
THE CATEGORICAL PRODUCT OF GRAPHS 
DONALD J. MILLER* 

1. Introduction. Undirected graphs and graph homomorphisms as 
introduced by Sabidussi (6, p. 386), form a category that admits a categorical 
product. For the category of graphs and full graph homomorphisms, the 
categorical product was introduced by Culik (1) under the name cardinal 
product. I t was independently defined by Weichsel (8) who called it the 
Kronecker product and investigated the connectedness of products of finitely 
many factors. Hedetniemi (4) was the first to make use of the fact that the 
cardinal product is categorical. Connectedness studies were recently carried 
out for products of directed graphs by McAndrew (5) and Harary and Trauth 
(2). In the present paper, we are concerned with the connectedness of products 
of arbitrary families of graphs, and the question, first considered in (1, p. 152), 
of the uniqueness of the decomposition of a graph into indecomposable factors. 
We also show that the strong product introduced by Sabidussi (6) is naturally 
related to a categorical product, and investigate the relationship between the 
cardinal and strong product. 

The graphs we consider are undirected and have no multiple edges and no 
loops. E(X) and V(X) will denote the edge set and vertex set of a graph X, 
respectively. If X is a graph and e £ E(X), we denote by (e) the graph 
consisting of the edge e and its incident vertices. If F is a subgraph of X, we 
define X\Y to be the smallest subgraph with E(X\Y) = E{X) - £ ( F ) . 

Let X and Y be graphs. By a homomorphism of X into Y we mean a function 
<£: V(X) -> V(Y) such that [0x, <j>y] £ E(Y) whenever [x, y] 6 E(X). For a 
homomorphism <j>\ V(X) —> V(Y) we shall write <t>: X —> F. A monomorphism 
of X into F is a one-to-one homomorphism. If A is a subgraph of X, we let <j>A 
denote that subgraph of F defined by 

V{<f>A) = 4>(V(A)), E(<f>A) = {[**, <t>xf] 6 E ( F ) | [*, *'] 6 E{A)\. 

<t>: X —> F is an epimorphism if <j>X = F; it is an isomorphism if it is both a 
monomorphism and an epimorphism. 

Paths and circuits in a graph X will be regarded as subgraphs of X. Connec
tedness, components and distance are defined, as usual, in terms of paths. 
The distance between the vertices x and y of X will be denoted by dx(x, y). 
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The diameter of a connected graph X is 

sup dx(x,y). 
x,yÇV(X) 

For any graph X> the number of vertices will be denoted by \X\. 
A graph X is bipartite if and only if E(X) ^ 0 and X contains no circuit of 

odd order. X will be called non-bipartite if it contains a circuit of odd order. 
For a non-bipartite graph, we define the odd mesh of X to be min|C|, the 
minimum taken over all circuits of odd order. 

For x <E V{X) we let V(X; x) = {y\ [x, y] G E(X)}. | V(X; x)\ is called the 
degree of x and is denoted by d(x\ X). X is said to be of bounded degree if and 
only if 

sup d(x;X) < oo. 

Given any family (Xa), a Ç A, of graphs, we define the cardinal product 
X = Ua,AXa by 

7(x)=n t w . 
a ÇA 

E(X) = {[*, y]| x, j G F(X), [prax, pra;y] 6 E(Xa) for all a f i ) 

(here, pra: V(X) —> F(Xa) denotes the projection of the cartesian product 
onto its ath factor). X is easily seen to be categorical: the projections 
pra: X —* Xa are homomorphisms; hence, if F is any graph and <j>a: Y —* Xay 

a Ç A j a family of homomorphisms, then <j>: Y —> X, defined by 

pra(#y) = <t>ay, y € F (F) , a U , 

is a homomorphism and pra 0 = <£a for each a Ç i . As is customary, we 
shall denote <t> by HaeA(j>a. The product of two graphs will be denoted by 
X\ X X2. 

2. Connectedness of the cardinal product. In §§ 2-4, unless otherwise 
stated, it will always be assumed that E(X) 7^ 0 for all graphs X. We shall 
need the following two propositions. 

PROPOSITION 1 (8, Theorem 1). Let Xi and X2 be connected graphs. Then 
the following statements are equivalent: 

(i) X\ X X2 is disconnected {consisting of exactly two components) ; 
(ii) Xi and X2 are both bipartite. 

PROPOSITION 2 (4, Corollary 1.26b). Let Xi be a bipartite graph and X2 any 
graph. Then Xi X X2 is bipartite. 

In view of the intimate relationship between the connectedness of a cardinal 
product and the non-bipartiteness of its factors, we first prove a general 
converse of Proposition 2. 
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THEOREM 1. For each a G A, let Xa be a non-bipartite graph with odd mesh 
equal to na. Then the cardinal product ILa^AXa is non-bipartite (with odd mesh 
equal to supa^Ana) if and only if supa€A^a < oo. 

Proof. Let X — IIa€AXa. First, assume that supaeAna = n < oo. For each 
a G A , let Ca be a circuit of odd order na in Xa. Then there exists an a0 G A 
with \CaQ\ = n. For each a G A, nay n odd and na S n imply that there exists 
an epimorphism <f>a: Cao —» Ca. Since 0flo is a monomorphism, 0 = HaÇ.A4>a is a 
monomorphism from Cao to X. Hence, <t>Cao Ç X is an odd circuit of order n, 
i.e., X is non-bipartite. 

Now, let C C X be an odd circuit. For a £ A, pra: X —» X a being a homo-
morphism implies that praC is a non-bipartite subgraph of Xa. Hence, 

na ^ |praC| ^ \C\ for all a G ,4. 

This proves the necessity part of the theorem, as well as, in combination with 
the first part of the proof, the fact that n is the odd mesh of X. 

Theorem 1 allows us to make a comment on a conjecture advanced by 
Hedetniemi (4, Conjecture 1.2). Let A be an index set and for each a G A let 
Xa be a graph with chromatic number x(Xa) = na, i.e., na is the least cardinal 
for which there exists a homomorphism <j>a: Xa —» Kna1 where Kna is the 
complete na-graph. Since pr&: TLaç.AXa —» X& is a homomorphism for each 
è G A, we have that $6 pr6: Ha(zAXa —> i£w6 is also a homomorphism, i.e., 

(1) x\Y{XA^mmx{Xa). 

Hedetniemi's conjecture is that equality holds for A finite. The question is 
still open. However, the following example shows that the conjecture cannot 
be extended to infinite index sets. For n ̂  1, let Gw+i be a circuit of order 
2n + 1. Then x(CWi) = ^ » n = •"•• T h e ^ d m e s n °f CWi is 2» + 1; hence, 
by Theorem 1, IIn^iC2n+i is bipartite, i.e., 

x( I I C2n+l) = 2> 

so that (1) is a strict inequality. 
We now turn to the connectedness of the cardinal product of a family of 

connected non-bipartite graphs. 

LEMMA 1. Let X be a connected non-bipartite graph of diameter d,x, y ^ V(X) 
not necessarily distinct, and P = [p0l . . . , ps] a path of length s ̂  4d. Then 
there exists a homomorphism <£: P —> X such that <f>p0 = x and <j>ps = y. 

Proof. Let C be a circuit of least odd order, e = [x0, y0] G E(C). Note that 
\C\ ^ 2d + 1. Let Ri be a shortest path joining x and x0 in X of length ri, and 
i?3 a shortest path joining 3/0 and y in X of length rz. Let 

J R 2 = - f C \ ^ ifri + r , s 5 ( m o d 2 ) f 
\{e) otherwise, 
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and let r2 be the length of R2. Then 

r = ri + r2 + rz = s (mod 2) 

and r ^ 4d. Let P' = [p0, . . . , pT]. Clearly, there exists a homomorphism 
4fi P' -> 2?i U R2^J Rz such that $p0 = x and \ppr = y. But r = s (mod 2) 
and r ^ 5 imply that there exists a homomorphism v: P' —> P ' such that 
*>£o = £o and ^ s = £ r . Then \p v: P —> X is the desired homomorphism. 

THEOREM 2. 77ze cardinal product of a family (Xa), a £ A, of connected non-
bipartite graphs is connected if and only if 

B = [b e A\ diarnX» = oo} 

is finite j and 

D = {diam Xa\ a G A - B\ 

is bounded. 

Proof. Let X = HaeAXa and assume that B is finite and D is bounded. Let 
Xi = II&€B^"Ô and X2 = Ua^A-BXa) then X ^XiX X2. B finite implies, by 
Proposition 1, that X\ is connected and, by Theorem 1, that X\ is non-bipartite. 
Hence, to show that X is connected, it suffices, by Proposition 1, to show that 
X2 is connected. 

Let x, y € V{X2) and let P = [p0, • • • , Pu] be a path of length 4s, where 
s = supa£A-B diam Xa. By the lemma, there exists a homomorphism 
0a: P ~^Xa such that 

<Êa£o = prax and 0a£4s = pray, a £ A — B. 

Let 0 = n a € 4 _ B 0 a : P —> X2. Then 

0£o = # and 0^4s = y. 

Since 0 P is a connected subgraph of X2 and x, y G #P, we have that X2 is 
connected, and therefore X is connected. 

Conversely, assume that X is connected. If B is infinite or D is unbounded, 
then for a 6 4̂ there exist #a, ;ya £ V(Xa) such that 

(2) supdXa (xa,ya) = oo. 

Define #, y G ^ P Q by pra# = xa, pray = ya, a £ A. X connected implies 
that there exists a path P joining x and y in X. praP is a connected subgraph 
of Xfl containing xa and ya, and hence contains a path joining xa and ;ya. 
Therefore, 

<M*«,:y«) ^ |praP| g |P | , a € 4 , 

contradicting (2). 
As an immediate corollary of Theorem 2 we have that if (Xa), a Ç ^4, is a 

family of connected non-bipartite graphs such that X = Ha€AXa is connected, 
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then X is non-bipartite. This follows from na ^ 2 diam Xa + 1 for all a Ç 
A — B, where na is the odd mesh of Xa. Hence, supa€Awa < oo, and therefore X 
is non-bipartite by Theorem 1. The converse of this corollary is obviously not 
true. 

3. Modification of Lemma 1. Lemma 1, which is crucial for the proof of 
Theorem 2, can be rephrased as a statement concerning homomorphisms of 
odd circuits into X. At the same time, we shall show that the bound on the 
length of P in Lemma 1 can be substantially decreased. 

PROPOSITION 3. Let X be a connected non-bipartite graph of finite diameter d, 
C a circuit of odd length greater than or equal to 3d. Then, given any x, y £ V(X), 
there is a homomorphism <j>: C —> X such that x, y Ç V(<j>C), Moreover, 3d is best 
possible. 

Proof. Since X is non-bipartite, there exist Z\, z2 6 V(X) such that 
e = [zi, z2] G E(X) and dx(x, Z\) = dx(x, z2). Let P be a shortest path joining 
x and y, Q a shortest path joining y and Z\, Rt a shortest path joining zt and x, 
i = 1, 2. Then S = P U Q\J Ri is the homomorphic image of a circuit of 
length ^ = dx(x, y) + dx(y, Z\) + dx(zi, x). Trivially, s S 3d (since all 
paths involved are shortest) and x, y £ V(S). If s is odd, the proof is complete. 
Assume that 5 is even. 

Case (i): d is odd. s being even means that s ^ 3d — 1. Let 

o, = {pV (QV)W R2 iîe£E(Q), 
(P\J QU (e)\jR2 ile$E(Q). 

Sf is the homomorphic image of a circuit of odd length, s' = 5 db 1 ^ 3d, 
which completes the case that d is odd. 

Case (ii): d is even. Construct S' as before. Then s' ^ 3d + 1 (and note 
that 3d + 1 is the smallest odd length greater than or equal to 3d). 

To see that 3d and 3d + 1, respectively, are best possible, consider a 
(2n + 3)-circuit D and at each of two adjacent vertices of D attach a path of 
length n. Let x and y be the two vertices of degree 1 of the resulting graph X. 
The diameter of X is 2n + 1 and the shortest odd circuit C that will map 
properly has length 6n + 3. This disposes of the case that d is odd. 

If d is even, we consider a (2n + 1)-circuit D. At one vertex of D we 
attach two paths of length n and denote the resulting graph by Y and the 
vertices of degree 1 by x and y. The diameter of F is 2n and the shortest path 
that will map properly has length 6w + 1. 

Note that Proposition 3 implies that the lower bound on the length 5 of the 
path in Lemma 1 can be reduced to 3d. A straightforward minimality argument 
will show, in fact, that the length of P in Lemma 1 can further be reduced to 
2d. As a corollary to the proof of Theorem 2, we would then have that 

diam Y[ Xa ^ 2l sup diam Xa 
• 
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In the case of the two examples cited above to show that 3d and 3 ^ + 1 are 
best possible, it is interesting to compare our result with one of Hedetniemi's 
(3), where he is concerned with the existence of circuits that can be mapped 
epimorphically onto the graph. His result predicts the existence of a circuit of 
order q + d(x, y) which maps onto the graphs, where q is the number of edges. 

4. Decomposition into indecomposable factors. Our aim in this 
section is to prove a general theorem which shows that the decomposition of a 
graph into a cardinal product of indecomposable factors is non-unique even 
for finite connected graphs. 

Definition 1. A graph X is called indecomposable (or prime) with respect to 
cardinal multiplication if and only if there do not exist graphs X\ and X2 such 
that I i X l 2 ^ X. 

It should be pointed out that unit graphs (i.e., graphs consisting of a single 
vertex and no edges) do not act as identity elements relative to cardinal 
multiplication. More precisely, if X is any graph and \Y\ = 1, then 
X X Y ^ X if and only if E(X) = 0. 

Definition 2. Let X and X0 be graphs. X will be called X' ̂ -admissible if and 
only if there exists a graph Xi such that 

(i) Xo X Xi is a spanning subgraph of X; 
(ii) [(x0, Xi), (*<>', Xi)] G E(X) implies that [x0, x0'] G E(X0), and 

[xi, x / ] G E(Xi) or xi = xi\ 
(iii) if [(x0, Xi), (#</, *i)] G E{X) for some [x0, x0'] G E(XQ), then 

[(yo, *i), (3V, xx)] Ç E(X) for all bo, yo] G E(X0). 

In view of (iii) we can introduce, for convenience, the following subset 
VQViXt): 

Xi € F if and only if [(x0, Xi), (x0
r, Xi)] G E(X) for some [x0, x0'] € E(X0). 

Condition (iii) can then be restated as: for each [x0, XQ'] Ç E(X0) and each 
xi G F, [(xo, Xi), (x(/,xi)] G E(X). We shall also apply the term X0-admissible 
to any graph Y isomorphic to a graph X which is X0-admissible in the sense 
just denned. X will be called properly X'^-admissible if it is X0-admissible and 
does not have X0 as a factor with respect to cardinal multiplication. 

Note that condition (ii) implies that if X is X0-admissible, then pr0: X —> X0 

is a homomorphism. 

Remark. The definition of admissibility can be phrased in terms of another 
graph multiplication as follows. Let X0 and Xi be graphs and V C V(Xi), V 
possibly empty. Define X0 ®v Xx by 

v(Xo®vx1) = v(x0) x 7(jri), 
E(X0 ®VX1) = 

E(X0 X l i ) U { [fa,, xx), (xo', Xi)]| [xo, x0
r] G £(X 0 ) and Xi G V}. 
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For V = V(Xx), we shall denote X0 ®v Xx by X0 ® Xx. (The symbol ® 
should not be confused with the "Kronecker product" of Weichsel (7) or the 
"tensor product" of Harary and Trauth (2), both of which are our product, 
X.) Then, a graph X is X0-admissible if and only if there exists a graph X\ 
and a subset V C V(Xi) such that X = X0 ® v Xx. 

Example. For any non-zero cardinals m, n, and r, the complete bipartite 
graph Kmr,nr is properly i£w ̂ -admissible. This follows from 

and the fact that every complete bipartite graph is indecomposable with 
respect to cardinal multiplication. This can be seen as follows. If KmtU ^ 
Xi X X2l then each factor is a homomorphic image of Km>n. But, trivially, any 
homomorphic image of Kmjn is of the form Kr>s, with r S m, s ^ n, and hence 
bipartite. By Proposition 1, this implies that Km>n is disconnected, a contra
diction. Hence, Km>n is indecomposable. 

We shall investigate the existence of further properly X0-admissible graphs 
after proving the following theorem. 

THEOREM 3. Let X, F, and Z be arbitrary graphs and V C V(Z). Then 

X X ( F ®VZ)^ F X (X ®VZ). 

Proof. Let </>: X X ( F ®v Z) -> F X (X ®v Z) be denned by 

<t>(xf (y, z)) = (y, (x, z)). 

Obviously, $ is one-to-one and onto. To show that <j> is a homomorphism, let 
[(x, (y, *)), (*', ( / , zf))] e E(X X ( F ®v Z)). Hence, [x, x'] Ç E(X) and 
[(?, »), ( / , *')] 6 £ ( F <g>y Z). Then [y, / ] 6 E ( F ) , and [s, *'] G E(Z) or 
z = 2; G F. If [s, z') € E(Z), then [(y, (x, s)), (y', (x', z'))] obviously belongs 
t o £ ( F X (X ®VZ)). If z = 2' € F, then [(*,*), (x',z')] G £ ( X <g)FZ),and 
therefore [(y, (x, *)), (y', (x', 2'))] again belongs to E(Y X (X ® F Z)) . 
Hence, <£ is a homomorphism. 

A similar argument shows that <j> is an epimorphism, and hence we have 
that <j> is an isomorphism. 

We now return to the question of the existence of properly X0-admissible 
graphs. 

LEMMA 2. Let X\ and X2 be finite graphs and let V C V(X2) with \ V\ odd. 
Then Xi ® v X2 is properly Xi-admissible. 

Proof. Let Xz be any graph. Then 

\E(Xi ®v X2)\ = mi(2w2 + n2), \E{XX X Xz)\ = 2m1mz, 

where mt = \E(Xi)\, i = 1, 2, 3, and w2 = \V\. Hence, if Xi ® F X2 ^ 
Xi X X3, then 2ra2 + n2 = 2m3, contrary to n2 being odd. 
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Now take X\, X2j and V as in Lemma 2, X0 any finite graph. Then 

Xo X (Xx ®VX2)^XX X (Xo ®VX2), 

and by Lemma 2, we have that X0 ®v X2 is properly X0-admissible. 
This shows that the decomposition of connected graphs into a cardinal 

product of indecomposable factors is non-unique in a very strong sense. For, 
if we take X0 and Xi to be indecomposable and non-isomorphic as well, then 
Xo does not occur as a factor in either X± or X0 ®v X2 since X0 ®v X2 is 
properly X0-admissible, and Xi does not appear as a factor in either Xo or 
Xi ®VX2. A simple illustration of this situation is the following. Take positive 
integers m, n, r, and s. Then, by the example preceding Theorem 3, 

Kmr,nr XKS^ (Km,n X (Ks ® Kr)). 

For 5 ^ 3 , this is a connected graph, and in all cases, the four factors Kmr>nT1 

KS} Km,n, and Ks ® Kr are indecomposable. 

5. The strong product. In this section we no longer require that E{X) ^ 0. 
We define the strong product X* = T\a<zA*Xa of a family of graphs (Xa), 

a £ A, by: 
(i) V(X*) = UaeAV(Xa); 
(ii) For x, y G V(X*), [x, y] Ç E(X*) if and only if there exists a non-empty 

subset B of A such that 

[pr&x, pr&;y] Ç E(Xb), b G B, 
and 

prax = pra^, a Ç A — B. 

For strong multiplication, the unit graphs do act as identity elements; 
however, for a0 (z A, the projection mapping prao: X* —> Xao is not a homo-
morphism provided that one of the factors Xa, a =^ ao, has an edge. The strong 
product of two graphs will be denoted by Xi * X2. 

THEOREM 4. The strong product of a family (Xa), a G A, of connected graphs 
is connected if and only if 

B = {b £ A\ d i a m X , = oo} 
is finite and 

D = {diam Xa\ a G A - B] 
is bounded. 

Proof. Let X = IIa€A*Xa and assume that X is connected. If B is infinite 
or D is unbounded, then, for a G A, there exist xa, ya G V{Xa) such that 

(3) sup dXa(xaj ya) = oo. 

Define x, y G V(X) by prax — xai pray = ya, a G A. X connected implies that 
there exists a path P joining x and y in X. pr aP is a connected subgraph of 
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Xa containing xa and ya, and hence contains a path joining xa and ya- There
fore, 

dXa(xa, y a) S \praP\ ^ |P|, a € A, 

contradicting (3). 
Suppose that B is finite and D is bounded. Take any x, y G V(X). Since Xa 

is connected for each a G A, prax and pra;y can be joined in Xa by a shortest 
path P a = [prax = #0

a, #ia, • • . , xn(a)
a = p^ay]. Since B is finite, &i = 

ma.xbeBn(b) exists and since 2) is bounded, k2 = maxa€A_B^(a) exists. Let 
k = max {ki, k2}. 

For 0 ^ i ^ fe, define x* G F(X) as follows: 

(*,a, O g i ^ «(a) A - . 
Un(a) , n(a) g i g &,J 

To show that [#*, # i+i] G £(-X"), 0 g i ^ & — 1, we first note that for a G A, 
either 

[praxz-, prax i+i] G £(X a ) 
or 

pra^i = prax i+i. 

Since & = max{&i, k2}, there exists an a0 G 4̂ such that n(a0) = k, and thus 

[praoxt1 praox i+i] G E(Xao). 

Hence, [xu xi+i] G £ P 0 and P = [x0, . . . , xn] is a path joining # and y in X. 
This completes the proof. 

The similarity between Theorems 2 and 4 leads one to suspect that the 
strong product may be related in a natural way to a categorical product in 
some particular category of graphs. This is precisely the situation. 

Let J^ i denote the category of undirected graphs and graph homomorphisms, 
and let J^ 2 denote the category of undirected graphs with loops at each vertex 
and graph homomorphisms. The categorical product is defined in J^ 2 in an 
analogous way in which the categorical product is defined in J^ i . The strong 
product in J^i is related to the categorical product in J^ 2 in the following 
manner: For any graph X in J^i , let-R(X) denote the graph in J^ 2 obtained 
from X by adjoining a loop at each vertex and, for any graph Y in J^2 , let 
S(Y) denote the graph in J^ i obtained from Y by deleting all loops. Then the 
strong product of a family (Xa), a G A, of graphs in J^ i is related to the 
categorical product in J^ 2 by 

Tl*xa = s(n R(xa) 
We now show how various graph multiplications are related. We define the 

cartesian product X° = ILaeA°Xa of a family of graphs (Xa), a G A, as follows: 

v(x°) = n vixa), 
a ÇA 

• 
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E(X°) = {[x, y]\ x, y G V(X°), [prax, pray] G E(Xa) for exactly 
one a Ç A, pr&x = prby for ail & G .4 — {a}}. 

The cartesian product of two graphs will be denoted by X\ o X2. 
For two factors, the strong, cardinal, and cartesian products are related by 

X1 * X2 = (X1 X X2)U (Zi o X2). 

LEMMA 3. The cartesian product of an arbitrary family of connected graphs is 
connected if and only if the number of factors is finite. 

The proof is trivial. 

As a consequence of the following proposition we have that, if Xi and X2 

are connected non-trivial graphs of bounded degree, then there exists an 
automorphism <j> of Xi * X2 such that <j>(Xi X X2) = Xi o X2 if and only if 
Xi~X2= Cn is an ^-circuit of odd order. 

PROPOSITION 4. Let Xi and X2 be connected non-trivial graphs of bounded 
degree. Then Xi o X2 ~ Xi X X2 if and only if Xi~X2= Cn, where Cn is an 
n-circuit of odd order. 

Proof. If I i X l 2 = ^ i O X2, Xi connected, i = 1, 2, we have, by Proposi
tion 1 and Lemma 3, that at least one of the X / s is non-bipartite, say Xx. If 
X2 is bipartite, then Xi X X2 is also bipartite by Proposition 2, contrary to 
Xi o X2 being non-bipartite. Hence, both Xi and X2 are non-bipartite. Let the 
odd mesh of Xi and X2 be ki and k2} respectively. Clearly, X\ o X2 has odd 
mesh equal to min {ki, k2} and, by Theorem 1, the odd mesh of Xi X X2 = 
max {ki, k2}. Therefore, ki = k2. 

We now use the fact that X1 and X2 are of bounded degree. For i = 1,2, let 

di = sup d(x;Xi). 

By hypothesis, 0 < dt < oo, i = 1, 2. Then 

sup d(x; Xi X X2) = did2 and sup d(x; Xi o X2) = di + ^2. 
ZÇX1XX2 ar€XioX2 

Since Xi X X2 = Z i o X2, we have that did2 = d\ + rf2, i.e., Ji = 2 = 6̂ 2. 
This, together with X\ and X2 being non-bipartite graphs of the same odd 
mesh, implies that X\ = X2 ~ Cn, where Cn is an odd circuit. 

To prove the converse, let Cn = [x0, Xi, . . . , xw_i] and define 

<t>: Cn o Cn —» Cn X Cw 

as follows: for 0 ^ i ^ w - 1, 0 ^ ; ^ w - 1, define 

4>(xif Xj) = (Xj+i, Xj-i), 

where the subscripts are taken mod n. 
Since n is odd, we have that <j>: V(Cn o Cn) —> V(Cn X Cn) is one-to-one 

and onto. Moreover, it is easily verified that <j>: Cn o Cn —» Cn X Cn is an 
isomorphism. 
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From the previous proposition, we immediately have that the cardinal 
product of two non-trivial connected graphs may be a decomposable graph with 
respect to cartesian multiplication. The following proposition shows that the 
situation is quite different for the decomposability of the strong product with 
respect to either cardinal or cartesian multiplication. We do not include the 
proof since it is essentially straightforward but tedious. 

PROPOSITION 5. The strong product of two non-trivial connected graphs is 
indecomposable with respect to cardinal {cartesian) multiplication. 
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