Adv. Appl. Prob. **19**, 995–996 (1987) Printed in N. Ireland © Applied Probability Trust 1987

LETTERS TO THE EDITOR

A VARIANT OF THE EHRENFEST MODEL

K. W. H. VAN BEEK* AND

A. J. STAM, * Rijksuniversiteit Groningen

Abstract

The Ehrenfest model is modified by drawing r balls at a time. The stationary distribution is the same as for r = 1.

STATIONARY DISTRIBUTION; MARKOV CHAIN

A set of N balls, labeled $1, \dots, N$, is divided over two urns, I and II. A random sample of size r < N is drawn without replacement from $\{1, \dots, N\}$ and after that every ball whose label is in the sample is removed from its urn and put into the other urn. Then this procedure is repeated. If r = 1 we have the classical Ehrenfest model for diffusion of a gas between two connected containers, see [1]–[5]. As state space we may take the set $E = \{0, 1\}^N$ of all sequences $x = (x_1, \dots, x_N)$ where $x_i = 1$ means that ball *i* is in urn I and $x_i = 0$ means that it is in II. The process then is Markovian. We write $p(x, y), x \in E, y \in E$, for its transition probabilities. The lumped process whose state is the number of balls in I has state space $F = \{0, \dots, N\}$ and is also Markovian.

If r = 1 the stationary distribution is uniform on E and for the lumped process it is the binomial $(N, \frac{1}{2})$ distribution on F that corresponds to the uniform distribution on E. We shall prove that similar results hold for r > 1.

A one-step transition $x \to y$ may be described as follows. A random sample A of size r is taken from $\{1, \dots, N\}$ and every x_i with $i \in A$ is changed, or replaced by $y_i = x_i + 1 \pmod{2}$. So

(1)
$$\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} x_i + r, \pmod{2}.$$

Let r be odd. Then by (1) every state in E has even period. Since drawing the same sample twice in succession is possible, every state has period 2. Let $B = \{i_1, \dots, i_{r+1}\}$. It is possible to draw the samples $B - \{i_k\}$, $k = 2, \dots, r+1$, in succession. Then x_{i_1} is changed r times and x_{i_n} , $h \ge 2$, is changed r-1 times, which results in changing x_{i_1} only. This shows that all states communicate. Let E_0 and E_1 be the subsets of E with $\sum x_i$ even and $\sum x_i$ odd, respectively. By (1) every one-step transition is either from E_0 to E_1 or from E_1 to E_0 . So E_0 and E_1 are the cyclically moving classes.

Now let r be even. Then (1) implies that E_0 and E_1 are closed. When $x \in E_0$, $y \in E_0$ or $x \in E_1$, $y \in E_1$, the number of i with $x_i \neq y_i$ is even. So if r = 2 a suitable sequence of samples leads from x to y. But if r > 2 two successive samples of the form $H \cup \{i\}$ and $H \cup \{j\}$, $i \neq j$, $i \notin H$, $j \notin H$, have the same effect as the single sample (i, j) when r = 2.

Received 31 March 1987.

Postal address: Mathematisch Instituut, Rijksuniversiteit, Postbus 800, 9700 AV Groningen, The Netherlands.

So x and y communicate, i.e. E_0 and E_1 are irreducible. As for odd r we have $p^{(2)}(x, x) > 0$. Let B be as above. Since it is possible to draw the r + 1 samples $B - \{i_k\}$, $k = 1, \dots, r+1$, in succession, $p^{(r+1)}(x, x) > 0$. So the states are aperiodic.

For any $y \in E$ the set E(y) of x with p(x, y) > 0 contains exactly $\binom{N}{x}$ elements, viz.

those x with $x_i \neq y_i$ for r values of i, and $p(x, y) = {\binom{N}{r}}^{-1}$, $x \in E(y)$.

Let r be even. Then $E(y) \subset E_i$ if $y \in E_i$, i = 1, 0, and the stationary equations

(2)
$$\pi(y) = \sum_{x \in E(y)} \pi(x) p(x, y),$$

admit two distinct solutions: the uniform distributions $\pi(y) = 2^{1-N}$ on E_0 and on E_1 . Let r be odd. Then $E(y) \subset E_1$ if $y \in E_0$ and $E(y) \subset E_0$ if $y \in E_1$. So the right-hand side of (2) transforms the uniform distribution on E_0 into the uniform distribution on E_1 and vice versa. The (only) stationary distribution of the process is uniform on E.

For the lumped process the above results lead to the following conclusions. If r is even, $F_0 = \{k \in F : k \text{ even}\}$ and $F_1 = \{k \in F : k \text{ odd}\}$ are irreducible closed sets of aperiodic states and the stationary distributions on F_0 and F_1 have probability $\binom{N}{r} 2^{1-N}$ at k. If r is odd all states communicate and have period 2. The cyclically moving classes are F_0 and F_1 . The stationary distribution is binomial $(N, \frac{1}{2})$.

References

[1] FELLER, W. (1957) An Introduction to Probability Theory and Its Applications I. Wiley, New York.

[2] JOHNSON, N. L. AND KOTZ, S. (1977) Urn Models and Their Application. Wiley, New York.

[3] KAC, M. (1947) Random walk and theory of Brownian motion. Amer. Math. Monthly 54, 369-391.

[4] KARLIN, S. AND MCGREGOR, J. (1965) Ehrenfest urn models. J. Appl. Prob. 2, 351-376.

[5] KEMENY, J. G. AND SNELL, J. L. (1960) Finite Markov Chains. Van Nostrand, Princeton, N.J.