1. If M(x) and m(x) are P*-major and minor functions off(x) on 
[a, b], then the difference M(x) — m(x) is n-convex in [a, b]. 

REFERENCES 

1. L. S. Bosanquet, A property of Cesàro-Perron integrals, Proc. Edinburgh Math. Soc. (2) 6 
(1940), 160-165. 

2. P. S. Bullen, A Criterion for n-Convexity, Pacific J. Math. 36 (1971), 81-89. 
3. J. C. Burkill, Integrals and Trigonometric Series, Proc. London Math. Soc. (3) 1 (1951), 46-57. 
4. G. E. Cross, The Pn-integral, Canad. Math. Bull. 18 (1975), 493-497. 
5. , The Representation of (C, k) Summable Series in Fourier Form, Canad. Math. Bull. 21 

(1978), 149-158. 
6. M. E. Grimshaw, Thé Cauchy property of the generalized Perron integrals, Proc. Cambridge 

Phil. Soc. 30 (1934), 15-18. 
7. R. D. James, A Generalized Integral II, Can. J. Math. 2 (1950), 297-306. 
8. , Generalized nth Primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176. 
9. , Summable Trigonometric Series, Pacific J. Math. 6 (1956), 99-110. 
10. R. D. James and W. H. Gage, A Generalized Integral, Trans. Roy. Soc. Can. 40 (1946), 

25-35. 
11. S. N. Mukhopadhyay, On the Regularity of the Pn-integral, Pacific J. Math. 55 (1974), 

233-247. 
12. Z. Semadeni, Banach Spaces of Continuous Functions, Warsaw, 1971. 
13. S. J. Taylor, An Integral of Perron's Type, Quart. J. Math. Oxford (2), 6 (1955), 255-274. 

UNIVERSITY OF WATERLOO 

WATERLOO, ONTARIO. 

https://doi.org/10.4153/CMB-1982-057-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-057-x

