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SYMMETRIC DUAL NONDIFFERENTIABLE PROGRAMS

S. CHANDRA AND I. HUSAIN

Symmetric and selfduality results are established for a general

class of nonlinear programs which combine differentiable as well

as non-differentiable cases appearing in the literature. Many

well known results are deduced as special cases and certain

natural extensions are discussed.

1. Introduction

Many authors have studied symmetric' and selfduality for differentiable

and non-differentiable mathematical programs. Dantzig, Eisenberg and

Cottle [3] and Mond [7] studied symmetric duality for a certain class

of differentiable programs while Mond .[9] and Mehndiratta [6] presented

symmetric duality results for certain.non-differentiable programs which

involve square roots of quadratic forms in the objective function. Mond

and Cottle [70] gave selfduality results for the class of problems studied

in [3] and Mehndiratta [6] examined selfduality for his problem in the

spirit of [JO]. General symmetric dual programs have also been studied by

Mehndiratta [5] and Hanson [4].

In this paper, we not only unify most of these results on symmetric

and selfduality but also construct a general class of symmetric dual non-

linear programs, which gives results corresponding to nonlinear extensions

of problems studied by Mond [9] arid Mehndiratta [6]. The symmetric dual

formulations of problems studied by Mond and Schechter [12] and Mond [S]

are also mentioned.
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2. Notations and statement of the problems

We shall make use of the following notations and terminology in this

study.

Let a and R tie positive orthants of K and R respectively.

Let K be a real valued twice continuously differentiable function defined

on an open set in n containing /T x R+ . Then ^-.^H^n' ̂  <y denotes

the gradient vector of K. with respect to x at the point [x , y) ;

that is,

V ( « o . y0) = (ax/a^. 3^/3x2, ..., a x / ^ l ^ .

The n * n matrix of second order partial derivatives with respect to

x., x. evaluated at [x y ) is denoted by V K(X y ) ; that is,
is j U U XJ- U U

The symbols V^K[xQ, yQ) , V^K[xQ, yQ) and ^22K[XQ, yQ) are defined

similarly. The function K(x, y) will be called convex-concave if it is

convex in x for each fixed y and concave in y for each fixed x . In

case x and y both are in R , then K(x, y) will be called skew

symmetric if K(x, y) = -K(x, y) .

We now state the following pair of non-differentiable programs and

discuss their duality in subsequent sections.

Primal (P):

Minimize F(x, y, w) = K(x, y) - yTV2K(x, y) + [xTBx)il

(1) subject to : -V2K{x, y) + Cu > 0 ,

(2) wTCw 5 1 ,

(3) x > 0 ,

(1*) y > 0 ;

https://doi.org/10.1017/S0004972700007668 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007668


Symmetric dual nondifferentiabIe programs 297

Dual (D):

Maximize G(x, y, z) = K(x, y) - xTV±K(x, y) -

(5) subject to: -V K(x, y) - Bz £ 0 ,

(6) zTBz S 1 ,

(7) x > 0 ,

(8) y > 0 ,

vhere

(i) B € fl"X" and C € if*"1 positive semidefinite,

(ii) s and w are vectors in n and if respectively, and

(iii) K is twice continuously differentiable.

3. Symmetric duality

For notational convenience, the sets of feasible solution of the

primal and dual programs are denoted by C and C respectively, that

is,

Cp = j(x, y, w) | x i Fp, y, w € if, -V^x, y)+Cu > 0,

T 1

w Cw 2 1, x > 0, y > 0>

and

(x, y, z) | x, s € i? , y € IT, -V K(x, y)-Bz S 0,T 1
3 Bs < 1, x > 0, y > 0J- .

It can be easily seen that if the dual (D) is recast in the

minimization form, then its dual is primal (P). Thus the programs (P) and

(D) constitute a pair of symmetric dual programs in the sense of [3].

We shall make use of the following generalized Schwarz inequality,

which has been extensively referred to in the literature; for example Mond

[9],

(9) [xTAy) < [xTAx)h{j
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where x, y € H and A (. R is positive semidefinite. The equality

in (9) holds, if for some X > 0 , Ax = XAy .

We now prove the following duality relations between (P) and (D) .

THEOREM 1 (Weak duality). Let K be convex-concave. Then, for any

[xQ, yQ, wQ) € Cp and (x, y, I) € Cfl ,,

F K>» y0' W(J ~ G( '̂ ̂' S) '
Proof. By noting the implications of [x , yQ, w ) € C_ and

(x, i/, z) € C_ , it follows that

and

-x^V^Cx, y) - xTQBz 5 0

which, on addition, gives,

do) fv2x{z0, yQ) - « JV ( 5 > ^ - yTcwo

Now, as in [3], by convexity-concavity and differentiability of K ,

Therefore,

y o ) - x ^ ( x , y)) - [fcyf (using (ll))

Cr.TnrA%
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x o 5 i " [xlBxo
(10))(using

£ F(x0, yQ, 3Q) using (2), (6) and (9) .

COROLLARY 1. If (xQ, yQ, wQ) € Cp and {x, y, z) € CD suah that

F[xQ, yQ, wQ) = G(x, y, w) , then [xQ, yQ, wQ) and (x, y, 5) are

optimal for programs (P) and (D) respectively.

Before proving the main duality theorem, we note that both programs

(P) and (D) can be expressed in the form of non-differentiable programs

studied by Mond [S]. In particular (P) can be written as

minimize

subject to:

= /(€) +

5 0

where

B =

B

0

0

0

0

0

0

0

0_

and g{£,) =

-V K+Cu

1-u Cw

X

y

Now invoking Fritz John type necessary optimality conditions [/], [2]

for the above minimization problem (P), we get the following lemma.

LEMMA 1. If E, is optimal to (P)3 then there exist r € R ,

p € R j 2 , n2m+n , ,, ,and Z € R suah that

zoBZo -
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(*V P0) = o ,

where PQ = [uQ, nQ» VQ, vQ) with uQ, vQ € if _, XQ (. R 3 \iQ € /?"

ZQ = (j30, aQ, eQ) with zQ I tf1 , aQ £ if , &Q € //" . Expanding the

above relations, we get the following

(12) " Q V ^ O V 2/0) = "0^0 '

(13)

(15)

(16) r 0 V l X (x 0 , 2/0) + ( M o - V o ) r V 1 2 ^ ( x o , yQ) + r Q 5 3 o = pQ

(17) ( u o - r ^ o ) ^ ^ , J/Q) = VQ

(18) CuQ = 2X0

(19) z0BzQ < 1 ,

(20)

(21) (rQ; u 0 , Xo, VQ, vQ) > 0 t

(22) ( r ( ) , u 0 , Xo, yQ, vQ) ^ 0 .

THEOREM 2 (Strong duality). J/ [xQ, yQ, wQ) € C solves (p) and

t/ze matrix V^^C[XQ, J/_) is negative definite, then there exist 2^ E /

such that [xQ, yQ, zQ) € Cp uitfc F(XQ, yQ, wQ) = G(XQ, J/Q, WQ) . If, in

addition, K(x, y) is convex-concave then (x., yQ, zQ) solves (D) and

Min F(x, Z/, U ) = .f(x0, yQ, wQ) = c[xQ, yQ, zQ) = Max G(x, i/, s) .

Proof. Since (xQ, yQ, wQ) solves (P) by Lemma 1, there exists
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[r p , 3 ) sat isfying ( l2) - (22) . Now from (17) and (15) we obtain

(23) [u -r v ) V^xfx,,, yn)y~, = 0 .

v Q 0 0 22 v 0 0 0
Also u 2 0 and r 2 0 together with (17) imply

(2k) [u -r y )TV K[X , y )u = 0 .

Multiplying (23) by r and then subtracting from (2l»), we get

which is contrary to the negative definiteness of the matrix ^pp^(a:n' ^rv

unless u = r
QJ/0 • Hence

(25) uQ = rQyQ .

T
Now multiplying (l8) by W , we get

(26) u Cu = 2A w Cw

It is to be observed here that r > 0 , for otherwise u = r~.ll-. = 0 ,

and (16), (17) and (26) together with (13) readily imply u = 0 , v = 0

and A = 0 respectively, a contradiction to (22). Now equation (18) with

the aid of (25) and the fact r > 0 , gives

(27) yQC»0 = [J,OCJ,OJ [ w ^ .

Also from a 3 ) , either A = 0 , and hence Cy = 2[\ /r )Cw = 0 or

W Cu = 1 . In either case (27) gives

(28) yT
QCu0 -

From re la t ions (7) , (8 ) , (l6) and (25) together with u > 0 and r > 0

we get
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*o-° '

yo-° '

implying that [xQ, yQ, zQ) € C^ .

Multiplying (l6) by x > 0 and using (25), (ll+) and r > 0 in

succession, we get

(29) -*0VK> ^ " XlBZ0 •

Hence

KBxo)
^ % + (xoBZo)
(using (12), (25) with r > 0 and then (20))

) ( ( 2 8 ) a n d

The rest of the theorem is an immediate consequence of Corollary 1.

4. Selfduality

We now prove the following selfduality theorem for programs (P) and

(D), which is very much in the spirit of Mond and Cottle [JO].

As in C O ] , we shall describe (P) and (D) as dual programs if the

conclusion of Theorem 2 is true.

THEOREM 3 (Selfduality). If

(i) K is skew symmetric and

(ii) C = B ,

then the programs (P) and (D) are formally identical, furthermore if (P)
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and (D) are dual programs with, optimal solutions (x , y , w •) and

(x , yQ, sQ) respectively, then

*•(*<>. yo> »0) = o = c(*0, y0, *0) •

Proof. Recasting the dual (D) in the primal form, we have

Minimize -K(u, v) + uTV' K{u, v) + (vTCv)*

subject to: -VK(u, v) - Bz 5 0 ,

T
Z Bz

u

V

<

>

>

1 ,

0 ,

0 .

But skew symmetry of K implies that -V K(u, v) = V^K(v, u) . When

B = C , problem (D) takes the form

Minimize K(v, u) - UTV K(v, u) + [vTBv]^

subject to: -V K(v, u) + Bz > 0 ,

V > 0 ,

U > 0 ,

which shows that (P) and (D) are formally identical.

Hence if [xQ, yQt zQ) is optimal for (D), then [yQ, xQ, wQ) is

optimal for (P) and conversely.

Now it remains to show that ^(x0> 2/0>
 u
0) - 0 ; consider

T 1*
x.Bxn fusing (l) and
U U J

*f T 1̂ 1 ( T I* [ T )*( m 1*

x Bx - h/^Si/n (using (9) and
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Similar ly i t can be establ ished

Hence, by Theorem 2 ,

which implies tha t

and therefore F[xQ, yQ, WQ) = 0 .

5. Special cases

In this section we consider some special cases of the problems (P) and

(D) by choosing particular forms of the function K(x, y) and the matrices

B and C .

(i) For B = 0 = C , programs (P) and (D) reduce to the symmetric

dual pair of Dantzig, Eisenberg and Cottle [3]. The symmetric dual pair of

Mond [7] is also obtained under the same condition B = 0 = C because, as

observed by Mond and Hanson [ H ] , addition or omission of y 2 0 in (D)

and x > 0 in (P) is not an essential difference.

(ii) For K{x, y) = pTx + bTy - yTAx , where p 6 if1 , b € if and

A € R the programs (P) and (D) reduce to the symmetric dual pair of

Mond [9] and that of Mehndiratta [6].

(iii) For B = 0 = C and K(x, y) = f{x) + g{y) - yTAx , the

programs (P) and (D) reduce to general symmetric dual programs of

Mehndiratta [5].

6. Certain extensions

This section presents certain generalizations of the symmetric dual

pair considered in Section 2. These generalizations can be viewed as

nonlinear extensions of problems considered by Mond [S] and Mehndirat+a [5]

and also as natural symmetric dual formulations for problems studied by

Mond [&] and Mond and Schechter [72]. The proofs of duality results are

not given here because they follow exactly on the lines of Section 3 and
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Section h except tha t the r e s u l t s of Mond and Schecheter [72] w i l l also toe

required along with the r e s u l t s of Craven and Mond [ / ] , [ 2 ] .

( i ) Symmetric dual pa i r of Mond's problem:

Primal ( P o ) :

T T
Minimize <p(x, y, w) = K(x, y) - y V2K(x, y) - x h(y)

yT[VxTh(y)] + [xTBxf2

subject t o : VxTh{y) - V #(x, y)' + l{x) + OD > 0 ,

w Cm 5 1 ,

x > 0 ,

y * o ;

Dual (Do):

T T
Maximize ty{x, y, z) = K(x, y) - x V^x, y) - y l(x)

xT\yyTl(x)] - {yTCyf

subject to: VxTl(x) - V±K(x, y) + My) - Bz < 0 ,

T
z Bz 5 1 ,

. x > 0 ,

Here functions h : R -*• K and I : R -*• E are differentiable convex

and concave respectively and remaining symbols have the same meaning as in

Section 2. If 1=0 and h = 0 , the programs (Po) and (Do) reduce to

the symmetric dual programs of Section 2.
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(ii) Symmetric dual pair of Mond and Schechter's problem:

Primal (Pi):

Minimize H(x, y, w) = K{x, y) - yT^2K{x, y) - x
Th(y)

yT[VxTh(y)]

subject to: Vx h(y) - V2K(x, y) + l(x) + Nu > 0 ,

\M\q 2 1 ,

x, y £ 0 ;

Dual (DiI

T T
Maximize L(x, y, z) = K(x, y) - x V K(x, y) - y l(x)

subject to: Vy l{x) - V±K(x, y) + h(y) - Mz £ 0 ,

Us lip = 1 .

x, y > o .

Here functions h and I are the same as in (Po) and (Do), M and N

are m x n matrices and p-norm is given by

^=l

Similarly for q with p~ + q~ = 1 , we define

HBIL =
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