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ON DERIVATIONS OF LIE ALGEBRAS 

STEPHEN BERMAN 

Introduction. A well known result in the theory of Lie algebras, due to 
H. Zassenhaus, states that if ££ is a finite dimensional Lie algebra over the field 
K such that the killing form of J$f is non-degenerate, then the derivations of «if 
are all inner, [3, p. 74]. In particular, this applies to the finite dimensional split 
simple Lie algebras over fields of characteristic zero. In this paper we extend 
this result to a class of Lie algebras which generalize the split simple Lie 
algebras, and which are defined by Cartan matrices (for a definition see § 1). 
Because of the fact that the algebras we consider are usually infinite dimensional, 
the method we employ in our investigation is quite different from the standard 
one used in the finite dimensional case, and makes no reference to any associa
tive bilinear form on the algebras. If «if is one of the Lie algebras under con
sideration, we let 2)(^£) denote the derivation algebra of «if and J (£) the 
ideal of inner derivations. Our main result states that the dimension of 
Qf{^£)/e/(«if ) equals the nullity of the Cartan matrix which defines i f . 

In Section 1 we give a brief description of the algebras we consider and in 
Section 2 we prove our main result. In the final section we present an applica
tion of our result to the problem of determining the isomorphism classes of the 
algebras under consideration. One of the results in this section, Theorem 2, 
was obtained in joint work with R. Moody, and is of independent interest. 

1. Description of the algebras. A Cartan matrix is any / X / integral 
matrix {Atj) such that Au = 2, Atj ^ 0 if i ^ j , and A tj• = 0 if and only if 
Aji = 0, for 1 ^ i, j ^ /. We will always assume our Cartan matrix (Afj) is 
indecomposable, which is the same thing as requiring that the Dynkin diagram 
associated to it is connected. 

Let K be any field of characteristic zero and let Ĵ ~<if be the free Lie algebras 
over K generated by the 3/ elements eu hufit 1 ^ i ^ /. Let / deno te the ideal 
of J T i f generated by the following elements, 

[hi, hj], 
[eu hj] — Ajfeu 

[fuhj] + Ajift, 

[eufj] - àtjhu for 1 ^ i,j ^ /, 

and let i^'v denote the factor algebra, i f c/ is called the universal heffalump 
algebra over K attached to (^4^). We let 6 denote the ideal of ££ v generated 
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by the elements ^ ( a d ej)~Aji+1
} /*(ad fj)~Aji+1 for 1 ^ i ^ j ^ /, and let i f s 

denote the corresponding factor algebras, i f s is called the s tandard heffalump 
algebra. Finally, we let & denote the radical of ££v (for a description of 3% 
see [1] or [5]) and let ££ R be the factor algebra. ^ R is called the reduced 
heffalump algebra. 

When working with any heffalump algebra we let eit hufi again denote their 
images in the algebra and we let J f be the linear span of the elements hu 

1 ^ i ^ /, so tha t J^7 is abelian. We also assume, from now on, t ha t our Car tan 
matr ix is not of Euclidean type, (see [2] for an enumeration of these) . Then 
it is known [1], t ha t & is the only maximal ideal of ££v so t ha t ££R is simple. 

Let i f be any of our heffalump algebras. The following facts are well known 
and can be found in [1 ; 4 ; 6]. Let V = Z a i © . . . © Z a ^ be the free Z-module 
with generators «i, . . . , at and let F a c t on Jif via a*(A;) = AH. Then there is 
a subset A of F such tha t 

a£A 

(all sums are direct) , where i f « is a subspace of i f , and [J^a, ^p] Q^a+p-

If x G i ^ a , A G ^ then [x, A] = a(h)x. Also, at € A and Sfai = Keu if'_ai = 

X/« for 1 g i ^ /. If 

z 

then either d* ^ 0 or dt rg 0 for a l H from 1 to /, and 0 G A. The elements of 
A are called roots of ^ and we can speak of positive and negative roots. If 
A+ (respectively A~) denotes the collection of positive (respectively negative) 
roots then A = A+ U A~ and - A+ = A~. i f = ^~ ® J? © i ^ + where 
S^+ = X!a€A+ifa and S^~ — 2Za€A~ifa. ^ has has an automorphism of period 
two, which is denoted 77, and (e^rj = fiy (hi)rj = — ht for 1 ^ i ^ / so tha t 
(if+)?7 = «if-. Since we assume tha t (Afj) is not Euclidean and the character
istic of K is zero, we have tha t if 0 ^ a = 2Z*=i ^i«* £ ^ a n d <̂z ̂  0 for 1 ^ 
i S I, then «(A) ^ 0 for some A G ^ . However, it may be tha t for a , ^ A, 
a 9* 0 bu t a (A) = 0(A) for all i ^ . 

For a G A we let i f 2 denote the sum of the spaces if^ for which/3(A) = a (A) 
for all A G ^f- I t is impor tant to note tha t i f a i = if5- is one dimensional as is 
if_3 i = J£-ai. This follows because if /3(A) = at(h) for some /3 G A and all 
A G J^7, then the coefficient of at in 0 must be non-zero because a*(A*) = 2, 
and hence if /3 3^ a*, 0 — at would give rise to a null root, which is impossible 
since {Atj) is not Euclidean (see [2]). 

Let J T Q = {A £Jf?\a(h) = 0 for all a G A} and note tha t J T 0 = (0) if 
i^7 = i f fl. We always have, for any of our algebras, t ha t the dimension of 
a d ^ ^ f = {ad A|A G 3f\ equals the rank of our Car tan matrix (Afj). Finally, 
we let VK = K 0 Z 7 , and define a non-degenerate symmetric bilinear form 
on VK, (.,.), by taking the basis e*i, . . . , at to be orthonormal. Thus , if a = 
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S L i CipLi, P = Y,\=i dnat are in VK then (a,fi) = XM=i Cidt. In Section 3 we 
will recall some more facts a b o u t i R which we will use there. 

2. Derivations of the algebras. Let i f = Jf7 + E « a ^ « be any one of 
our three heffalump algebras associated to the non-Euclidean Cartan matrix 
(A ij) over the field K of characteristic zero. We define 

Q, = [D G @(&)\tfD = (0)}. 

LEMMA 1. Le/ D G 3)(££) and assume that ^fD CZjf7. Then D £ &0 and 
there exist scalar s yt G K such that etD = 7 ^ , /*Z> = —jift for 1 ^ i ^ I. 

Proof. Let Z) be a derivation of i f which p r e s e r v e s ^ and let a G A, 0 F^ 
Xa € i f a. Say Xa-C* = A' + ]C/3€A^ where h! G J ^ and ^ G «Sf̂  for all /3 G A. 
Then for any h G ^ we have 

[x«, A]Z? = [x«A h] + be*, hD] 

which implies that 

a{h)h'+ E «(*>* = E /3(A)̂  + «(A2?)x«. 

From this it follows that h' = 0 and that ^ = 0 unless J£ $ ç; i f 5. Thus, 
a(hD)Xa = 0 for all A G ^ so that /*£> G ^ 0 . Moreover, we have ^aD Ç ifff 

for any a G A, so in particular, f£ aiD C ifttt. and i f _aiD CI if_ttl. for 1 ^ i ^ /. 
Thus, there are scalars 7*+, 7*" G 2£ for which etD = y^eu ftD = y{~fi for 
1 ^ i S I Now /*,£> = [eit ft]D = (y + + yr)ht G ^ 0 , but A, G ^ 0 for 
1 ^ i ^ /. It follows that -yt

+ = 7 , - and £> G ^ 0 . 

Definition. For any 7 G F^ we define a map D7 : «Sf —>J?f as follows: 
/̂ Z>7 = 0 for 1 ^ i S I, and if a G A, x« G <^a we let XaDy = (a, y)xa- We 
extend Dy by linearity to all of J£ and note the fact that [ifa, <^^] ^ °^a+^ 
implies that DT G ̂ 0 for all 7 G V^. 

LEMMA 2. i^0 ^ */ (=^) = a d ^ J ^ awd /fee dimension of &0 is I. 

Proof. If ad x 6 ^ 0 H . / ( i f ) then [A, x] = 0 for all K ^ . This clearly 
implies that x ê ^f- Also, by Lemma 1, we have that ^ 0 = {Dy\y G F^} and 
hence is of dimension /. 

THEOREM 1. 9(<£) = 9» + J {<$?) and the dimension of 3>(^)/J(^) 
equals the nullity of (Aif). 

Proof. Let D G 2iï{S£) and let {^}T=i be a basis of i f + such that <̂ . G i f* 
for all i ^ 1 and e^ = ej for 1 ^ j ^ I. Let ^_ .̂ = (0,3, )rç so that {̂ _/3y}7=i is 
a basis of i f - and e_^ = fj for 1 S j S l- For each Î ^ 1 we choose /^ G ^ 
such that ($i(hi) = 2 for all i ^ 1 and hj = [ejy fj] for 1 rg j ^ /. This choice 
of an infinite collection of h/s is possible since (A if) is not Euclidean. 
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For each i ^ 1 let 

oo oo 

j=l 3=1 

where ht € 3f and the coefficients aijt btj are in K and almost all of them are 
zero. Since^f is abelian we have tha t [hfD, hk] = [hkD, ht], so upon comparing 
coefficients we obtain t ha t aifij(hk) = akfij{hi) and bifij{hk) = bkjpj(hi) for 
all i,j, k ^ 1. Taking i = j we get t ha t a,i$i(hk) = 2a^ , bufii(hk) = 2 ^ - for 
all i, k ^ 1. 
Thus , 

oo oo 

2(A,D -hi) = YL a>jjPjQii)e-tij + Z ) &iA(*iVfr = / ^ a d x, 

where 
OO CO 

X = Z) 0^-0; ~ Z) 6;^,> 

and the finite dimensionality of Jrf? insures t ha t almost all coefficients in % are 
zero. We now have tha t ht(D — 1/2 ad x) = hi £ ^ for all i ^ 1 and hence, 
since {&,}?=! spans J f , t ha t D - 1/2 ad x G ^ o , by Lemma 1. T h u s ^ ( i f ) = 
^ o + J ^ ) and hence 9(&)/J(&) ^ ^ o / a d ^ J f . From Lemma 2 it 
follows tha t the dimension of S>r(^)/'J («if ) equals the nullity of (A tj). 

Remarks. (1). I t is perhaps worthwhile to point out tha t our method can be 
applied to the Classical Simple Lie Algebras over fields of characteristic p 
not 2 or 3, which arise from the Car tan matrices of finite type (see [1]). In 
particular, except when the matrix is of type A t and p\l + 1, we see t ha t all 
derivations of such algebras are inner and hence this covers the case of algebras 
of type E8 over fields of characteristic 5. For this case the result tha t all 
derivations are inner appears to be new [8, p. 112]. 

(2) If our Car tan matr ix is a 1-tiered Euclidean Car tan matrix and S£ is 
the reduced heffalump algebra arising from it over the field K of characteristic 
zero then J?f =Jz ®K K[x, x - 1 L where «if is a finite dimensional split simple 
Lie algebra over K [6; 7]. R. Moody has applied our techniques to this situa
tion and concludes t ha t 2$ {££)/ J (oâf) is isomorphic to the infinite dimensional 
abelian Lie algebra K[x, x - 1 ] - Here K[x, x_ 1] denotes the ring of finite Laurent 
series over K. 

3. An app l i ca t ion to i s o m o r p h i s m c lasses . Our main result in this section 
is t ha t if K is a field of characteristic zero then there is a doubly infinite family 
of simple infinite dimensional Lie algebras of heffalump type over K each of 
which belongs to a different isomorphism class. More specifically, if t ^ 1 we 
let It denote the t X / identi ty matrix and xt(p) the / X t matr ix with p's on 
the main diagonal and — l ' s elsewhere. For n ^ 2 we define two 4w X 4w 
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Cartan matrices (Atj) and (Btj) as follows: 

fx.(2) 
x.(0) 

Xn(0) 
x»(2) 

"~2 Iin 

2 IinJ L - 2 hn 

"~2 Iin 

2 IinJ 

x.(2) x - ( - l ) X«(-4) x . ( - l ) 
x»( -2) X.(2) Xn( - l ) X . ( -5 ) 
x»( -4) x » ( - l ) X.(2) x - ( - l ) 

Lx,(-2) X»(-5) x . ( - l ) X»(2) J 

(A„) = 

(Bl}) = 

We let oèfn (respectively =?„) denote the reduced heffalump algebra attached 
to (Aij) (respectively (Btj)) over X. We are going to show that for any 
m ^ 2^ if i f = i f TO or i f = J ? m then the only algebra in the collection 
\££n,<!£n, n ^ 2} which is isomorphic to i f is i f itself. 

It is clear that both (Atj) and (Bi:j) are indecomposable Cartan matrices. 
Moreover, for n ^ 2 fixed, and 1 ^ i ^ w we let vt denote the column vector 

[on, . . . , ôni, —du, . . . , — 5W*, on, . . . , 8ni, —da, . . . , — dni\ 

and note that z/* is in the kernel of both of our An X 4n Cartan matrices. Also, 
it is an easy matter to check that the vectors Vi, . . . , vn span the kernels of our 
matrices and hence_the nullity of each of the 4w X 4w Cartan matrices is 
exactly n. Thus, if i f w is one of the recluced algebras i f m or «if m then Theorem 1 
implies that i f m is not isomorphic to i f w if n ^ m. Hence, to prove our result, 
we need only show i ? \ and i ? \ are not isomorphic. This will follow from 
Theorem 2 below. 

At this point we need to recall some more information about reduced 
heffalump algebras. An / X I Cartan matrix (Ctj) is called symmetrizable if 
and only if there exist positive rational numbers ei, . . . , et for which Atjej = 
AjiSf for 1 ^ i, j ^ /. Note that our matrix (Aij) is symmetric, hence sym
metrizable; but that (Bfj) is not symmetrizable. Also, it is known [6] that if S£ 
is a reduced heffalump algebra over K attached to a symmetrizable Cartan 
matrix, then there is a non-degenerate symmetric bilinear form (.,.) : ^ X 
S^ —> K which is associative in the sense that ([x, y], z) = (x, [y, z]) for all x, 
y, z € S£. 

Let ^£ denote the reduced heffalump algebras over the field K which is 
attached to the I X / indecomposable Cartan matrix (C^) and assume (Ci:j) is 
not Euclidean. The Weyl group, W, of (C^) is defined to be the subgroup of 
GL(VK) generated by the reflections riy 1 ^ i ^ /, defined on VK by 

atrj = « j — CjiCLj 

for 1 S i, j ^ I. It is known [1; 6] that if œ Ç W there is an automorphism 
0(w) of i^7 such that ifa0(co) = ^a0} for all a £ A and 3J?6(œ) = JÏf. In fact, 
hjd(ri) = hj — Cjihi for 1 rg i, j ^ / and each 6(œ) is in the subgroup of Aut 
(^£) generated by elements of the form exp (ad z) where z £ ^ and ad z is 
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locally nilpotent on .if. Since the inverse of exp (ad z) is exp (ad (—s)), it is 
easy to see that if (.,.) : ^ X ££ —> K is any non-degenerate symmetric 
associative bilinear form o n ^ then (#0(co), yd{o>)) = (#, 3/) for all x, 3; € f£ 
and co Ç WT. We are now in a position to prove the following result which was 
obtained jointly with R. Moody. 

THEOREM 2. Let (Cif) fre aw indecomposable Cartan matrix which is not 
Euclidean and let J£ denote the corresponding reduced heffalump algebra over 
the field K of characteristic zero. Then^£ has a non-degenerate symmetric associa
tive bilinear form if and only if (Cif) is symmetrizable. 

Proof. We need only show that if (.,.) : «if X =if —> i£ is such a form then 
(Ctj) is symmetrizable. For any a 6 A, ea G =$fa and A, A' G ^ we have that 

a(h)(ea, V) = ([ea, A], A') = (ea, [A, hf]) = 0. 

Since h and A' are arbitrary we get that (j£fa,3f) = (0) for any a £ A. Thus, 
our form restricted to J ^ is non-degenerate. 

Next, we note that (hiy ht) 9e 0 for 1 ^ i ^ /. Indeed, 

(Ai, *0 = G>i,/i],Ai) = («i, [/i, AJ) = -2(eilfi). 

Also, for A G <̂ f, ]8 G A, and e$ 6 if# we have ([et, A], ̂ ) = (eu [A, ̂ ] ) , so that 
&i(h) (eu ef) = — /3(A) (e*, ^ ) . Thus, since «if a i = eifs; is one dimensional we get 
(eiy o$f/s) = (0) unless 0 = — a .̂ It follows that (euft) ^ 0, since our form is 
non-degenerate, and hence that (hi} ht) 7̂  0 for 1 ^ i ^ /. 

We now normalize our form, multiplying it by a non-zero scalar if necessary, 
to assume (hi, hi) = 1. For 1 ^ i , j , A ̂  /we have (huhf) = (hfi(rk),hfi(rk)). 
It then follows using the formula hid(rk) = Az- — C^A*, that 

CikCjk(hk, hk) = Cjk(hu hk) + Cik(hk, h,) for 1 ^ ij, k ^ /. 

Take i = A to get 

2Cji(hi, hi) = Cjt(ht, ht) + 2(Aif hf) 

and interchange i and j to obtain 

2C0(A,-, hf) = Cis(hj9 hj) + 2(hj} hi). 

Thus, for 1 ^ i,j ^ /, 

C,i(Aff A0 = 2(A„A,) = 2(A„Ai) = Ctj(hj}hj)y 

so setting et = (hu A*) yields 

Cijej = Cji€i for 1 ^ i,j ^ /. 

Also, the fact that (Cif) is indecomposable together with ei = 1 implies that 
each €i is a positive rational number. 
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Theorem 2, together with our previous remarks, now implies the following 
result. 

THEOREM 3. Let K be any field of characteristic zero. Then there is a doubly 
infinite family of isomorphism classes of simple heffalump algebras over K. 
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