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On multigraphs with a given partition

C. C. Cadogan

Relationships between the numbers of general graphs and the

numbers of multigraphs are set up with a view to enumerating

multigraphs with a given partition. In the process of doing so

certain structures which we call graph-lattices evolve. The

principle of inclusion-exclusion plays an important part in the

formulation of theorems and actual numerical results are

computed with the aid of 5-functions.

1. Introduction

Among the unsolved problems listed in Harary's review article [7] was

the enumeration of graphs with a given partition. The relationships

derived in this paper provide a method of solving.this problem for

multigraphs.

Our approach involves removing loops from general graphs and the

correspondences between the general graphs and the resulting multigraphs

are characterised by means of structures called graph-lattices,

here-in-after called lattices. The principle -of inclusion-exclusion plays

a major part in the formulation of our theorems and numerical results are

computed by means of the Superposition Theorem [4] and S-functions [3,

5]. Theorems with short proofs are included in entirety; in other cases,

hints at the method of procedure for the proof are given. The reader is

referred to [2] for basic definitions on graphs; however, to avoid
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126 C.C. Cadogan

confusion in terminology we include here a few definitions which are

useful for our purposes.

DEFINITION 1. A node of a graph which has valency k is said to be

k-valent. For k = 1, 2, 3 we have respectively monovalent, bivalent and

trivalent nodes; k = 0 gives isolated nodes.

DEFINITION 2. A graph in which all nodes are trivalent is called a

cubic graph.

DEFINITION 3. A general graph is a graph in which multiple edges

and loops are allowed.

DEFINITION 4. A multigraph is a graph in which multiple edges but

no loops are allowed.

The graphs which are discussed are not necessarily connected.

2. The simple lattice

In order to fix our ideas we commence with the simple case of cubic

graphs on m (even and finite) nodes.

We introduce the notion of a graph-lattice by displaying such a

structure. Figure 1 is the lattice for m = k .

(0: 1. 1. 1. 1)

Figure 1.
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We now give a general description of such a structure and the process

leading up to its evolution.

The lattice for m trivalent nodes is denoted by GL{m : 3) .

Typical elements 3, Y f GL(m : 3) are of the form:

(2.1) 3 = (m-q; (p)) , (p) = (l \ * ... q $

r ki ki k -i
Y = (m-v; (a)) , (a) = 1 2 ... vv\ .

Naturally,

(2.2) q = I ij. and v = £ ik. ,

and we let

(2.3) p = I 3\ and s = \ k^ .

The elements 3, Y are then said to be on levels p and s

respectively in the lattice.

The element a = (m : 0) is called the root.

The element 3 represents m-q trivalent nodes and several kinds

of monovalent nodes of which there are j. of the i-th kind (colour)

(i = 1, 2 q) ; y has a similar interpretation. GL(m : 3) evolved

in the following way: we consider the general graphs on 3 and denote

the number of such graphs by L(3) ; the number of multigraphs on 3 is

denoted by M(3) . Let 3, (k = 1, 2 m-q) be the elements on

level (p+l) which are Joined to 3 by an edge. Such elements are said

to be generated by 3 •

We strip the L(3) graphs of their loops (if any) (at most one loop

is connected to each node) and we obtain the following equation which

characterises the relationships between elements on consecutive levels in

the lattice.

m-q

(2.1») £(3) = W(3) + I «(Bj ,
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where the partition (p«} of (3, is given by

31 32 3+1 3
b

( 31 32 3+1 3 I
1 2 ... s b ... qq\ if 1 5 s <

, , , ,
1 2 . . . ^ . s if s > <? .

We note that s assumes all integral values between 1 and m - q

and must be distinguished from the integers already in (p) since it is

obtained from a further stripping.

The numbers £(3) can all be obtained by means of the Superposition

Theorem [4], thus our next step would be to invert equation (2.1*) with a

view to finding M{&) .

3. The inversion formula

Let s > p . We say that f$, y are comparable, written 3 < y , i f

and only if every integer in (p) occurs in (a) and k. 2 j .

( l £ i 5 I J ) , and incomparable otherwise; consequently, 3 and y are

comparable in the l a t t i c e i f and only i f there i s a path between 3 and

Y •

Let

(3.1)

We define )i(3, Y) by the relation:

Then u(3, Y ) is the Mobius function [6] for the lattice as 3, Y

range over its elements.

Let d{&, y) denote the number (2 0) of edges in any path (all

such paths are of the same length) Joining 3 to y and let
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v(B, Y ) = (-l)MV(3» Y) • Then equation (2.1*) can be written in the form:

(3.3) KB) = W(B) + I v(B,

d(B,Y)=l

We now state our first theorem.

THEOREM 1.

m
Mia) = I | I y(a, m ( ^ ,

where B = a when u = 0 .

Proof. From equation (3-3) we have

M((3) = K B ) - I v(B,

d(3,Y)=l

Similarly,

= K Y ) - I v(y,

Combining these two equations gives

= MB) - I • v(g, Y ) K Y ) + I v(B,

After m - q steps, we obtain,

m-q

M(B) = I
u=o

with Y = 3 when u = 0 .

Now putting B = a and observing that a < B for all B in the

lattice completes the proof. The result of Theorem 1 exhibits an

inclusion-exclusion pattern.
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4. An isomorphism between lattices

We consider the general lattice GL(m : k) , k > 3 , on m fe-valent

nodes. Each node may contain as many as r loops, where

'(fc-l)/2 if k is odd,

(U.I) ' r = •

k/2 if k is even,

and there are (r+l) categories (including that for fc-valent nodes) into

which the numbers of nodes can be put after the loops, if any, are removed

from the general graphs. Accordingly, the root of this lattice may be

represented by

(U.2) a' = (m; 0; 0; ...; 0) ,

r

where the categories are separated by semi-colons. In a typical element

of the lattice the i-th category from the left contains numbers of

|fc-2(£-l)|-valent nodes (i = 1, 2 r+1) .

We underline once more that our aim is to derive for GL{m : k) a

result similar to Theorem 1. Indeed, the general approach is the same,

the underlying principle being inclusion-exclusion which is instrumental

in establishing the following lemma.

LEMMA 1. Let G be a lattice. If 3 € G is joined to root a by

two paths which differ in lengths by an odd integer, then its contribution

to M(a) is zero.

Proof. Let l\ and £2 t e the lengths of the two paths, where

ll - I2 is an odd integer. Then the contribution to M(a) is, by

Theorem 1, L(3)j(-l) x+(-l) 2> = 0 . Hence the result of the lemma.

In circumstances in which the conditions of Lemma 1 obtain, we

eliminate 3 from G and after all such 3's are removed, we denote the

remaining lattice by G* . Such instances do occur in GL(m : k) , as we

shall see shortly, and the lattice corresponding to GL(m : k) in this

way is denoted by G*L(m : k) .

THEOREM 2. There exists an isomorphism between G*L(m : k) and

GL(m : 3) .
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Proof. G*£(m : k) is generated by induction. A typical element on

level p of G*L(m : k) is assumed to be of the form

6' = (m-q; (p); O^JD^^jJ))
r-1

where (p) and p are defined as in (2.1) and (2.3). 8' generates on

level (p+l) several elements of which we single out

Y1 = {m-q-s; (p), s; 0; 0; . .. ; o) . Fix s . How y' generates on

level (p+2) all elements generated by &' of the form

\m-q-t; (Pih (P2); •••; (P-) where (p.) are partitions, s 5 t £ m-q
I r ) v

and at least one of (p.) (j = 2, — , r) is non-null. Hence from Lemma
3

1 all such elements are to be removed from G*L{m : k) • In particular,

when s = m - q , there are no elements generated by y' in the final

stage. Thus in G*L{m : k) , 3' generates all elements of the form

y' = \m-q-s; (p,) ; 0; 0; ...; 0 where (p,) is defined as in (2.5) and
I ^ ^ v • ' J

r-1

is generated by each of

where

(Pj) = [l 2 ... 8 S ... q ̂J (8 = 1, 2, ..., q)

provided s occurs in (p) . Now starting from the root a' we can

generate G*L(m : k) in entirety.

Let the mapping x : 0*L{m : k) ^ ^ GL(m : 3) be defined by the

relation X(Y') = Y . where y' f G*L{m : k) and Y € GL{m : 3) have

identical partitions (0) in the second category. Since (a) occurs

once only in each lattice, X ^s one-to-one, and hence is an

isomorphism. This proves the theorem.

The result of Theorem 2 indicates that we may use GL{m : 3) to

represent G*L(m : k) provided the two categories in GL{m : 3)

represent fe-valent and (fe-2)-valent nodes from left to right. Note that
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G*L{m : 3) = GL{m : 3) . This representation establishes the fact that

the result of Theorem 1 can be used to count multigraphs on /c-valent

nodes.

5. The lattice for any given partition

In this section we discuss the lattice for any given partition by

first considering the product of two lattices G*L{m : k) and

G*L(n : h) , h, k > 3 . The final result is obtained by straightforward

induction on any number of such lattices.

Let 3 (. G*L(m : k) , y f G*L(n : h) where 3 is defined as in

(2.1) and

(5-1) Y = (n-v; (a)) ; (a) as in (2.1).

Here we assume a representation of each lattice by a replica of

GL(m : 3) and k > h . Then we define the product of 3 and Y by the

relation:

(5-2) 3 A y = (m-q; n-v; (p); (a))

= Y A 3 •

In (5.2) , valencies are arranged from lef t to r ight in descending

order of magnitude.

Using (5.2) we define the product of 3 and G*L(n : h) as the

structure obtained from G*L{n : h) when each y € G*L(n : h) is

'multiplied1 by 3 and the connectivity i s preserved.

Now we join the ' roo t s ' of these new structures as the 3's are

joined in G*L{m : k) to obtain the product of G*L(m : k) and

G*L(n : h) denoted by G*L(m : k) * G*L(n : h) . Note that the product

of the l a t t i c e s as defined i s not a commutative operation.

Let the (7*-lattice for m fe-valent nodes and n h-v&lent nodes be

denoted by G*L{m : k\ n : h) . Let G = rep(G') stand for lattice G

is a representation of lattice G' . Then we have,

LEMMA 2. G*L{m : k) x G*L(n : h) - rep(c*L(m : k\ n : h)} .

The proof of this lemma follows along identical lines to that of

Theorem 2 and is therefore omitted.
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Let G*. = G*h\m. : k.) (i = 1 , 2 , . . . , r ) .

The result of Lemma 2 is extended in a natural way by induction to

give,

r
THEOREM 3. ~fj G? = r e p f c L ^ i : kx \ m2 • k2 \ ... \ mp : kj]

i=l »• '
where

F T ^ = G\ - Gz x ... x G* .
"i- = l

Again Theorem 1 can be applied here with a, 6 defined appropriately

for the lattice.

For k = h Lemma 2 is still valid but in this case we are dealing

with two kinds of fe-valent nodes. We now consider applications of the

preceding theorems.

6. Applications

The formula in Theorem 1 is expressed in terms of the numbers of

general graphs. These numbers can all be found by the Superposition

Theorem [4] which states that the number of general graphs on p. nodes

of valency i (i = 1, 2, ...) is given by

(6.1)

where the number I of edges in the graph satisfies the equation

21 = I ip. .

Equation (6.1) is written in the notation compatible with

5-functions [3, 5] which have the important orthogonality property namely,

1 if (X) = (u) ,

0 if (X) * (y) ,

where (X) and (y) are partitions of the same integer.

It is well known [3] that hAh^] contains all the S-functions

which display even partitions only of the integer 21 , all 5-functions
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having coefficient unity, hence formula (6.1) may be replaced by

(6.2) *e(

where ^(•d) means the number of S-functions in A with even

partitions.

The following result, which has appeared in the literature, is

relevant to our applications:

Hk k

(6-3) ajg = (-if I WkW JT WJ) l ,

m
where (Zk) denotes the sum of the k.'s and m = £ ik. .

We now apply Theorem 1 to the result in Theorem 3.

A typical element of G*L\m. : k.) is 3- = \m q-i (p-) > where

the partition (p.) of the integer q. is obtained by replacing each

subscript n of Q in partition (p) defined in (2.1) by n. ,
ft t-

(n = 1, 2 q) . Hence, q. = \ n^ , and p. = I j .
n.=l i n.=l i
v t

r r r

For 1 f G*L[m. : k.) , a = A a. and (3 = / \ 3 . , where a. i s root

of G*L(m. : k.) .

r r

Let p = Y p. and m = \ m. . With these definitions, Theorem 1

gives,
f

rLEMMA 3 . M{a) = J

p=o
foi,, B j

^=l
with

£(3) = £ ( a ) ufeen p = 0 .

MAIN THEOREM. 2%

Ci = 1 , 2 , . . . , r) is

MAIN THEOREM. The number of multigraphs on m. k.-valent nodes
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a .=o

Proof. The number of such graphs is, using Lemma 3,

I I
p=o d(a,B)=p

fa-. 3.)

(-1) pA *H

x=i

= N TT
<?v=c

by (6.3).

We stipulate that for r i 2 , the factors in this formula must be

multiplied before even parts are extracted.

We now apply the main theorem to obtain more explicit results. Let

M(m : k) denote the number of multigraphs on m k-valent nodes. Then,

we have,

THEOREM 4. U{m : 3) = s
\q=o

Proof. The resul t follows from the main theorem by putting r = 1 ,
ml ~ m > <?l = <J > &i = 3 and from the identi ty a [hi] = a .

THEOREM 5. M{m : 2) =

Proof. Similar to that of Theorem h, with

1 i f q = 0 or 1 ,

a \h ] = •q1- 0J

0 otherwise.

Theorem 5 indicates that the two-element l a t t i c e containing the root
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(m ; 0) and the element (m-1; l) is sufficient to enumerate graphs on

bivalent nodes. This is a particularly straightforward formula to apply.

We now present an example of the result of the main theorem.

EXAMPLE. We enumerate the multigraphs on 2 U-valent nodes and 2

trivalent nodes.

The number of such graphs is

= N

= 3 3 - 1 6 + 0 - 27 + 1 6 - 1

= 6 .

The six graphs are displayed in figure 2.

ce

(i) (ii) (iii)

(iv) (vi)
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