THE CATEGORIGAL PRODUGT OF GRAPHS

DONALD J. MILLER*

1. Introduction. Undirected graphs and graph homomorphisms as introduced by Sabidussi (6, p. 386), form a category that admits a categorical product. For the category of graphs and full graph homomorphisms, the categorical product was introduced by Čulik (1) under the name cardinal product. It was independently defined by Weichsel (8) who called it the Kronecker product and investigated the connectedness of products of finitely many factors. Hedetniemi (4) was the first to make use of the fact that the cardinal product is categorical. Connectedness studies were recently carried out for products of directed graphs by McAndrew (5) and Harary and Trauth (2). In the present paper, we are concerned with the connectedness of products of arbitrary families of graphs, and the question, first considered in (1, p. 152), of the uniqueness of the decomposition of a graph into indecomposable factors. We also show that the strong product introduced by Sabidussi (6) is naturally related to a categorical product, and investigate the relationship between the cardinal and strong product.

The graphs we consider are undirected and have no multiple edges and no loops. $E(X)$ and $V(X)$ will denote the edge set and vertex set of a graph X, respectively. If X is a graph and $e \in E(X)$, we denote by (e) the graph consisting of the edge e and its incident vertices. If Y is a subgraph of X, we define $X \backslash Y$ to be the smallest subgraph with $E(X \backslash Y)=E(X)-E(Y)$.

Let X and Y be graphs. By a homomorphism of X into Y we mean a function $\phi: V(X) \rightarrow V(Y)$ such that $[\phi x, \phi y] \in E(Y)$ whenever $[x, y] \in E(X)$. For a homomorphism $\phi: V(X) \rightarrow V(Y)$ we shall write $\phi: X \rightarrow Y$. A monomorphism of X into Y is a one-to-one homomorphism. If A is a subgraph of X, we let ϕA denote that subgraph of Y defined by

$$
V(\phi A)=\phi(V(A)), \quad E(\phi A)=\left\{\left[\phi x, \phi x^{\prime}\right] \in E(Y) \mid\left[x, x^{\prime}\right] \in E(A)\right\} .
$$

$\phi: X \rightarrow Y$ is an epimorphism if $\phi X=Y$; it is an isomorphism if it is both a monomorphism and an epimorphism.

Paths and circuits in a graph X will be regarded as subgraphs of X. Connectedness, components and distance are defined, as usual, in terms of paths. The distance between the vertices x and y of X will be denoted by $d_{X}(x, y)$.

[^0]The diameter of a connected graph X is

$$
\sup _{x, y \in V(X)} d_{X}(x, y)
$$

For any graph X, the number of vertices will be denoted by $|X|$.
A graph X is bipartite if and only if $E(X) \neq \emptyset$ and X contains no circuit of odd order. X will be called non-bipartite if it contains a circuit of odd order. For a non-bipartite graph, we define the odd mesh of X to be $\min |C|$, the minimum taken over all circuits of odd order.

For $x \in V(X)$ we let $V(X ; x)=\{y \mid[x, y] \in E(X)\} .|V(X ; x)|$ is called the degree of x and is denoted by $d(x ; X) . X$ is said to be of bounded degree if and only if

$$
\sup _{x \in V(X)} d(x ; X)<\infty .
$$

Given any family $\left(X_{a}\right), a \in A$, of graphs, we define the cardinal product $X=\Pi_{a \in A} X_{a}$ by

$$
\begin{gathered}
V(X)=\prod_{a \in A} V\left(X_{a}\right) \\
E(X)=\left\{[x, y] \mid x, y \in V(X),\left[\operatorname{pr}_{a} x, \operatorname{pr}_{a} y\right] \in E\left(X_{a}\right) \text { for all } a \in A\right\}
\end{gathered}
$$

(here, $\mathrm{pr}_{a}: V(X) \rightarrow V\left(X_{a}\right)$ denotes the projection of the cartesian product onto its a th factor). X is easily seen to be categorical: the projections $\mathrm{pr}_{a}: X \rightarrow X_{a}$ are homomorphisms; hence, if Y is any graph and $\phi_{a}: Y \rightarrow X_{a}$, $a \in A$, a family of homomorphisms, then $\phi: Y \rightarrow X$, defined by

$$
\operatorname{pr}_{a}(\phi y)=\phi_{a} y, \quad y \in V(Y), a \in A
$$

is a homomorphism and $\operatorname{pr}_{a} \phi=\phi_{a}$ for each $a \in A$. As is customary, we shall denote ϕ by $\Pi_{a \in A} \phi_{a}$. The product of two graphs will be denoted by $X_{1} \times X_{2}$.
2. Connectedness of the cardinal product. In §§ 2-4, unless otherwise stated, it will always be assumed that $E(X) \neq \emptyset$ for all graphs X. We shall need the following two propositions.

Proposition 1 (8, Theorem 1). Let X_{1} and X_{2} be connected graphs. Then the following statements are equivalent:
(i) $X_{1} \times X_{2}$ is disconnected (consisting of exactly two components);
(ii) X_{1} and X_{2} are both bipartite.

Proposition 2 (4, Corollary 1.26b). Let X_{1} be a bipartite graph and X_{2} any graph. Then $X_{1} \times X_{2}$ is bipartite.

In view of the intimate relationship between the connectedness of a cardinal product and the non-bipartiteness of its factors, we first prove a general converse of Proposition 2.

Theorem 1. For each $a \in A$, let X_{a} be a non-bipartite graph with odd mesh equal to n_{a}. Then the cardinal product $\Pi_{a \in \Lambda} X_{a}$ is non-bipartite (with odd mesh equal to $\sup _{a \in A} n_{a}$) if and only if $\sup _{a \in A} n_{a}<\infty$.

Proof. Let $X=\Pi_{a \in A} X_{a}$. First, assume that $\sup _{a \in A} n_{a}=n<\infty$. For each $a \in A$, let C_{a} be a circuit of odd order n_{a} in X_{a}. Then there exists an $a_{0} \in A$ with $\left|C_{a_{0}}\right|=n$. For each $a \in A, n_{a}, n$ odd and $n_{a} \leqq n$ imply that there exists an epimorphism $\phi_{a}: C_{a_{0}} \rightarrow C_{a}$. Since $\phi_{a_{0}}$ is a monomorphism, $\phi=\Pi_{a \in A} \phi_{a}$ is a monomorphism from $C_{a_{0}}$ to X. Hence, $\phi C_{a_{0}} \subseteq X$ is an odd circuit of order n, i.e., X is non-bipartite.

Now, let $C \subseteq X$ be an odd circuit. For $a \in A, \operatorname{pr}_{a}: X \rightarrow X_{a}$ being a homomorphism implies that $\mathrm{pr}_{a} C$ is a non-bipartite subgraph of X_{a}. Hence,

$$
n_{a} \leqq\left|\operatorname{pr}_{a} C\right| \leqq|C| \quad \text { for all } a \in A
$$

This proves the necessity part of the theorem, as well as, in combination with the first part of the proof, the fact that n is the odd mesh of X.

Theorem 1 allows us to make a comment on a conjecture advanced by Hedetniemi (4, Conjecture 1.2). Let A be an index set and for each $a \in A$ let X_{a} be a graph with chromatic number $\chi\left(X_{a}\right)=n_{a}$, i.e., n_{a} is the least cardinal for which there exists a homomorphism $\phi_{a}: X_{a} \rightarrow K_{n_{a}}$, where $K_{n_{a}}$ is the complete n_{a}-graph. Since $\operatorname{pr}_{b}: \Pi_{a \in A} X_{a} \rightarrow X_{b}$ is a homomorphism for each $b \in A$, we have that $\phi_{b} \mathrm{pr}_{b}: \Pi_{a \in A} X_{a} \rightarrow K_{n b}$ is also a homomorphism, i.e.,

$$
\begin{equation*}
\chi\left(\prod_{a \in A} X_{a}\right) \leqq \min _{a \in A} \chi\left(X_{a}\right) . \tag{1}
\end{equation*}
$$

Hedetniemi's conjecture is that equality holds for A finite. The question is still open. However, the following example shows that the conjecture cannot be extended to infinite index sets. For $n \geqq 1$, let $C_{2 n+1}$ be a circuit of order $2 n+1$. Then $\chi\left(C_{2 n+1}\right)=3, n \geqq 1$. The odd mesh of $C_{2 n+1}$ is $2 n+1$; hence, by Theorem 1, $\Pi_{n \geqq 1} C_{2 n+1}$ is bipartite, i.e.,

$$
\chi\left(\prod_{n \geqq 1} C_{2 n+1}\right)=2
$$

so that (1) is a strict inequality.
We now turn to the connectedness of the cardinal product of a family of connected non-bipartite graphs.

Lemma 1. Let X be a connected non-bipartite graph of diameter $d, x, y \in V(X)$ not necessarily distinct, and $P=\left[p_{0}, \ldots, p_{s}\right]$ a path of length $s \geqq 4 d$. Then there exists a homomorphism $\phi: P \rightarrow X$ such that $\phi p_{0}=x$ and $\phi p_{s}=y$.

Proof. Let C be a circuit of least odd order, $e=\left[x_{0}, y_{0}\right] \in E(C)$. Note that $|C| \leqq 2 d+1$. Let R_{1} be a shortest path joining x and x_{0} in X of length r_{1}, and R_{3} a shortest path joining y_{0} and y in X of length r_{3}. Let

$$
R_{2}= \begin{cases}C \backslash(e) & \text { if } r_{1}+r_{3} \equiv s(\bmod 2) \\ (e) & \text { otherwise }\end{cases}
$$

and let r_{2} be the length of R_{2}. Then

$$
r=r_{1}+r_{2}+r_{3} \equiv s(\bmod 2)
$$

and $r \leqq 4 d$. Let $P^{\prime}=\left[p_{0}, \ldots, p_{r}\right]$. Clearly, there exists a homomorphism $\psi: P^{\prime} \rightarrow R_{1} \cup R_{2} \cup R_{3}$ such that $\psi p_{0}=x$ and $\psi p_{r}=y$. But $r \equiv s(\bmod 2)$ and $r \leqq s$ imply that there exists a homomorphism $\nu: P \rightarrow P^{\prime}$ such that $\nu p_{0}=p_{0}$ and $\nu p_{s}=p_{r}$. Then $\psi \nu: P \rightarrow X$ is the desired homomorphism.

Theorem 2. The cardinal product of a family $\left(X_{a}\right), a \in A$, of connected nonbipartite graphs is connected if and only if

$$
B=\left\{b \in A \mid \operatorname{diam} X_{b}=\infty\right\}
$$

is finite, and

$$
D=\left\{\operatorname{diam} X_{a} \mid a \in A-B\right\}
$$

is bounded.
Proof. Let $X=\Pi_{a \in A} X_{a}$ and assume that B is finite and D is bounded. Let $X_{1}=\Pi_{b \in B} X_{0}$ and $X_{2}=\Pi_{a \in A-B} X_{a}$; then $X \cong X_{1} \times X_{2} . B$ finite implies, by Proposition 1, that X_{1} is connected and, by Theorem 1, that X_{1} is non-bipartite. Hence, to show that X is connected, it suffices, by Proposition 1, to show that X_{2} is connected.
Let $x, y \in V\left(X_{2}\right)$ and let $P=\left[p_{0}, \ldots, p_{4 s}\right]$ be a path of length $4 s$, where $s=\sup _{a \in A-B} \operatorname{diam} X_{a}$. By the lemma, there exists a homomorphism $\phi_{a}: P \rightarrow X_{a}$ such that

$$
\phi_{a} p_{0}=\operatorname{pr}_{a} x \quad \text { and } \quad \phi_{a} p_{4 s}=\operatorname{pr}_{a} y, \quad a \in A-B .
$$

Let $\phi=\Pi_{a \in A-B} \phi_{a}: P \rightarrow X_{2}$. Then

$$
\phi p_{0}=x \quad \text { and } \quad \phi p_{4 s}=y .
$$

Since ϕP is a connected subgraph of X_{2} and $x, y \in \phi P$, we have that X_{2} is connected, and therefore X is connected.
Conversely, assume that X is connected. If B is infinite or D is unbounded, then for $a \in A$ there exist $x_{a}, y_{a} \in V\left(X_{a}\right)$ such that

$$
\begin{equation*}
\sup _{a \in \mathbb{A}} d_{X_{a}}\left(x_{a}, y_{a}\right)=\infty . \tag{2}
\end{equation*}
$$

Define $x, y \in V(X)$ by $\operatorname{pr}_{a} x=x_{a}, \operatorname{pr}_{a} y=y_{a}, a \in A . X$ connected implies that there exists a path P joining x and y in X. $\mathrm{pr}_{a} P$ is a connected subgraph of X_{a} containing x_{a} and y_{a}, and hence contains a path joining x_{a} and y_{a}. Therefore,

$$
d_{x_{a}}\left(x_{a}, y_{a}\right) \leqq\left|\operatorname{pr}_{a} P\right| \leqq|P|, \quad a \in A,
$$

contradicting (2).
As an immediate corollary of Theorem 2 we have that if $\left(X_{a}\right), a \in A$, is a family of connected non-bipartite graphs such that $X=\Pi_{a \in A} X_{a}$ is connected,
then X is non-bipartite. This follows from $n_{a} \leqq 2 \operatorname{diam} X_{a}+1$ for all $a \in$ $A-B$, where n_{a} is the odd mesh of X_{a}. Hence, $\sup _{a \in A} n_{a}<\infty$, and therefore X is non-bipartite by Theorem 1 . The converse of this corollary is obviously not true.
3. Modification of Lemma 1. Lemma 1, which is crucial for the proof of Theorem 2, can be rephrased as a statement concerning homomorphisms of odd circuits into X. At the same time, we shall show that the bound on the length of P in Lemma 1 can be substantially decreased.

Proposition 3. Let X be a connected non-bipartite graph of finite diameter d, C a circuit of odd length greater than or equal to $3 d$. Then, given any $x, y \in V(X)$, there is a homomorphism $\phi: C \rightarrow X$ such that $x, y \in V(\phi C)$, Moreover, $3 d$ is best possible.

Proof. Since X is non-bipartite, there exist $z_{1}, z_{2} \in V(X)$ such that $e=\left[z_{1}, z_{2}\right] \in E(X)$ and $d_{X}\left(x, z_{1}\right)=d_{X}\left(x, z_{2}\right)$. Let P be a shortest path joining x and y, Q a shortest path joining y and z_{1}, R_{i} a shortest path joining z_{i} and x, $i=1,2$. Then $S=P \cup Q \cup R_{1}$ is the homomorphic image of a circuit of length $s=d_{X}(x, y)+d_{X}\left(y, z_{1}\right)+d_{X}\left(z_{1}, x\right)$. Trivially, $s \leqq 3 d$ (since all paths involved are shortest) and $x, y \in V(S)$. If s is odd, the proof is complete. Assume that s is even.

Case (i): d is odd. s being even means that $s \leqq 3 d-1$. Let

$$
S^{\prime}=\left\{\begin{array}{l}
P \cup(Q \backslash e) \cup R_{2} \quad \text { if } e \in E(Q), \\
P \cup Q \cup(e) \cup R_{2} \quad \text { if } e \notin E(Q)
\end{array}\right.
$$

S^{\prime} is the homomorphic image of a circuit of odd length. $s^{\prime}=s \pm 1 \leqq 3 d$, which completes the case that d is odd.

Case (ii): d is even. Construct S^{\prime} as before. Then $s^{\prime} \leqq 3 d+1$ (and note that $3 d+1$ is the smallest odd length greater than or equal to $3 d$).

To see that $3 d$ and $3 d+1$, respectively, are best possible, consider a $(2 n+3)$-circuit D and at each of two adjacent vertices of D attach a path of length n. Let x and y be the two vertices of degree 1 of the resulting graph X. The diameter of X is $2 n+1$ and the shortest odd circuit C that will map properly has length $6 n+3$. This disposes of the case that d is odd.

If d is even, we consider a $(2 n+1)$-circuit D. At one vertex of D we attach two paths of length n and denote the resulting graph by Y and the vertices of degree 1 by x and y. The diameter of Y is $2 n$ and the shortest path that will map properly has length $6 n+1$.

Note that Proposition 3 implies that the lower bound on the length s of the path in Lemma 1 can be reduced to $3 d$. A straightforward minimality argument will show, in fact, that the length of P in Lemma 1 can further be reduced to $2 d$. As a corollary to the proof of Theorem 2, we would then have that

$$
\operatorname{diam} \prod_{a \in A} X_{a} \leqq 2\left(\sup _{a \in A} \operatorname{diam} X_{a}\right)
$$

In the case of the two examples cited above to show that $3 d$ and $3 d+1$ are best possible, it is interesting to compare our result with one of Hedetniemi's (3), where he is concerned with the existence of circuits that can be mapped epimorphically onto the graph. His result predicts the existence of a circuit of order $q+d(x, y)$ which maps onto the graphs, where q is the number of edges.
4. Decomposition into indecomposable factors. Our aim in this section is to prove a general theorem which shows that the decomposition of a graph into a cardinal product of indecomposable factors is non-unique even for finite connected graphs.

Definition 1. A graph X is called indecomposable (or prime) with respect to cardinal multiplication if and only if there do not exist graphs X_{1} and X_{2} such that $X_{1} \times X_{2} \cong X$.

It should be pointed out that unit graphs (i.e., graphs consisting of a single vertex and no edges) do not act as identity elements relative to cardinal multiplication. More precisely, if X is any graph and $|Y|=1$, then $X \times Y \cong X$ if and only if $E(X)=\emptyset$.

Definition 2. Let X and X_{0} be graphs. X will be called X_{0}-admissible if and only if there exists a graph X_{1} such that
(i) $X_{0} \times X_{1}$ is a spanning subgraph of X;
(ii) $\left[\left(x_{0}, x_{1}\right),\left(x_{0}{ }^{\prime}, x_{1}{ }^{\prime}\right)\right] \in E(X)$ implies that $\left[x_{0}, x_{0}{ }^{\prime}\right] \in E\left(X_{0}\right)$, and $\left[x_{1}, x_{1}{ }^{\prime}\right] \in E\left(X_{1}\right)$ or $x_{1}=x_{1}{ }^{\prime}$;
(iii) if $\left[\left(x_{0}, x_{1}\right),\left(x_{0}{ }^{\prime}, x_{1}\right)\right] \in E(X)$ for some $\left[x_{0}, x_{0}{ }^{\prime}\right] \in E\left(X_{0}\right)$, then $\left[\left(y_{0}, x_{1}\right),\left(y_{0}{ }^{\prime}, x_{1}\right)\right] \in E(X)$ for all $\left[y_{0}, y_{0}{ }^{\prime}\right] \in E\left(X_{0}\right)$.

In view of (iii) we can introduce, for convenience, the following subset $V \subseteq V\left(X_{1}\right):$
$x_{1} \in V$ if and only if $\left[\left(x_{0}, x_{1}\right),\left(x_{0}{ }^{\prime}, x_{1}\right)\right] \in E(X)$ for some $\left[x_{0}, x_{0}{ }^{\prime}\right] \in E\left(X_{0}\right)$.
Condition (iii) can then be restated as: for each $\left[x_{0}, x_{0}{ }^{\prime}\right] \in E\left(X_{0}\right)$ and each $x_{1} \in V,\left[\left(x_{0}, x_{1}\right),\left(x_{0}{ }^{\prime}, x_{1}\right)\right] \in E(X)$. We shall also apply the term X_{0}-admissible to any graph Y isomorphic to a graph X which is X_{0}-admissible in the sense just defined. X will be called properly X_{0}-admissible if it is X_{0}-admissible and does not have X_{0} as a factor with respect to cardinal multiplication.

Note that condition (ii) implies that if X is X_{0}-admissible, then $\mathrm{pr}_{0}: X \rightarrow X_{0}$ is a homomorphism.

Remark. The definition of admissibility can be phrased in terms of another graph multiplication as follows. Let X_{0} and X_{1} be graphs and $V \subseteq V\left(X_{1}\right), V$ possibly empty. Define $X_{0} \otimes_{V} X_{1}$ by

$$
V\left(X_{0} \otimes_{V} X_{1}\right)=V\left(X_{0}\right) \times V\left(X_{1}\right)
$$

$$
\begin{aligned}
& E\left(X_{0} \otimes_{V} X_{1}\right)= \\
& \quad E\left(X_{0} \times X_{1}\right) \cup\left\{\left[\left(x_{0}, x_{1}\right),\left(x_{0}{ }^{\prime}, x_{1}\right)\right] \mid\left[x_{0}, x_{0}{ }^{\prime}\right] \in E\left(X_{0}\right) \text { and } x_{1} \in V\right\} .
\end{aligned}
$$

For $V=V\left(X_{1}\right)$, we shall denote $X_{0} \otimes_{V} X_{1}$ by $X_{0} \otimes X_{1}$. (The symbol \otimes should not be confused with the "Kronecker product" of Weichsel (7) or the "tensor product" of Harary and Trauth (2), both of which are our product, X.) Then, a graph X is X_{0}-admissible if and only if there exists a graph X_{1} and a subset $V \subseteq V\left(X_{1}\right)$ such that $X=X_{0} \otimes_{V} X_{1}$.

Example. For any non-zero cardinals m, n, and r, the complete bipartite graph $K_{m r, n r}$ is properly $K_{m, n}$-admissible. This follows from

$$
K_{m, n} \otimes K_{r} \cong K_{m r, n r}
$$

and the fact that every complete bipartite graph is indecomposable with respect to cardinal multiplication. This can be seen as follows. If $K_{m, n} \cong$ $X_{1} \times X_{2}$, then each factor is a homomorphic image of $K_{m, n}$. But, trivially, any homomorphic image of $K_{m, n}$ is of the form $K_{r, s}$, with $r \leqq m, s \leqq n$, and hence bipartite. By Proposition 1, this implies that $K_{m, n}$ is disconnected, a contradiction. Hence, $K_{m, n}$ is indecomposable.

We shall investigate the existence of further properly X_{0}-admissible graphs after proving the following theorem.

Theorem 3. Let X, Y, and Z be arbitrary graphs and $V \subseteq V(Z)$. Then

$$
X \times\left(Y \otimes_{V} Z\right) \cong Y \times\left(X \otimes_{V} Z\right)
$$

Proof. Let $\phi: X \times\left(Y \otimes_{V} Z\right) \rightarrow Y \times\left(X \otimes_{V} Z\right)$ be defined by

$$
\phi(x,(y, z))=(y,(x, z))
$$

Obviously, ϕ is one-to-one and onto. To show that ϕ is a homomorphism, let $\left[(x,(y, z)),\left(x^{\prime},\left(y^{\prime}, z^{\prime}\right)\right)\right] \in E\left(X \times\left(Y \otimes_{V} Z\right)\right)$. Hence, $\left[x, x^{\prime}\right] \in E(X)$ and $\left[(y, z),\left(y^{\prime}, z^{\prime}\right)\right] \in E\left(Y \otimes_{V} Z\right)$. Then $\left[y, y^{\prime}\right] \in E(Y)$, and $\left[z, z^{\prime}\right] \in E(Z)$ or $z=z^{\prime} \in V$. If $\left[z, z^{\prime}\right] \in E(Z)$, then $\left[(y,(x, z)),\left(y^{\prime},\left(x^{\prime}, z^{\prime}\right)\right)\right]$ obviously belongs to $E\left(Y \times\left(X \otimes_{V} Z\right)\right)$. If $z=z^{\prime} \in V$, then $\left[(x, z),\left(x^{\prime}, z^{\prime}\right)\right] \in E\left(X \otimes_{V} Z\right)$, and therefore $\left[(y,(x, z)),\left(y^{\prime},\left(x^{\prime}, z^{\prime}\right)\right)\right]$ again belongs to $E\left(Y \times\left(X \otimes_{V} Z\right)\right)$. Hence, ϕ is a homomorphism.

A similar argument shows that ϕ is an epimorphism, and hence we have that ϕ is an isomorphism.

We now return to the question of the existence of properly X_{0}-admissible graphs.

Lemma 2. Let X_{1} and X_{2} be finite graphs and let $V \subseteq V\left(X_{2}\right)$ with $|V|$ odd. Then $X_{1} \otimes_{V} X_{2}$ is properly X_{1}-admissible.

Proof. Let X_{3} be any graph. Then

$$
\left|E\left(X_{1} \otimes_{V} X_{2}\right)\right|=m_{1}\left(2 m_{2}+n_{2}\right), \quad\left|E\left(X_{1} \times X_{3}\right)\right|=2 m_{1} m_{3}
$$

where $m_{i}=\left|E\left(X_{i}\right)\right|, i=1,2,3$, and $n_{2}=|V|$. Hence, if $X_{1} \otimes_{V} X_{2} \cong$ $X_{1} \times X_{3}$, then $2 m_{2}+n_{2}=2 m_{3}$, contrary to n_{2} being odd.

Now take X_{1}, X_{2}, and V as in Lemma $2, X_{0}$ any finite graph. Then

$$
X_{0} \times\left(X_{1} \otimes_{V} X_{2}\right) \cong X_{1} \times\left(X_{0} \otimes_{V} X_{2}\right)
$$

and by Lemma 2 , we have that $X_{0} \otimes_{V} X_{2}$ is properly X_{0}-admissible.
This shows that the decomposition of connected graphs into a cardinal product of indecomposable factors is non-unique in a very strong sense. For, if we take X_{0} and X_{1} to be indecomposable and non-isomorphic as well, then X_{0} does not occur as a factor in either X_{1} or $X_{0} \otimes_{V} X_{2}$ since $X_{0} \otimes_{V} X_{2}$ is properly X_{0}-admissible, and X_{1} does not appear as a factor in either X_{0} or $X_{1} \otimes_{V} X_{2}$. A simple illustration of this situation is the following. Take positive integers m, n, r, and s. Then, by the example preceding Theorem 3,

$$
K_{m r, n r} \times K_{s} \cong\left(K_{m, n} \times\left(K_{s} \otimes K_{r}\right)\right)
$$

For $s \geqq 3$, this is a connected graph, and in all cases, the four factors $K_{m r, n r}$, $K_{s}, K_{m, n}$, and $K_{s} \otimes K_{r}$ are indecomposable.
5. The strong product. In this section we no longer require that $E(X) \neq \emptyset$.

We define the strong product $X^{*}=\Pi_{a \in A}{ }^{*} X_{a}$ of a family of graphs $\left(X_{a}\right)$, $a \in A$, by:
(i) $V\left(X^{*}\right)=\Pi_{a \in A} V\left(X_{a}\right)$;
(ii) For $x, y \in V\left(X^{*}\right),[x, y] \in E\left(X^{*}\right)$ if and only if there exists a non-empty subset B of A such that

$$
\left[\mathrm{pr}_{b} x, \operatorname{pr}_{b} y\right] \in E\left(X_{b}\right), \quad b \in B
$$

and

$$
\operatorname{pr}_{a} x=\operatorname{pr}_{a} y, \quad a \in A-B
$$

For strong multiplication, the unit graphs do act as identity elements; however, for $a_{0} \in A$, the projection mapping $\mathrm{pr}_{a_{0}}: X^{*} \rightarrow X_{a_{0}}$ is not a homomorphism provided that one of the factors $X_{a}, a \neq a_{0}$, has an edge. The strong product of two graphs will be denoted by $X_{1} * X_{2}$.

Theorem 4. The strong product of a family $\left(X_{a}\right), a \in A$, of connected graphs is connected if and only if

$$
B=\left\{b \in A \mid \operatorname{diam} X_{b}=\infty\right\}
$$

is finite and

$$
D=\left\{\operatorname{diam} X_{a} \mid a \in A-B\right\}
$$

is bounded.
Proof. Let $X=\Pi_{a \in A}{ }^{*} X_{a}$ and assume that X is connected. If B is infinite or D is unbounded, then, for $a \in A$, there exist $x_{a}, y_{a} \in V\left(X_{a}\right)$ such that

$$
\begin{equation*}
\sup _{a \in A} d_{X_{a}}\left(x_{a}, y_{a}\right)=\infty . \tag{3}
\end{equation*}
$$

Define $x, y \in V(X)$ by $\operatorname{pr}_{a} x=x_{a}, \operatorname{pr}_{a} y=y_{a}, a \in A . X$ connected implies that there exists a path P joining x and y in $X . \operatorname{pr}_{a} P$ is a connected subgraph of
X_{a} containing x_{a} and y_{a}, and hence contains a path joining x_{a} and y_{a}. Therefore,

$$
d_{X_{a}}\left(x_{a}, y_{a}\right) \leqq\left|\operatorname{pr}_{a} P\right| \leqq|P|, \quad a \in A
$$

contradicting (3).
Suppose that B is finite and D is bounded. Take any $x, y \in V(X)$. Since X_{a} is connected for each $a \in A, \operatorname{pr}_{a} x$ and $\operatorname{pr}_{a} y$ can be joined in X_{a} by a shortest path $P_{a}=\left[\mathrm{pr}_{a} x=x_{0}{ }^{a}, x_{1}{ }^{a}, \ldots, x_{n(a)}{ }^{a}=\operatorname{pr}_{a} y\right]$. Since B is finite, $k_{1}=$ $\max _{b \in B} n(b)$ exists and since D is bounded, $k_{2}=\max _{a \in A-B} n(a)$ exists. Let $k=\max \left\{k_{1}, k_{2}\right\}$.

For $0 \leqq i \leqq k$, define $x_{i} \in V(X)$ as follows:

$$
\operatorname{pr}_{a} x_{i}=\left\{\begin{array}{ll}
x_{i}{ }^{a}, & 0 \leqq i \leqq n(a), \\
x_{n(a)}, & n(a) \leqq i \leqq k,
\end{array}\right\}, \quad a \in A
$$

To show that $\left[x_{i}, x_{i+1}\right] \in E(X), 0 \leqq i \leqq k-1$, we first note that for $a \in A$, either

$$
\left[\operatorname{pr}_{a} x_{i}, \operatorname{pr}_{a} x_{i+1}\right] \in E\left(X_{a}\right)
$$

or

$$
\operatorname{pr}_{a} x_{i}=\operatorname{pr}_{a} x_{i+1} .
$$

Since $k=\max \left\{k_{1}, k_{2}\right\}$, there exists an $a_{0} \in A$ such that $n\left(a_{0}\right)=k$, and thus

$$
\left[\operatorname{pr}_{a_{0}} x_{i}, \operatorname{pr}_{a_{0}} x_{i+1}\right] \in E\left(X_{a_{0}}\right)
$$

Hence, $\left[x_{i}, x_{i+1}\right] \in E(X)$ and $P=\left[x_{0}, \ldots, x_{n}\right]$ is a path joining x and y in X. This completes the proof.

The similarity between Theorems 2 and 4 leads one to suspect that the strong product may be related in a natural way to a categorical product in some particular category of graphs. This is precisely the situation.

Let \mathscr{K}_{1} denote the category of undirected graphs and graph homomorphisms, and let \mathscr{K}_{2} denote the category of undirected graphs with loops at each vertex and graph homomorphisms. The categorical product is defined in \mathscr{K}_{2} in an analogous way in which the categorical product is defined in \mathscr{K}_{1}. The strong product in \mathscr{K}_{1} is related to the categorical product in \mathscr{K}_{2} in the following manner: For any graph X in \mathscr{K}_{1}, let $R(X)$ denote the graph in \mathscr{K}_{2} obtained from X by adjoining a loop at each vertex and, for any graph Y in \mathscr{K}_{2}, let $S(Y)$ denote the graph in \mathscr{K}_{1} obtained from Y by deleting all loops. Then the strong product of a family $\left(X_{a}\right), a \in A$, of graphs in \mathscr{K}_{1} is related to the categorical product in \mathscr{K}_{2} by

$$
\prod_{a \in A}^{*} X_{a}=S\left(\prod_{a \in A} R\left(X_{a}\right)\right)
$$

We now show how various graph multiplications are related. We define the cartesian product $X^{0}=\Pi_{a \in A}{ }^{0} X_{a}$ of a family of graphs $\left(X_{a}\right), a \in A$, as follows:

$$
V\left(X^{0}\right)=\prod_{a \in A} V\left(X_{a}\right)
$$

$$
\begin{aligned}
E\left(X^{0}\right)=\left\{[x, y] \mid x, y \in V\left(X^{0}\right),\right. & {\left[\operatorname{pr}_{a} x, \operatorname{pr}_{a} y\right] \in E\left(X_{a}\right) \text { for exactly } } \\
& \text { one } \left.a \in A, \operatorname{pr}_{b} x=\operatorname{pr}_{b} y \text { for all } b \in A-\{a\}\right\} .
\end{aligned}
$$

The cartesian product of two graphs will be denoted by $X_{1} \circ X_{2}$.
For two factors, the strong, cardinal, and cartesian products are related by

$$
X_{1} * X_{2}=\left(X_{1} \times X_{2}\right) \cup\left(X_{1} \circ X_{2}\right)
$$

Lemma 3. The cartesian product of an arbitrary family of connected graphs is connected if and only if the number of factors is finite.

The proof is trivial.
As a consequence of the following proposition we have that, if X_{1} and X_{2} are connected non-trivial graphs of bounded degree, then there exists an automorphism ϕ of $X_{1} * X_{2}$ such that $\phi\left(X_{1} \times X_{2}\right)=X_{1} \circ X_{2}$ if and only if $X_{1} \cong X_{2} \cong C_{n}$ is an n-circuit of odd order.

Proposition 4. Let X_{1} and X_{2} be connected non-trivial graphs of bounded degree. Then $X_{1} \circ X_{2} \cong X_{1} \times X_{2}$ if and only if $X_{1} \cong X_{2} \cong C_{n}$, where C_{n} is an n-circuit of odd order.

Proof. If $X_{1} \times X_{2} \cong X_{1} \circ X_{2}, X_{i}$ connected, $i=1,2$, we have, by Proposition 1 and Lemma 3, that at least one of the X_{i} 's is non-bipartite, say X_{1}. If X_{2} is bipartite, then $X_{1} \times X_{2}$ is also bipartite by Proposition 2, contrary to $X_{1} \circ X_{2}$ being non-bipartite. Hence, both X_{1} and X_{2} are non-bipartite. Let the odd mesh of X_{1} and X_{2} be k_{1} and k_{2}, respectively. Clearly, $X_{1} \circ X_{2}$ has odd mesh equal to $\min \left\{k_{1}, k_{2}\right\}$ and, by Theorem 1 , the odd mesh of $X_{1} \times X_{2}=$ $\max \left\{k_{1}, k_{2}\right\}$. Therefore, $k_{1}=k_{2}$.

We now use the fact that X_{1} and X_{2} are of bounded degree. For $i=1,2$, let

$$
d_{i}=\sup _{x \in X_{i}} d\left(x ; X_{i}\right) .
$$

By hypothesis, $0<d_{i}<\infty, i=1,2$. Then

$$
\sup _{x \in X_{1} \times X_{2}} d\left(x ; X_{1} \times X_{2}\right)=d_{1} d_{2} \quad \text { and } \sup _{x \in X_{1} \circ X_{2}} d\left(x ; X_{1} \circ X_{2}\right)=d_{1}+d_{2} .
$$

Since $X_{1} \times X_{2} \cong X_{1} \circ X_{2}$, we have that $d_{1} d_{2}=d_{1}+d_{2}$, i.e., $d_{1}=2=d_{2}$. This, together with X_{1} and X_{2} being non-bipartite graphs of the same odd mesh, implies that $X_{1} \cong X_{2} \cong C_{n}$, where C_{n} is an odd circuit.

To prove the converse, let $C_{n}=\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ and define

$$
\phi: C_{n} \circ C_{n} \rightarrow C_{n} \times C_{n}
$$

as follows: for $0 \leqq i \leqq n-1,0 \leqq j \leqq n-1$, define

$$
\phi\left(x_{i}, x_{j}\right)=\left(x_{j+i}, x_{j-i}\right)
$$

where the subscripts are taken $\bmod n$.
Since n is odd, we have that $\phi: V\left(C_{n} \circ C_{n}\right) \rightarrow V\left(C_{n} \times C_{n}\right)$ is one-to-one and onto. Moreover, it is easily verified that $\phi: C_{n} \circ C_{n} \rightarrow C_{n} \times C_{n}$ is an isomorphism.

From the previous proposition, we immediately have that the cardinal product of two non-trivial connected graphs may be a decomposable graph with respect to cartesian multiplication. The following proposition shows that the situation is quite different for the decomposability of the strong product with respect to either cardinal or cartesian multiplication. We do not include the proof since it is essentially straightforward but tedious.

Proposition 5. The strong product of two non-trivial connected graphs is indecomposable with respect to cardinal (cartesian) multiplication.

References

1. K. Čulik, Zur Theorie der Graphen, Časopis Pěst. Mat. 83 (1958), 133-155.
2. F. Harary and C. A. Trauth, Jr., Connectedness of products of two directed graphs, Siam J. Appl. Math. 14 (1966), 250-254.
3. Stephen T. Hedetniemi, Homomorphisms of graphs (University of Michigan Technical Report 03105-42-T, December, 1965; it is stated there that "the complete report is available in the major Navy technical libraries and can be obtained from the Defense Documentation Center').
4. - Homomorphisms of graphs and automata (University of Michigan Technical Report, Project 03105-44-T, July, 1966; it is stated there that "the complete report is available in the major Navy technical libraries and can be obtained from the Defense Documentation Center").
5. M. H. McAndrew, On the product of directed graphs, Proc. Amer. Math. Soc. 14 (1963), 600-606.
6. G. Sabidussi, Graph derivatives, Math. Z. 76 (1961), 385-401.
7. Graph multiplication, Math. Z. 72 (1960), 446-457.
8. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962), 47-52.

McMaster University,
Hamilton, Ontario;
University of Waterloo,
Waterloo, Ontario

[^0]: Received June 27, 1967. The content of this paper is based on part of the author's doctoral thesis written at McMaster University under the direction of Professor G. Sabidussi.
 ${ }^{*}$ I wish to express my gratitude to Professor G. Sabidussi for his valuable suggestions and assistance in the preparation of this work.

