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Abstract Let A be a graded, commutative Hopf algebra. We study an action of the symmetric group
Σn on the tensor product of n − 1 copies of A; this action was introduced by the second author in [8]
and is relevant to the study of commutativity conditions on ring spectra in stable homotopy theory [6].

We show that for a certain class of Hopf algebras the cohomology ring H∗(Σn; A⊗n−1) is independent
of the coproduct provided n and (n − 2)! are invertible in the ground ring. With the simplest coproduct
structure, the group action becomes particularly tractable and we discuss the implications this has for
computations.
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1. Introduction and main results

Let A be a graded, connected, unital, counital, associative, coassociative Hopf algebra. In
§ 8 of [5] it was shown how A has a ‘conjugation’ or ‘antipode’ χ satisfying the equality

µ ◦ (1 ⊗ χ) ◦ ∆ = η ◦ ε,

where µ and ∆ are the product and coproduct and η and ε are the unit and counit. In
particular, χ(1) = 1 and, for x of positive degree,

χ(x) = −x +
∑

x′χ(x′′),

where ∆(x) = x ⊗ 1 + 1 ⊗ x +
∑

x′ ⊗ x′′. If A is commutative, then χ2 = 1 and so gives
an action of Σ2 on A.

The second author extended this in [8] by providing, for each n > 2, an action of the
symmetric group Σn on A⊗n−1 when A is commutative.
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If σi denotes the transposition i ↔ i + 1, then Σn is generated by σ1, . . . , σn−1, and
the action on A⊗n−1 is given by:

σ1 = [(µ ⊗ 1) ◦ (χ ⊗ ∆)] ⊗ 1⊗n−3,

σi = 1⊗i−2 ⊗ [(1 ⊗ (µ ◦ (µ ⊗ 1)) ⊗ 1) ◦ (∆ ⊗ χ ⊗ ∆)] ⊗ 1⊗n−i−2 if 1 < i < n − 1,

σn−1 = 1⊗n−3 ⊗ [(1 ⊗ µ) ◦ (∆ ⊗ χ)].

Note that each σi acts multiplicatively, as does χ in the case where n = 2.
Thus if A is commutative, as we will henceforth assume, we have a multiplicative action

of Σn on A⊗n−1 for each n > 2. While it may seem unusual to have Σn acting on an
n− 1-fold product, this action does arise quite naturally in stable homotopy theory. If E

is a sufficiently nice ring spectrum and A = π∗(E ∧ E), the set of ‘cooperations’ in the
cohomology theory associated to E, then A naturally has the structure of a commutative
Hopf algebra (or, more generally, that of a Hopf algebroid). The map induced on A by
switching the factors in the smash product E ∧ E is precisely the conjugation and this
generalizes to give the ‘higher conjugations’ in the following way. We take π∗(E∧· · ·∧E),
the homotopy of a smash product of n copies of E. This naturally has an action of Σn.
But π∗(E∧n) = E∗(E∧n−1), the E-cohomology of an n − 1-fold product of copies of E.
For suitable E (examples are given in [1]), this is isomorphic to A⊗n−1. The proof that
this ‘topological’ action can be described algebraically and thus extended to all Hopf
algebroids can be found in [8].

With a view to understanding commutativity in ring spectra, we would like to under-
stand these higher conjugation actions. Suitable information would be the cohomology
H∗(Σn;A⊗n−1) of Σn with coefficients in A⊗n−1. For example, we need to know the
Σn-invariants, since these form H0. However, in [3] we saw how complicated this calcu-
lation could be when we attempted it for n = 2 and for A an object familiar to algebraic
topologists: the mod 2 dual Steenrod algebra.

Since these Σn actions explicitly involve χ and ∆, and the former involves the latter, it
would be desirable if we could make the coproduct ∆ as simple as possible. The following
theorem, which is our main result and is proved in § 2, gives conditions under which we
can do this without changing the cohomology ring that we wish to calculate.

Theorem 1.1. Let A be a graded, connected, coassociative Hopf algebra that is free
as a module over the ring R. Suppose that A is isomorphic, as an algebra, to a tensor
product of associative Hopf algebras, each of which has just a single algebra generator.
Let Ã be this tensor product, considered as a Hopf algebra. If n and (n−2)! are invertible
in R then there is an isomorphism of algebras

Ã⊗n−1 −→ A⊗n−1,

which commutes with the Σn action, thus inducing an isomorphism of cohomology rings

H∗(Σn; Ã⊗n−1) ≈ H∗(Σn;A⊗n−1).

In particular, if A is a graded, connected, commutative, biassociative Hopf algebra of
finite type and R is a perfect field, then, by the Borel–Hopf Theorem [5, Theorem 7.11],
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A satisfies the hypotheses of Theorem 1.1. Our theorem is more general than this in that
we can work over a ring instead of a field, and we do not need A to be of finite type,
so, for example, A = Z/8[x1, x2, . . . ], where |xi| = 2 for all i, satisfies the hypotheses of
Theorem 1.1, but not of the Borel–Hopf Theorem.

Note that by assuming that the underlying algebra of A is a tensor product of associa-
tive monogenic algebras, we automatically have that A is commutative (and associative).

The importance of Theorem 1.1 rests on the fact that the coproduct in Ã will generally
be much simpler than that in A, since all the generators of Ã are primitive.

In particular, the action on Ã⊗n−1 is ‘linear’ in the sense that there is a subspace V ,
preserved by the group action, such that Ã⊗n−1 is the (truncated) polynomial algebra
on V and the action on Ã⊗n−1, being multiplicative, is determined by the action on V .
Thus many results from classical invariant theory, e.g. Molien’s Theorem on the Poincaré
series for the invariants [2,7], can be applied to Ã⊗n−1 and, via Theorem 1.1, to A⊗n−1.
In fact one can go further, since the representation V is not hard to analyse. It is a direct
sum of copies of a certain n − 1-dimensional representation W , with one copy of W for
each algebra generator of A (with corresponding degree). We thank Ian Leary for the
observation that W can be identified with the familiar n−1-dimensional representation of
Σn constructed as follows. Consider an n-dimensional vector space with basis e1, . . . , en

permuted by Σn and take the subspace spanned by e1 − e2, e2 − e3, . . . , en−1 − en, which
is clearly preserved by the group action.

The hypothesis that n(n − 2)! be invertible is rather curious. Some such condition is
certainly required; [3] illustrates this in the case where n = 2 and similar examples can
be constructed for larger n showing that n, at least, must be invertible. We know of
no examples where n is invertible and the conclusion of the theorem does not hold but
the condition that n(n − 2)! be invertible does occur naturally in a related setting. The
representation W , mentioned above, can be obtained as RΣn · e for some idempotent
e ∈ RΣn if, and only if, n(n − 2)! is invertible in R. (The value n(n − 2)! arises here as
the order of the group, n!, divided by the dimension of W , n − 1.) One such idempotent
plays a central role in our proof of Theorem 1.1, which might suggest that its existence
is tied to the validity of the theorem. However, it is equally possible that there is a more
general proof of the theorem than that presented here.

If we make the stronger assumption that n! is invertible in R, then the cohomology
ring is zero in positive degrees, but even in this case the theorem is of significance since
it greatly simplifies the calculation of H0(Σn;A⊗n−1) = (A⊗n−1)Σn .

Conversely, if we remove the assumption on n(n − 2)!, then we can no longer apply
the theorem, but there is still a relation between A⊗n−1 and Ã⊗n−1. For example, if R

is a field then the Σn invariants in the former can be injectively mapped into those of
the latter. This follows from the fact that, filtering by powers of the augmentation ideal,
the lowest filtration part of an invariant in A⊗n−1 is an invariant in Ã⊗n−1.

Finally, we end this section by observing how, in the case where n = 2, Theorem 1.1
leads to the following ‘model’ for the conjugation invariants.

Theorem 1.2. Suppose that A is as in Theorem 1.1 and that 2 is invertible in the
ground ring. Let AΣ2 denote the subalgebra of conjugation invariants, and AE the sub-

https://doi.org/10.1017/S0013091599000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000826


22 M. D. Crossley and S. Whitehouse

algebra of A spanned by the monomials whose exponents sum to an even number. Then
there is an isomorphism of algebras

AΣ2 ≈ AE.

This is a simple consequence of Theorem 1.1 and the fact that χ(x) = −x if x is
primitive.

We note that if p > 2 then Theorem 1.2 satisfactorily solves the ‘conjugation invariants’
problem for the mod p dual Steenrod algebra, in marked contrast to the partial solution
[3] available when p = 2.

2. Proof of Theorem 1.1

The proof is entirely constructive: we give an explicit definition of a map f : Ã⊗n−1 →
A⊗n−1 and proceed to show that it has the required properties. In order to state the
definition of f , we need some notation. If x is an element of A then we write x[i] for the
element 1 ⊗ · · · ⊗ 1 ⊗ x ⊗ 1 ⊗ · · · ⊗ 1 in A⊗n−1, where x occurs in the ith place. Similar
notation is used for elements of Ã⊗n−1.

Let f : Ã⊗n−1 → A⊗n−1 be defined as follows. For every primitive element x̃ in Ã we
set

f(x̃[i]) = (σi − 1)(σi−1 − 1) · · · (σ1 − 1)Tnx[1],

where Tn ∈ RΣn is the sum of all elements in the subgroup Gn of Σn generated by
σ2, . . . , σn−1. We then extend f multiplicatively, noting that, since Ã (and, hence, Ã⊗n−1)
is primitively generated, this defines f on the whole algebra.∗ Before going any further
we must verify that such a map is well defined, since Ã⊗n−1 is not necessarily free.

Lemma 2.1. The map f is well defined.

Proof. Essentially, the conditions placed on the algebraic structure of A (and hence
that of Ã) in the theorem serve to ensure that Ã⊗n−1 is ‘free enough’ for the definition
of f to work. For we have stated that A should be a tensor product of monogenic Hopf
algebras and this is a strong restriction, as is discussed in [4, §§ 1–3]. Monogenic Hopf
algebras that are free as R-modules must have the form R[x] or R[x]/(xh), where h

is either 2, if x has odd degree and R has characteristic different from 2, or pr if p is
the characteristic of R. So then the only relations occurring in Ã⊗n−1 are of the form
x̃[i]h = 0 for some h dependent on x (and not on i). Now f(x̃[i]h) can be written as
((g1 ± g2 ± · · · ± gk)x[1])h for some g1, . . . , gk ∈ Σn. If x has odd degree and R has
characteristic different from 2 (so that h will be 2), then (g1 ±· · ·± gk)x[1] will also have
odd degree so its square will be zero, and f preserves the relation x̃[i]2 = 0. On the other
hand, if h = pr then, since R has characteristic p, the operation of taking prth powers
is linear, so f(x̃[i]h) = (g1x[1])h ± · · · ± (gkx[1])h = g1(x[1]h) ± · · · ± gk(x[1]h), since the
group acts multiplicatively. Since the relations holding in A⊗n−1 are the same as those

∗ We note that (σ1 −1)Tn · (σ1 −1)Tn = n(n−2)!(σ1 −1)Tn in RΣn, so that e = (σ1 −1)Tn/n(n−2)!
is an idempotent, and that RΣn · e is the n − 1-dimensional representation W mentioned in § 1. This
idempotent e is intrinsic to f in that f is determined by f(x̃[1]) = (σ1 − 1)Tnx[1].
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holding in Ã⊗n−1 (they are the same as algebras), we have x[1]h = 0 in A⊗n−1 and so f

also preserves the relation x̃[i]h = 0. This completes the proof that f is well defined. �

Lemma 2.2. The map f commutes with the action of Σn.

Proof. Since both f and the group elements act multiplicatively, it is sufficient to
check this for a set of generators, and we will check it on the primitive elements of
Ã⊗n−1. So throughout the proof we let x̃ ∈ Ã denote a primitive element. Then x̃[i] is a
primitive in Ã⊗n−1 and all primitives in that algebra occur in this way.

From the definition of the Σn action we see that for x̃ primitive, the group elements
σk act as follows:

σkx̃[i] =




x̃[i] if k > i + 1,

x̃[i] + x̃[i + 1] if k = i + 1,

−x̃[i] if k = i,

x̃[i − 1] + x̃[i] if k = i − 1,

x̃[i] if k < i − 1,

and so we must show

σkf(x̃[i]) =




f(x̃[i]) if k > i + 1,

f(x̃[i]) + f(x̃[i + 1]) if k = i + 1,

−f(x̃[i]) if k = i,

f(x̃[i − 1]) + f(x̃[i]) if k = i − 1,

f(x̃[i]) if k < i − 1,

and we will prove this case by case.
If k > i + 1 then σkf(x̃[i]) = f(x̃[i]), since σk commutes with (σi − 1) · · · (σ1 − 1), and

σkTn = Tn (σk being an element of Gn).
If k = i+1, we note that σkf(x̃[i]) = σi+1f(x̃[i]) is, by definition, f(x̃[i+1])+ f(x̃[i]).
For k = i, we have σkf(x̃[i]) = σi(σi − 1)f(x̃[i − 1]) = −f(x̃[i]).
For k = i − 1, we need to show that

σkf(x̃[i]) − f(x̃[i]) − f(x̃[i − 1]) = 0.

Now

σkf(x̃[i]) − f(x̃[i]) − f(x̃[i − 1])

= (σi−1(σi − 1) − (σi − 1) − 1)(σi−1 − 1)f(x̃[i − 2])

= (σi−1σiσi−1 − 1 − σiσi−1 − σi−1σi + σi−1 + σi)f(x̃[i − 2])

= (σiσi−1 − σi−1 + 1)(σi − 1)f(x̃[i − 2])

= (σiσi−1 − σi−1 + 1)(σi−2 − 1) · · · (σ1 − 1)(σi − 1)Tnx[1]

= 0,

since σiTn = Tn, σi being in Gn.
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Finally, if k < i − 1, we have

σkf(x̃[i]) = σk(σi − 1) · · · (σk+2 − 1)f(x̃[k + 1])

= (σi − 1) · · · (σk+2 − 1)σkf(x̃[k + 1])

= (σi − 1) · · · (σk+2 − 1)(f(x̃[k]) + f(x̃[k + 1]))

= (σi − 1) · · · (σk+3 − 1)(f(x̃[k + 2]))

= (σi − 1) · · · (σk+4 − 1)(f(x̃[k + 3]))
...

= f(x̃[i]),

using the result of the previous case. �

To complete the proof of Theorem 1.1 we need to show that f is a bijection. We will
achieve this by considering the map induced by f on the indecomposables

Q(Ã⊗n−1) =
I(Ã⊗n−1)

I(Ã⊗n−1) · I(Ã⊗n−1)
−→ Q(A⊗n−1) =

I(A⊗n−1)
I(A⊗n−1) · I(A⊗n−1)

.

Here I(·) denotes the augmentation ideal, i.e. the positive degree part of the algebra.
First we need to calculate Tnx[1] modulo decomposables, and we shall write ≡ to

denote equivalence modulo I(A⊗n−1) · I(A⊗n−1).

Lemma 2.3.

Tnx[1] ≡ (n − 2)!
n−1∑
i=1

(n − i)x[i].

Proof. This will be proved by induction on n. For n = 2, we have T2 = 1 and the
result is evident. Now suppose the result holds for n − 1. Note that

Tn = (1 + σn−1 + σn−2σn−1 + · · · + σ2 · · ·σn−2σn−1)Tn−1,

i.e. the summands of the left-hand factor form a set of coset representatives for Gn

over Gn−1. This is easily seen to be the case since, under the natural action of Σn on
{1, 2, . . . , n}, the permutations σj · · ·σn−1 each map n differently.

Using the description of the Σn action on primitives given in the proof of Lemma 2.2,
we have

σjσj+1 . . . σn−1x[i] ≡




x[i] if j > i + 1,

x[i] + x[i + 1] if j = i + 1,

x[i + 1] if j 6 i.
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Thus

Tnx[1] ≡ (1 + σn−1 + σn−2σn−1 + · · · + σ2 · · ·σn−2σn−1)Tn−1x[1]

≡ (1 + σn−1 + σn−2σn−1 + · · · + σ2 · · ·σn−2σn−1)(n − 3)!
n−2∑
i=1

(n − 1 − i)x[i]

≡ (n − 3)!
n−2∑
i=1

(n − 1 − i)(ix[i + 1] + (n − i)x[i])

≡ (n − 2)!
n−1∑
i=1

(n − i)x[i].

�

Lemma 2.4. The map f is a bijection.

Proof. We begin by using Lemma 2.3 to show that the map induced by f on the inde-
composables is an invertible scalar multiple of the identity map Q(Ã⊗n−1) → Q(A⊗n−1).
Note that since f(x̃[i]) = (σi −1)f(x̃[i−1]) for i > 1 and (σi −1)(x[i−1]) ≡ x[i] modulo
decomposables, it suffices to prove that f(x̃[1]) ≡ λx[1] modulo decomposables, for some
invertible λ ∈ R.

Now,

(σ1 − 1)x[i] ≡




−2x[1] if i = 1,

x[1] if i = 2,

0 if i > 2.

Hence

f(x̃[1]) ≡ (σ1 − 1)Tnx[1]

≡ (σ1 − 1)(n − 2)!
n−1∑
i=1

(n − i)x[i]

≡ (n − 2)!(−2(n − 1)x[1] + (n − 2)x[1])

≡ −n(n − 2)!x[1].

So, the map induced by f is just the identity map multiplied by −n(n−2)!, and under
the hypotheses of Theorem 1.1 this factor is invertible in the ground ring R. In particular
then, f induces a bijection on the indecomposables.

It is well known that a morphism of algebras that induces a surjection on the inde-
composables is a surjection itself, and in the case where A is of finite type, surjectivity
implies bijectivity, completing the proof of the lemma in this case.

In the non-finite type situation we must work harder to deduce injectivity. Suppose y ∈
Ã⊗n−1 is in the kernel of f . We assert that y lies in some subalgebra of Ã⊗n−1, generated
by a finite number of primitive elements x̃[i], which is mapped by f to the corresponding
subalgebra of A⊗n−1 (generated by the elements x[i]). These subalgebras are isomorphic

https://doi.org/10.1017/S0013091599000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091599000826


26 M. D. Crossley and S. Whitehouse

and of finite type, so the above argument applies to show that the restriction of f is
bijective and thus y must be 0.

To prove the existence of such a subalgebra, we construct a list of its generators. Since
Ã⊗n−1 is generated by primitives, we can choose a finite number of such elements such
that y lies in the subalgebra they generate. We begin our list with these elements. In
general this will not suffice: if x̃[i] is primitive, f(x̃[i])+n(n−2)!x[i] may well not be in the
subalgebra of A⊗n−1 generated by the corresponding elements. Nevertheless, it will be
decomposable and will lie in the subalgebra generated by a certain finite collection of x[i]’s
for x̃ primitive, of lower degree than the original element x̃[i]. We add the corresponding
x̃[i]’s to our list. Repeating this for all of the initial list gives us the second stage of the
list. Carrying out the same process for all of the second-stage elements yields the third
stage of the list and so on. The fact that the elements added at each stage have strictly
lower degree than the maximum degree occurring in the previous stage, means there can
only be finitely many stages to the process. Since we only add finitely many elements at
each stage, this guarantees that the process will end with a finite list. �

This completes the proof of Theorem 1.1.
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