LETTERS TO THE EDITOR

A VARIANT OF THE EHRENFEST MODEL

K. W. H. VAN BEEK* AND
A. J. STAM, ${ }^{*}$ Rijksuniversiteit Groningen

Abstract

The Ehrenfest model is modified by drawing r balls at a time. The stationary distribution is the same as for $r=1$.

STATIONARY DISTRIBUTION; MARKOV CHAIN

A set of N balls, labeled $1, \cdots, N$, is divided over two urns, I and II. A random sample of size $r<N$ is drawn without replacement from $\{1, \cdots, N\}$ and after that every ball whose label is in the sample is removed from its urn and put into the other urn. Then this procedure is repeated. If $r=1$ we have the classical Ehrenfest model for diffusion of a gas between two connected containers, see [1]-[5]. As state space we may take the set $E=\{0,1\}^{N}$ of all sequences $x=\left(x_{1}, \cdots, x_{N}\right)$ where $x_{i}=1$ means that ball i is in urn I and $x_{i}=0$ means that it is in II. The process then is Markovian. We write $p(x, y), x \in E, y \in E$, for its transition probabilities. The lumped process whose state is the number of balls in I has state space $F=\{0, \cdots, N\}$ and is also Markovian.

If $r=1$ the stationary distribution is uniform on E and for the lumped process it is the binomial ($N, \frac{1}{2}$) distribution on F that corresponds to the uniform distribution on E. We shall prove that similar results hold for $r>1$.

A one-step transition $x \rightarrow y$ may be described as follows. A random sample A of size r is taken from $\{1, \cdots, N\}$ and every x_{i} with $i \in A$ is changed, or replaced by $y_{i}=x_{i}+1[\bmod 2]$. So

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}=\sum_{i=1}^{N} x_{i}+r, \quad[\bmod 2] \tag{1}
\end{equation*}
$$

Let r be odd. Then by (1) every state in E has even period. Since drawing the same sample twice in succession is possible, every state has period 2. Let $B=\left\{i_{1}, \cdots, i_{r+1}\right\}$. It is possible to draw the samples $B-\left\{i_{k}\right\}, k=2, \cdots, r+1$, in succession. Then $x_{i_{1}}$ is changed r times and $x_{i_{h}}, h \geqq 2$, is changed $r-1$ times, which results in changing $x_{i_{1}}$ only. This shows that all states communicate. Let E_{0} and E_{1} be the subsets of E with $\sum x_{i}$ even and $\sum x_{i}$ odd, respectively. By (1) every one-step transition is either from E_{0} to E_{1} or from E_{1} to E_{0}. So E_{0} and E_{1} are the cyclically moving classes.

Now let r be even. Then (1) implies that E_{0} and E_{1} are closed. When $x \in E_{0}, y \in E_{0}$ or $x \in E_{1}, y \in E_{1}$, the number of i with $x_{i} \neq y_{i}$ is even. So if $r=2$ a suitable sequence of samples leads from x to y. But if $r>2$ two successive samples of the form $H \cup\{i\}$ and $H \cup\{j\}, i \neq j, i \notin H, j \notin H$, have the same effect as the single sample (i, j) when $r=2$.

[^0]So x and y communicate, i.e. E_{0} and E_{1} are irreducible. As for odd r we have $p^{(2)}(x, x)>0$. Let B be as above. Since it is possible to draw the $r+1$ samples $B-\left\{i_{k}\right\}$, $k=1, \cdots, r+1$, in succession, $p^{(r+1)}(x, x)>0$. So the states are aperiodic.

For any $y \in E$ the set $E(y)$ of x with $p(x, y)>0$ contains exactly $\binom{N}{r}$ elements, viz. those x with $x_{i} \neq y_{i}$ for r values of i, and $p(x, y)=\binom{N}{r}^{-1}, x \in E(y)$.

Let r be even. Then $E(y) \subset E_{i}$ if $y \in E_{i}, i=1,0$, and the stationary equations

$$
\begin{equation*}
\pi(y)=\sum_{x \in E(y)} \pi(x) p(x, y) \tag{2}
\end{equation*}
$$

admit two distinct solutions: the uniform distributions $\pi(y)=2^{1-N}$ on E_{0} and on E_{1}.
Let r be odd. Then $E(y) \subset E_{1}$ if $y \in E_{0}$ and $E(y) \subset E_{0}$ if $y \in E_{1}$. So the right-hand side of (2) transforms the uniform distribution on E_{0} into the uniform distribution on E_{1} and vice versa. The (only) stationary distribution of the process is uniform on E.

For the lumped process the above results lead to the following conclusions. If r is even, $F_{0}=\{k \in F: k$ even $\}$ and $F_{1}=\{k \in F: k$ odd $\}$ are irreducible closed sets of aperiodic states and the stationary distributions on F_{0} and F_{1} have probability $\binom{N}{k} 2^{1-N}$ at k. If r is odd all states communicate and have period 2 . The cyclically moving classes are F_{0} and F_{1}. The stationary distribution is binomial ($N, \frac{1}{2}$).

References

[1] Feller, W. (1957) An Introduction to Probability Theory and Its Applications I. Wiley, New York.
[2] Johnson, N. L. and Kotz, S. (1977) Urn Models and Their Application. Wiley, New York.
[3] Kac, M. (1947) Random walk and theory of Brownian motion. Amer. Math. Monthly 54, 369-391.
[4] Karlin, S. and McGregor, J. (1965) Ehrenfest urn models. J. Appl. Prob. 2, 351-376.
[5] Kemeny, J. G. and Snell, J. L. (1960) Finite Markov Chains. Van Nostrand, Princeton, N.J.

[^0]: Received 31 March 1987.
 Postal address: Mathematisch Instituut, Rijksuniversiteit, Postbus 800, 9700 AV Groningen, The Netherlands.

