DETERMINING A SET FROM THE GARDINALITIES OF ITS INTERSECTIONS WITH OTHER SETS

DAVID G. CANTOR

Let n be a positive integer and put $N=\{1,2, \ldots, n\}$. A collection $\left\{S_{1}, S_{2}, \ldots, S_{t}\right\}$ of subsets of N is called determining if, for any $T \subset N$, the cardinalities of the t intersections $T \cap S_{j}$ determine T uniquely. Let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ be n variables with range $\{0,1\}$. It is clear that a determining collection $\left\{S_{j}\right\}$ has the property that the sums

$$
\sum_{i \in S_{j}} \epsilon_{i}
$$

determine the ϵ_{i} uniquely. We are interested in finding, as a function of n, the least integer $f(n)$ such that there exists a determining collection containing $f(n)$ subsets of N. This can be interpreted as a "coin-weighing" problem: given n coins known to weigh either α or $\beta(\alpha \neq \beta), f(n)$ is the least number of weighings necessary, on a calibrated scale, to determine the weight of each of the n coins (one can always normalize so that $\alpha=0$ and $\beta=1$).

It is clear that the sets $\{1\},\{2\}, \ldots,\{n\}$ form a determining collection, hence that $f(n) \leqslant n$. The purpose of this paper is to show that $f(n)=$ $O(n / \log \log n)$, thus proving a conjecture of N. J. Fine (1). The author would like to thank J. L. Selfridge for suggesting the problem, and for many helpful discussions. The case $n=5$ comes from (2).

Since there is no additional difficulty we allow the ϵ_{i} to have range $\{0,1,2, \ldots, k-1\}$, where $k \geqslant 2$ is an integer fixed for the remainder of this paper. Then $f(n)$ is the least number of sets $S_{j} \subset N$ such that the sums

$$
\sum_{i \in S_{j}} \epsilon_{i}
$$

determine the ϵ_{i} uniquely.
We consider a more general problem where some of the variables range through the real numbers. A variable whose range is $\{0,1,2, \ldots, k-1\}$ is called restricted; otherwise it is unrestricted.

Let $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{T}$ be restricted variables and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ unrestricted variables. By a method (r, s, t) we mean a collection of t subsets of the $r+s$ variables ϵ_{i}, σ_{j}, such that the t sums, obtained by summing the variables in each of the t subsets, determine the ϵ_{i} and σ_{j} uniquely. The existence of a method (r, s, t) means that there are t linear forms, with coefficients 0 or 1 , in the $r+s$ variables ϵ_{i}, σ_{j}, such that the values of the linear forms determine the values of the ϵ_{i} and σ_{j} uniquely, hence that $f(r+s) \leqslant t$.

Received December 19, 1962.

Put $R(r, s, t)=(r+s) / t$. In Lemma 3, we define a "multiplication" of methods, which when applied to the methods constructed in Lemma 2 makes $R(r, s, t)$ arbitrarily large.

Lemma 1. Suppose there exists a method (r, s, t). Then, if $p \geqslant 1, r^{\prime} \leqslant r$, $s^{\prime} \leqslant s, t^{\prime} \geqslant t$, there exist methods $\left(r^{\prime}, s^{\prime}, t^{\prime}\right),\left(r+s^{\prime}, s-s^{\prime}, t\right)$, and $(p r, p s, p t)$. For each $a>r+s$, there exists a method ($a, 0, c$) with $a / c \geqslant(r+s) / 2 t$.

Proof. The first part is obvious. Now set $a=q(r+s)-g$, where $0 \leqslant g<r+s$. By the first part there exists a method $(q(r+s), 0, q t)$; hence there exists a method $(a, 0, q t)$. But $a / q t \geqslant(q-1)(r+s) / q t \geqslant(r+s) / 2 t$.

Lemma 2. For each $m \geqslant 0$, there exists a method $\left(m+1, k^{m}, k^{m}+1\right)$.
Proof. Let $\epsilon_{0}, \epsilon_{i}, \ldots, \epsilon_{m}$ be restricted variables and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k^{m}}$ be unrestricted variables. Put

$$
L_{0}=\sum_{i=1}^{k^{m}} \sigma_{i}
$$

and

$$
L_{j}=\sigma_{j}+\sum_{i=h}^{m} \epsilon_{i},
$$

where $1 \leqslant j \leqslant k^{m}$, and h is obtained from j by $k^{h-1}<j \leqslant k^{h}$. Then ϵ_{i} appears in those forms L_{j} for which $1 \leqslant j \leqslant k^{i}$. Hence,

$$
-L_{0}+\sum_{j=1}^{k^{m}} L_{j}=\sum_{i=0}^{m} \epsilon_{i} k^{i}
$$

By the uniqueness of the expansion of a number to the base k, this determines the ϵ_{i} uniquely, and then as

$$
\sigma_{j}=L_{j}-\sum_{i=h}^{m} \epsilon_{i}
$$

the σ_{j} are determined.
Put

$$
(r, s, t) *(u, v, w)=(r v+t u, s v, t w)
$$

Under the map

$$
(r, s, t) \rightarrow\left(\begin{array}{cc}
s & 0 \\
r & t
\end{array}\right)
$$

the operation * corresponds to matrix multiplication, hence is associative.
Lemma 3. Suppose there exist methods (r, s, t) and (u, v, w). Then there exists a method $(r, s, t) *(u, v, w)$.

Proof. Let $\epsilon_{i j}, 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant v$, be $r v$ restricted variables; let $\delta_{m j}$, $1 \leqslant m \leqslant t, 1 \leqslant j \leqslant u$, be $t u$ restricted variables; finally, let $\sigma_{i j}, 1 \leqslant i \leqslant s$, $1 \leqslant j \leqslant v$, be $s v$ unrestricted variables. For each fixed $j, 1 \leqslant j \leqslant v$, the existence of method (r, s, t) implies that there exist t linear forms $L_{m j}$, $1 \leqslant m \leqslant t$, with coefficients 0 or 1 , in the $\epsilon_{i j}$ and $\sigma_{i j}$, whose values determine the $\epsilon_{i j}$ and $\sigma_{i j}$ uniquely. For each fixed $m, 1 \leqslant m \leqslant t$, we apply method (u, v, w) to the $L_{m j}$ and the $\delta_{m j}$, treating the $L_{m j}$ as the v unrestricted variables of the method (u, v, w). Thus there exist w linear forms $K_{n}, 1 \leqslant n \leqslant w$, with coefficients 0 or 1 in the $L_{m j}$ and the $\delta_{m j}$, whose values determine the values of the $\delta_{m j}$ and $L_{m j}$, hence the values of the $\epsilon_{i j}$ and $\sigma_{i j}$. For different j, the $L_{m j}$ are linear forms in distinct variables $\epsilon_{i j}$ and $\sigma_{i j}$. Hence the tw linear forms

$$
J_{m n}\left(\epsilon_{i j}, \sigma_{i j}, \delta_{i j}\right)=K_{n}\left(L_{m j}\left(\epsilon_{i j}, \sigma_{i j}\right), \delta_{m j}\right)
$$

have coefficients 0 or 1 , and determine the $r v+t u$ restricted variables $\epsilon_{i j}$, $\delta_{m j}$, and the sv unrestricted variables $\sigma_{i j}$.

Put $(r, s, t)^{1}=(r, s, t)$, and inductively

$$
(r, s, t)^{n+1}=(r, s, t)^{n} *(r, s, t) .
$$

Lemma 4. If $0<c-b<a$, then

$$
R\left[(a, b, c)^{m}\right]=\frac{a}{c-b}\left[1-\left(\frac{b}{c}\right)^{m}\right]+\left(\frac{b}{c}\right)^{m}
$$

Proof. An easy induction.
Theorem. $f(n)=O(n / \log \log n)$. More precisely,

$$
\lim _{n \rightarrow \infty} \sup (f(n) \log \log n / n) \leqslant 2 \log k /(1-1 / e)
$$

Proof. By Lemmas 1, 2, and 3, there exists a method

$$
\left(a_{m}, b_{m}, c_{m}\right)=\left(m, k^{m}, k^{m}+1\right)^{k^{m}}
$$

Clearly,

$$
c_{m}=\left(k^{m}+1\right)^{k m}=k^{m k^{m}}\left(1+1 / k^{m}\right)^{k m} \sim e k^{m k^{m}} .
$$

By Lemma 4,

$$
\begin{aligned}
R\left(a_{m}, b_{m}, c_{m}\right) & =m\left[1-\left(1-\frac{1}{k^{m}+1}\right)^{k^{m}}\right]+\left(1-\frac{1}{k^{m}+1}\right)^{k^{m}} \\
& \sim m(1-1 / e)
\end{aligned}
$$

Put $d_{m}=a_{m}+b_{m}$; then $d_{m} \sim m(1-1 / e) c_{m}$, and $\log \log d_{m} \sim m \log k$. By Lemma 1, there exist methods ($d_{m}, 0, c_{m}$); hence

$$
f\left(d_{m}\right) \leqslant c_{m} \sim d_{m} / m(1-1 / e)
$$

Thus

$$
\limsup _{n \rightarrow \infty}\left[f\left(d_{m}\right) \frac{\log \log d_{m}}{d_{m}}\right] \leqslant \frac{\log k}{1-1 / e}
$$

By Lemma 1.

$$
f(n) \leqslant 2 n f\left(d_{m}\right) / d_{m}, \quad \text { where } d_{m} \leqslant n<d_{m+1}
$$

Hence

$$
\limsup _{n} f(n) \log \log n / n \leqslant 2 \log k /(1-1 / e)
$$

References

1. N. J. Fine, Solution El999, Amer. Math. Monthly, 67 (1960), 697.
2. H. S. Shapiro, Problem El999, Amer. Math. Monthly, 67 (1960), 82.

University of Washington, Seattle, Washington

