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Abstract

For every rotation ρ of the Euclidean space Rn (n ≥ 3), we find an upper bound for the number r such that
ρ is a product of r rotations by an angle α (0 < α ≤ π). We also find an upper bound for the number r such
that ρ can be written as a product of r full rotations by an angle α.
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1. Introduction

Let O(n) denote the orthogonal group of Rn, that is, the group of all linear
isomorphisms of Rn which preserve the Euclidean distance; equivalently,

O(n) = {A ∈ GL(n,R) : AT A = I}.

The subgroup consisting of all elements A ∈ O(n) whose determinant is 1 is called the
special orthogonal group (or the rotation group) of Rn and is denoted by SO(n),

SO(n) = O(n) ∩ SL(n,R).

Elements of SO(n) are called rotations. A reflection σu along a nonzero vector u ∈ Rn

is the linear isomorphism σu : Rn → Rn given by

σu(x) = x − 2
〈x, u〉
〈u, u〉

u,

where 〈 , 〉 denotes the ordinary scalar product of Rn. It can be easily checked that
σu ∈ O(n), detσu = −1 and σu ◦ σu = id.

A half-turn (or a 180◦ rotation) is an element ρ ∈ SO(n) for which there exists a
subspace W ⊆ Rn of dimension 2 such that ρ|W = −id and ρ|W⊥ = id. Alternatively,
a half-turn can be defined as an element of SO(n) which can be expressed as σuσv,
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where u, v ∈ Rn are two nonzero orthogonal vectors. More generally, the composition
of two reflections σu and σv is a rotation by twice the angle between u and v (see [2,
Proposition 8.7.7.8]). Anticlockwise and clockwise rotations by an angle α are treated
equally. In particular, the angle α of a rotation is considered to be between 0 and π.

A well-known theorem due to Artin [1, page 134] states that for n ≥ 3 every element
of SO(n) is a product of at most n half-turns. A natural question to ask is how this
theorem can be adapted for rotations by an arbitrary angle α.

Intuitively, when α is very small, a rotation by a relatively large angle cannot be
expressed as a product of n rotations by the angle α. Hence, in a possible statement
of this theorem for an arbitrary angle α, the number of rotations needed for the angle
α (that is, α-rotations) should depend on α. Note that when π is an integer multiple
of α, that is, π = kα for some positive integer k, then Artin’s theorem directly implies
that every element of SO(n) is a product of at most kn rotations by the angle α. The
reason is that in this situation, every rotation by the angle π is a product of k identical
rotations by the angle α. But, in general, determining the smallest positive integer m
so that every element of SO(n) can be expressed as the product of at most m rotations
by a given angle α cannot be obtained directly from Artin’s theorem.

By generalising Artin’s original argument and using a simple geometric idea, we
prove the following result, which gives an upper bound for the required number of
α-rotations.

Theorem 1.1. Let α be an angle with 0 < α ≤ π and let n ≥ 3. Let ρ ∈ SO(n) be an
element which can be written as a product of 2k reflections. Then ρ is a product of
at most 2mk rotations by the angle α, where m = 1

2 ddπ/αee. More precisely, ρ can be
expressed as a product of 2mk elements of the form σxσy, so that the angle between x
and y is α/2.

Here, for a real number x, the expression ddxee denotes the smallest even integer n
such that x ≤ n. When α = π, from the above result, we recover Artin’s theorem.

Note that by the Cartan–Dieudonné theorem, every rotation can be expressed as a
product of at most t ≤ n reflections. The minimal number of reflections required to
express any element σ of O(n) as a product of t reflections was determined by Scherk
in [6] and is equal to the rank of the linear map σ − id. The minimal number of half-
turns needed to express any element of the rotation group of an arbitrary quadratic
space as a product of t half-turns was determined in various situations in [3, 5] and [4].

Next, we study products of full α-rotations in SO(n). By a full α-rotation, we mean
an element ρ ∈ SO(n) such that for every nonzero x ∈ Rn, the angle between x and ρ(x)
is α. Alternatively, a full α-rotation ρ ∈ SO(n) can be characterised by the identity
〈x, ρ(x)〉 = cos(α)〈x, x〉 for all x ∈ Rn. There is no difference between an ordinary
α-rotation and a full α-rotation in R2.

Trivial examples of full rotations onRn are id, the identity map, and −id (for even n),
which are full rotations by 0 and π, respectively. A nontrivial example is an almost-
complex structure J on Rn, a full rotation by π/2. We recall that an almost-complex
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Figure 1. Division of β into m equal parts.

structure on Rn is a map J ∈ SO(n) such that 〈x, J(x)〉 = 0 for all x ∈ Rn. Almost-
complex structures on Rn only exist if n is even.

By a standard argument in linear algebra (see Section 3), we can easily see that for
0 < α < π, a full α-rotation on Rn only exists if n is even and we prove the following
theorem.

Theorem 1.2. Let n ≥ 4 be an even integer and let 0 < α < π. Let ρ ∈ SO(n) be an
element which can be written as a product of at most 2k reflections. Then ρ can
be written as a product of at most 2m′k full α-rotations, where m′ = 1

2 ddπ/2αee if
0 < α ≤ 1

2π and m′ = 1
2 ddπ/(2α − π)ee if 1

2π < α < π.

2. Products of α-rotations in SO(n)

Proof of Theorem 1.1. By assumption, we can write

ρ = σu1σv1 · · ·σukσvk ,

where ui, vi ∈ R
n (i = 1, . . . , k) are nonzero and k ≥ 1 is minimal. Moreover, we may

assume that ui and vi are linearly independent for i = 1, . . . , k. Hence, it is enough to
show that every expression σuσv (u, v ∈ Rn\{0}) is a product of at most 2m rotations
by the angle α. As we have mentioned in Section 1, σxσy is a rotation by the angle α
if and only if the angle between x and y is α/2. Let w0 = u, w1, . . . ,wm = v be nonzero
vectors so that the angle between wi and wi+1 is β/m (see Figure 1).

By changing u to ±u and v to ±v if necessary, we may assume that β ≤ π/2 (note
that multiplying the axis u of a reflection σu by a scalar does not change σu). Since
2m = ddπ/αee, we have π/α ≤ 2m and hence β/m ≤ π/(2m) ≤ α. We can write

σuσv = σw0σwm = (σw0σw1 )(σw1σw2 ) · · · (σwm−1σwm ).

Hence, it is enough to prove that for i = 1, . . . ,m − 1, the expression σwiσwi+1 can be
written as a product of at most two rotations by the angle α. Since the angle between
wi and wi+1 is β/m ≤ α, the problem is reduced to proving that if the angle β between
u and v is at most α, then σuσv is a product of at most two rotations by the angle α.
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Figure 2. The ray w in the plane perpendicular to u and v.

We claim that we can find a nonzero vector w such that the angle between w and both
u and v is α/2. In this way, we may write σuσv = (σuσw)(σwσv) and the conclusion
follows.

To find w, consider the bisector w′ of u and v. Consider a plane perpendicular to
the subspace generated by u and v and passing through w′ (since n ≥ 3, this is always
possible). In this plane, every ray w passing through the origin makes equal angles
with u and v (see Figure 2). This angle attains its minimum when w lies on w′. Hence,
the minimum value of this angle is β/2 and it can take an arbitrary value ≥ β/2. In
particular, the value α/2 is attained since β ≤ α. �

3. Products of full α-rotations in SO(n)

Lemma 3.1. Let ρ ∈ SO(n). The following conditions are equivalent:

(a) 〈x, ρ(x)〉 = cos(α)〈x, x〉 for every x ∈ Rn;
(b) 〈x, ρ(y)〉 + 〈ρ(x), y〉 = 2 cos(α)〈x, y〉 for every x, y ∈ Rn;
(c) ρ2 − 2 cos(α)ρ + id = 0.

Proof. To prove the implication (a)⇒ (b), it suffices to replace x by x + y in (a). For
the implication (b)⇒ (a), put x = y in (b). For the equivalence (b)⇔ (c), note that (b)
is equivalent to the identity 〈ρ−1(x) + ρ(x) − 2 cos(α)x, y〉 = 0 and this is also equivalent
to (c) since 〈 , 〉 is nondegenerate. �

Lemma 3.2. The following statements hold.

(a) If ρ (respectively ρ′) is a full α-rotation on Rn (respectively Rm), then ρ ⊕ ρ′ is a
full α-rotation on Rn+m.

(b) If ρ is a full α-rotation on Rn, then ρ−1 is a full α-rotation on Rn.
(c) Let 0 < α < π. Then SO(n) contains an α-rotation if and only if n is even.

Proof. To verify (a), note that

〈x ⊕ y, (ρ ⊕ ρ′)(x ⊕ y)〉= 〈x, ρ(x)〉 + 〈y, ρ(y)〉 = cos(α)(〈x, x〉 + 〈y, y〉)
= cos(α)〈x ⊕ y, x ⊕ y〉.

For (b), note that 〈x, ρ−1(x)〉 = 〈ρ(x), x〉 = cos(α)〈x, x〉 since ρ is an isometry.
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To prove (c), consider a unit vector x ∈ Rn. Since ρ is an α-rotation, we have
〈x, ρ(x)〉 = cos α. As cos(α) , ±1, the vectors x and ρ(x) are linearly independent.
By Lemma 3.1(c), the subspace W generated by x and ρ(x) is stable under ρ. Since the
restriction of ρ to W⊥ (whose dimension is n − 2) is also a full α-rotation, we can use
induction to conclude that n is even. Conversely, let ρ be an ordinary α-rotation on R2.
By (a), the map

⊕n/2
i=1 ρ is a full rotation on Rn. �

Proof of Theorem 1.2. By assumption, we can write

ρ = σu1σv1 · · ·σukσvk ,

where ui, vi ∈ R
n are nonzero and k ≥ 1. By Theorem 1.1, every expression σuσv can

be written as a product of 2m′ expressions of the form σxσy, where the angle between
x and y is α. We may assume that x and y are linearly independent. Let W be the
two-dimensional subspace generated by x and y.

It is enough to express σxσy as a product of at most two full α-rotations on Rn. Let
w be a nonzero vector in W so that the angles between w and x and between w and
y are both equal to α/2 (in other words, w is a bisector for x and y). By Lemma 3.2,
there exists a full α-rotation J on W⊥. Hence, we can write σxσy = (σxσw)(σwσy) =

(σxσw|W ⊕ J)(σwσy|W ⊕ J−1) and the claim is proved. �

Corollary 3.3. If n ≥ 4 is even, then every element of SO(n) is a product of at most 2n
almost-complex structures.
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