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The Gelfand–Graev representation of
classical groups in terms of Hecke algebras
Petar Bakić and Gordan Savin
Abstract. Let G be a p-adic classical group. The representations in a given Bernstein component can
be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-
generator of the given component. Using Heiermann’s construction of these algebras, we describe
the Bernstein components of the Gelfand–Graev representation for G = SO(2n + 1), Sp(2n), and
O(2n).

1 Introduction

Let F be a non-Archimedean local field of residue characteristic q. Let G be the
group of F-points of a connected, split reductive algebraic group defined over F; in
particular, the group G contains a Borel subgroup. Let U be the unipotent radical of
the Borel subgroup, and fix a nondegenerate (Whittaker) character ψ ∶ U → C

×. The
Gelfand–Graev representation of G is c − indG

U(ψ), where c − ind stands for induction
with compact support. The goal of this paper is to give an explicit description of the
Bernstein components of the Gelfand–Graev representation.

Let us briefly describe what is known. Let K be a special maximal compact
subgroup of G, and let I be an Iwahori subgroup contained in K. Let H be the
Iwahori–Hecke algebra of I-biinvariant functions on G, and let HK be the subalgebra
consisting of functions supported on K. Then HK is isomorphic to the group algebra
of the Weyl group W of G, and thus it has a one-dimensional representation ε
(the sign character). As an H-module, (c − indG

U ψ)I is isomorphic to the projective
H-module [10]

H ⊗HK ε.

If G = GLn , then a similar statement holds for all Bernstein components with appro-
priate Hecke algebras arising from Bushnell–Kutzko types [11]. We build on methods
of that paper. We finish this paragraph by mentioning a recent article of Mishra and
Pattanayak [20] that considers Bernstein components of c − indG

U(ψ) corresponding
to representations induced from the Borel subgroup. Their result is formulated in
terms of Hecke algebras arising from types constructed by Roche.
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1344 P. Bakić and G. Savin

For a general G, one does not have a complete theory of types and corresponding
Hecke algebras, but there is a replacement: endomorphism algebras of pro-generators
of Bernstein components.

It turns out that these algebras are more suited for the problem at hand. In more
detail, let P = MN be a parabolic subgroup of G, and let σ be an irreducible cuspidal
representation of M. Let M○ be the subgroup of M consisting of all m ∈ M such that
∣χ(m)∣ = 1 for all smooth characters χ ∶ M → C

×. Let σ0 be an irreducible summand
of σ restricted to M○. Then iG

P (c − indM
M○(σ0)) is a projective G-module generating a

single Bernstein component. Here, iG
P denotes normalized parabolic induction. Let

H = EndG(iG
P (c − indM

M○(σ0))).

Observe that we have a natural inclusion

A = EndM(c − indM
M0

(σ0)) ⊆ H.

For every G-module π,

F(π) = HomG(iG
P (c − indM

M○(σ0)), π)

is naturally a right H-module. The functor F is an equivalence between the Bernstein
component generated by iG

P (c − indM
M○(σ0)) and the category of right H-modules.

Now, assume that σ is ψ-generic. Let

Π = F(c − indG
U(ψ)).

It is not difficult to see, using Bernstein’s second adjointness, that Π ≅ A, as A-
modules. Thus, understanding Π reduces to understandingH-modules isomorphic to
A. This was done for GLn in [11]. We extend this computation to H for G = SO(2n +
1, F), Sp(2n, F), and O(2n, F). For classical groups, the algebra H has been computed
by Heiermann [17]; more recently, Solleveld [25] has studied the same algebra in a
more general setting. If G = SO(2n + 1, F), Sp(2n, F), or O(2n, F), it turns out that the
algebra H is a tensor product of affine Hecke algebras, each of which is isomorphic
to the Iwahori–Hecke algebra of GLk or to an algebra of type C̃k with semisimple
rank k ≤ n, with unequal parameters. (Note that we work with the full orthogonal
group O(2n) instead of SO(2n); this is because the case of SO(2n) is significantly
more involved due to the complicated structure of the R-group [14].) Assume that H
corresponds to the affine type C̃n . The diagram has two special vertices, denoted by 0
and n. Corresponding to them, we have two finite subalgebras H0 and Hn of H. We
prove that any H-module isomorphic to A is necessarily

H ⊗H0 ε0 or H ⊗Hn εn

for a one-dimensional representation ε0 or εn . Here, we moved to more familiar
language of left H-modules. This is harmless indeed, since H is isomorphic to its
opposite algebra; this follows from the Iwahori–Matsumoto relations. Finally, we
determine precisely the isomorphism class of Π.

Next, we apply the classification of H-modules isomorphic to A to study the Gan–
Gross–Prasad restriction problem from O(m + 1, F) to O(m, F). Fix an irreducible
supercuspidal representation of O(m + 1, F). Then, for every maximal ideal J in the
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The Gelfand–Graev representation of classical groups in terms of Hecke algebras 1345

Bernstein center of O(m, F), there exists at most one irreducible quotient annihilated
by J. This is a generalization of a similar result for general linear groups where only
Whittaker generic representations of GL(n) appear as quotients of supercuspidal
representations of GL(n + 1).

We finish this paper with an appendix where we show that H is isomorphic with
the Hecke algebra arising from the type constructed by Stevens.

2 Preliminaries

2.1 Notation

Throughout the paper, F will denote a non-Archimedean local field of residue charac-
teristic q and uniformizer �, equipped with the absolute value ∣ ⋅ ∣ normalized in the
usual way.

We let G denote the special odd orthogonal group, the symplectic group, or the
(full) even orthogonal group. If we want to emphasize the rank, we use Gn to denote
SO(2n + 1, F), Sp(2n, F), or O(2n, F). By Rep(G), we denote the category of smooth
complex representations of G.

For an arbitrary group H, we let X(H) denote the group of complex characters
of H.

2.2 Parabolic subgroups

If G is the disconnected group O(2n, F), then, following [15], we consider only
parabolic subgroups P = MN such that M has supercuspidal (modulo center) rep-
resentations. Explicitly, this means that

M = GLn1(F) × ⋅ ⋅ ⋅ × GLnk (F) × O(2n0 , F);

however, we do not allow n0 = 1 if O(2n, F) is split.

2.3 Unramified characters

If M is a Levi subgroup of G, we let M○ = ⋂χ ker ∣χ∣, the intersection taken over
the set of all rational characters χ ∶ M → F×. We say that a (complex) character χ
of M is unramified if it is trivial on M○; we let Xnr(M) denote the group of all
unramified characters on M. Then M/M○ is a free Z-module of finite rank, and the
group Xnr(M) = X(M/M○) has a natural structure of a complex affine variety. For
any element m ∈ M, we denote by bm the evaluation χ ↦ χ(m).

Now, let σ be an irreducible cuspidal representation of M, and set Mσ = {m ∈
M ∶ m σ ≅ σ}. Then M/Mσ is a finite abelian group and, abusing notation, we let A
denote the ring of regular functions on the quotient variety X(M/M○)/X(M/Mσ).
Since Mσ/M○ is once again a free Z-module (of the same rank as M/M○), we have
A ≅ C[Mσ/M○], by m ↦ bm . Furthermore, letting σ0 denote an arbitrary irreducible
constituent of σ ∣M○ , we have a canonical isomorphism A ≅ EndM(c − indM

M○σ0).
Indeed, this follows from a simple application of Mackey theory. We refer the reader
to [17, Sections 1.17 and 4] for additional details.
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2.4 The Hecke algebra of a Bernstein component

If π is an irreducible representation of G, there is a Levi subgroup M of G and an
irreducible cuspidal representation σ of M such that π is (isomorphic to) a subquotient
of iG

P (σ). Here, P is a parabolic subgroup of G with a Levi component M. The pair
(M , σ) is determined by π up to conjugacy; we call (M , σ) the cuspidal support of π.

We say that the two pairs (M1 , σ1) and (M2 , σ2) as above are inertially equivalent
if there exist an element g ∈ G and an unramified character χ of M2 such that

g σ1 = σ2 ⊗ χ.

This is an equivalence relation on the set of all pairs (M , σ). Given an equivalence
class [(M , σ)], we denote by Rep(M ,σ)(G) the full subcategory of Rep(G) defined by
the requirement that all irreducible subquotients of every object in Rep(M ,σ)(G) be
supported within the inertial class [(M , σ)]. A classic result of Bernstein then shows
that the category Rep(G) decomposes as a direct product

Rep(G) = ∏
[(M ,σ)]

Rep(M ,σ)(G)

taken over the set of all inertial equivalence classes. We refer to Rep(M ,σ)(G) as the
Bernstein component attached to the pair (M , σ). For a detailed discussion of the
above results, see [3] or [4].

For each Bernstein component Rep(M ,σ)(G), one can construct a projective gen-
erator Γ(M ,σ) by setting

Γ(M ,σ) = iG
P (c − indM

M○(σ0)).

Here, σ0 is any irreducible component of the (semisimple) restriction σ ∣M○ . We
now obtain a functor from the category Rep(M ,σ)(G) to the category of right
EndG(Γ(M ,σ))-modules given by

π ↦ Hom(Γ(M ,σ) , π).

The fact that Γ(M ,σ) is a projective generator implies that this is an equivalence of
categories. This is [4, Lemma 22]; a detailed proof of this fact is also given in [22,
Theorem 1.5.3.1].

Given a Bernstein component attached to s = (M , σ), we use Hs to denote
EndG(Γs) and refer to it as the Hecke algebra attached to the component s. Fur-
thermore, for any π ∈ Rep(G), we let πs denote the corresponding Hs-module
Hom(Γs , π).

Although we do not use it here, we point out that there is another highly useful
approach to analyzing Bernstein components, based on the theory of types developed
by Bushnell and Kutzko [8]. One can show that the Hecke algebra used by Bushnell
and Kutzko is in fact isomorphic to the algebra Hs introduced above; we prove this
fact in Appendix A. Therefore—for the purposes of this paper—the two approaches
are equivalent.
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2.5 Cuspidal representations

Here, we briefly recall some facts and introduce notation related to cuspidal represen-
tations of classical groups.

Let ρ and τ be irreducible unitarizable cuspidal representations of GLk(F) and
Gn0 , respectively. We consider the representation να ρ ⋊ τ, where α ∈ R. Here, and
throughout the paper, we use ν to denote the unramified character ∣det∣ of the general
linear group. If ρ is not self-dual, the above representation never reduces. If ρ is
self-dual, then there exists a unique α ≥ 0 such that να ρ ⋊ τ is reducible; we denote
it by αρ .

The number αρ has a natural description in terms of Langlands parameters. Let
ϕ be the L-parameter of τ. Then ϕ decomposes into a direct sum of irreducible
representations of WF × SL2(C). We view ρ as a representation of WF ; we say that
it is of the same type as ϕ if the corresponding WF -representation factors through a
group of the same type (orthogonal/symplectic) as ϕ. Letting Sa denote the (unique)
irreducible algebraic a-dimensional representation of SL2(C), we now set

aρ = max{a ∶ ρ ⊗ Sa appears in ϕ}.

If the above set is empty, we let

aρ =
⎧⎪⎪⎨⎪⎪⎩

−1, if ρ is of the same type as ϕ,
0, otherwise.

With this description of aρ , we have αρ = aρ+1
2 .

2.6 The structure of the Hecke algebra

We retain the notation ρ, τ, and Gn from the previous subsection, and consider the
cuspidal component s attached to the representation

ρ ⊗⋯ ⊗ ρ
���������������������������������������

n times

⊗ τ

of the Levi subgroup M = GLk(F) × ⋯ × GLk(F) × Gn0 in GN , where N = nk + n0.
In the rest of the paper, we restrict our attention to cuspidal components of the above
form. This does not present a significant loss of generality, since the Hecke algebra
of a general cuspidal component is the product of algebras corresponding to the
components described above. To simplify notation, we set H = Hs.

The structure of the Hecke algebraH has been completely described by Heiermann
[16, 17]. In his work, Heiermann shows that H is a Hecke algebra with parameters
(the type of the algebra and the parameters depending on the specifics of the given
case). When the component in question is of the form described above, we have three
distinct cases, which we now summarize. For basic definitions and results on Hecke
algebras with parameters, we refer to the work of Lusztig [19].

In what follows, we let t denote the order of the (finite) group {χ ∈ Xnr(GLk(F)) ∶
ρ ⊗ χ ≅ ρ}. In all three cases, the commutative algebra A (see Section 2.3) is a
subalgebra of H. In the present setting, the rank of the free module Mσ/M○ is equal
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to n. We can thus identify A ≅ C[Mσ/M○] with the algebra of Laurent polynomials
C[X±1 , . . . , X±n ]. We fix this isomorphism explicitly: For i = 1, . . . , n, let h i be the
element of M which is equal to diag(�, 1, . . . , 1) on the ith GL factor, and equal to
the identity elsewhere. Then X i = bt

h i
. The three cases are:

(i) No representation of the form ρ ⊗ χ with χ ∈ Xnr(GLk(F)) is self-dual.
In this case, the algebra H is described by an affine Coxeter diagram of type

Ãn−1 with equal parameters t. In other words, it is isomorphic to the algebra
Hn described in [11]: There are elements T1 , . . . , Tn−1 which satisfy the quadratic
relation

(Ti + 1)(Ti − qt) = 0, i = 1, . . . , n − 1

and commutation relations

Ti f − f s i Ti = (qt − 1) f − f s i

1 − X i+1/X i
, i = 1, . . . , n − 1,

where f s i is obtained from f ∈ A by swapping X i and X i+1.
In the two remaining cases, there is an unramified character χ such that ρ ⊗ χ is
self-dual. Without loss of generality, we may assume that ρ is self-dual. Then, up to
isomorphism, there is a unique representation of the form ρ ⊗ χ ≇ ρ which is also
self-dual; we denote it by ρ−. We set α = αρ and β = αρ− (see Section 2.5 for notation).
Since the situation is symmetric, we may (and will) assume that α ≥ β. The description
of H now involves two additional operators T0 and Tn (see Remark 2.1). We have the
following two cases:
(ii) α = β = 0.

In this case, H is described by an affine Coxeter diagram of type C̃n :
44

0 t t t t t 0

The nodes correspond to operators T0 , . . . , Tn which satisfy the quadratic rela-
tions

T2
0 = 1, T2

n = 1, (Ti + 1)(Ti − qt) = 0 for i = 1, . . . , n − 1,

and the braid relations as prescribed by the diagram. The commutation relations
for Ti , i = 1, . . . , n − 1, are the same as in Case (i), whereas Tn satisfies

f Tn − Tn f ∨ = 0

with f ∨(X1 , . . . , Xn−1 , Xn) = f (X1 , . . . , Xn−1 , 1/Xn).
(iii) α > 0.

In this case, H is described by an affine Coxeter diagram of type C̃n :
44

s t t t t t r

Here, s = t(α − β) and r = t(α + β). Again, the nodes correspond to operators
T0 , . . . , Tn which satisfy quadratic relations analogous to those in Case (ii), along
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with the braid relations. The commutation relations for Ti , i = 1, . . . , n − 1, are the
same as in Case (i), whereas Tn satisfies

f Tn − Tn f ∨ = ((qr − 1) + 1
Xn

(√qr+s − √qr−s)) f − f ∨

1 − 1/X2
n

.

Cases (i)–(iii) correspond to Cases (I)–(III) listed in [16, Section 3.1]. The above
results are collected in Section 3.4 of [16]. We take a moment to explain the situation
in the even orthogonal case. Papers [16, 17] do not treat the full orthogonal group;
rather, they contain results about the special orthogonal group SO(2n). In the spe-
cial orthogonal case, there is a nontrivial R-group (see [14]) which complicates the
structure of the Hecke algebra; this was ultimately worked out by Heiermann in [18].
Because of this, we choose to work with O(2n) instead. This is indeed justified: Annex
A of [18] shows that the results of [16, 17] generalize to the full orthogonal case.

A detailed construction of the operators Ti (starting from standard intertwining
operators) is the subject matter of [17]; we do not need the details here, except in a
special case discussed in the final part of Section 3.2. To facilitate the comparison of
the above summary to the works of Heiermann [16–18], we point out the ways in which
our summary deviates from them.

Remark 2.1 (a) The explicit isomorphism C[Mσ/M○] ≅ C[X±1 , . . . , X±n ] we use
is different than the one used in [16]; there, Heiermann sets X i = bt

h i h−1
i+1

for
i = 1, . . . , n − 1 (and, in Case (ii), Xn = bt

hn−1 hn
).

(b) The operator T0 which appears in Cases (ii) and (iii) above is not needed to
describe H, and is therefore not used in [16, 17]. To be precise, the Hecke algebra
is generated over A by the operators T1 , . . . , Tn and determined by the quadratic
and braid relations they satisfy, along with the commutation relations listed above.
Each of the operators T1 , . . . , Tn corresponds to a simple reflection in the Weyl
group, whereas the operator T0 corresponds to the reflection given by the (in this
case, unique) minimal element of the root system (see [19, Section 1.4]). In fact,
we define T0 by setting

T0 = √qs+2t(n−1)+r X1T−1
w ,

where Tw = T1⋯Tn−1Tn Tn−1⋯T1 (see [19, Sections 2.8 and 3.3]). We use T0 out of
convenience, as it allows a more symmetric description of certain H-modules.

(c) The description of H in Case (ii) differs from the one given in [16], which views
Tn as the nontrivial element of the R-group. However, one can verify that the
description we use is equivalent. With our description, (ii) can be viewed as
a special case of (iii) (with r = s = 0); however, since our results in (ii) require
additional analysis, we still state the two cases separately.

2.7 Generic representations

We recall only the most basic facts here; a general reference is, e.g., [24].
Assume that G is split, and let U is be a maximal unipotent subgroup of G.

Fix a nondegenerate character ψ of U. Recall that a character of U is said to be
nondegenerate if it is nontrivial on every root subgroup corresponding to a simple
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root. We say that a representation (π, V) of G is ψ-generic if there exists a so-called
Whittaker functional—that is, a linear functional L ∶ V → C such that

L(π(u)v) = ψ(u)L(v), ∀u ∈ U , v ∈ V .

The key fact we use throughout is that the space of Whittaker functionals is at most
one-dimensional. However, this fact does not hold for the disconnected O(2n, F),
and we need to adjust the definition of Whittaker character as follows. In this case, the
Levi factor of the normalizer of U in O(2n, F) is GL1(F) × ⋅ ⋅ ⋅ × GL1(F) × O(2, F)
and there exists α ∈ O(2, F)/SO(2, F) normalizing ψ. Observe that the order of α is 2.
We extend ψ to a character ψ̃ of Ũ = U ⋊ ⟨α⟩ by ψ̃(α) = 1. With this extension, the
space of Whittaker functionals for any irreducible representation of O(2n, F) is at
most one-dimensional.

Now, let P = MN be a parabolic subgroup of G. If σ is an irreducible generic
representation of M, then one can construct a Whittaker functional on iG

P σ (see [24,
Proposition 3.1] and equation (3.11)); in other words, the induced representation is
ψ-generic as well. We use this fact later, in Section 3.2.

3 The Gelfand–Graev representation

Continuing with split G, let U be a maximal unipotent subgroup of G and fix a
nondegenerate character ψ ∶ U → C

×. The Gelfand–Graev representation of G is the
compactly induced representation c − indG

U(ψ). However, if G = O(2n, F), the pair
(U , ψ) is replaced by the pair (Ũ , ψ̃) in this definition. With this modification for
O(2n, F) in mind, the Gelfand–Graev representation is the “universal” ψ-generic
representation: Every ψ-generic representation of G appears as a quotient (with
multiplicity one).

From this point on, we assume that the cuspidal representation τ—used to define
the Bernstein component s in Section 2.6—is generic. We let Π denote (c − indG

U(ψ))
viewed as an H-module. Our goal is to determine the structure of Π.

We begin by investigating the structure of Π as an A-module. We point out that the
proof of the following proposition applies, without modification, to any split reductive
p-adic group.

Proposition 3.1 As A-modules, we have Π ≅ A.

Proof The H-module Π is given by HomG(Γs , c − indG
U(ψ)), where

Γs = iG
P (c − indM

M○(σ0)). Recall that σ0 was taken to be an arbitrary irreducible
constituent of σ ∣M○ . However, having now fixed the Whittaker datum for M (and
thus for M○), there exists a unique irreducible summand of σ ∣M○ which is ψ-generic.
Thus, from now on, we assume that σ0 is this unique ψ-generic constituent of σ ∣M○ .

To view Π as an A = EndM(c − indM
M○(σ0))-module, we use the Bernstein version

of Frobenius reciprocity:

Π = HomG(iG
P (c − indM

M○(σ0)), c − indG
U(ψ))

= HomM(c − indM
M○(σ0), rN(c − indG

U(ψ)));
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here, rN denotes the Jacquet functor with respect to P = MN , the parabolic opposite
to P.

We now use the fact that rN(c − indG
U(ψ)) is isomorphic to the Gelfand–Graev

representation of M, c − indM
U∩M(ψ) (see [6, Section 2.2]). Furthermore, with the

above choice of σ0, the representation c − indM
M○(σ0) is precisely the sum of all

maximal (m σ0)-isotypic components of c − indM
U∩M(ψ), where m σ0 ranges over the set

of all M-conjugates of σ0. Indeed, c − indM
U∩M(ψ) is itself induced from the Gelfand–

Graev representation of M○, c − indM○
U∩M(ψ). Since σ0 appears with multiplicity one,

and no other m-conjugate of σ0 is generic, we have c − indM○
U∩M(ψ) ≅ σ0 ⊕ σ�0 , where

σ�0 is a representation which contains no M-conjugate of σ0. Inducing to M, we
get c − indM

U∩M(ψ) = c − indM
M○(σ0) ⊕ c − indM

M○(σ�0 ), which proves the above claim
about isotypic components. Thus, viewed as an A-module, Π is isomorphic to

HomM(c − indM
M○(σ0), rN(c − indG

U(ψ)))
= HomM(c − indM

M○(σ0), c − indM
U∩M(ψ))

= HomM(c − indM
M○(σ0), c − indM

M○(σ0)) = A. ∎

Remark 3.2 We point out that the above differs from the proof of the analogous
statement in [11]. It is shown there that any H-module Π which is

(i) projective;
(ii) finitely generated; and which satisfies

(iii) dim HomH(Π, π) ≤ 1 for any principal series representation π
is isomorphic to A when viewed as an A-module (see [11, Lemmas 2.2 and 2.3]). The
Gelfand–Graev representation can be shown to satisfy properties (i)–(iii): Property
(i) is provided by Corollary 8.6 of [11]; (ii) is proved in [6], and (iii) follows from the
multiplicity one property of generic representations. In Section 4, we present another
useful application of the above approach to proving that an H-module is isomorphic
to A.

Proposition 3.1 suggests the following approach to determine the H-module struc-
ture of Π: First, we find all possible H-module structures on A. After that, we need to
only determine which one of those structures describes Π. In the following subsection,
we compute the possible H-structures on A.

3.1 H-module structures on A

In order to treat the case of general Bernstein components—and not just those
described in Section 2.6—we work in a slightly more general setting in this section.
We thus investigate the possible H-module structures on A (where H is generated by
T0 , . . . , Tn over A), but we assume that A = A′[X±1 , . . . , X±n ], where A′ is an integral
domain containing C as a subring. For Bernstein components described in Section
2.6, we have A′ = C; in general, A′ itself is a (Laurent) polynomial ring over C.

First, assume that we are in Case (i) (see Section 2.6). Then the situation is precisely
the one treated in [11], and the possible H-module structures on A are determined in
Section 2.2 there. We have the following.
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Proposition 3.3 (Case (i)) Let Π be an H-module which is isomorphic to A as an
A-module. Then Π ≅ H ⊗HSn

ε, where ε is a one-dimensional representation of HSn .

Here, HSn denotes the finite-dimensional algebra generated by T1 , . . . , Tn−1; we
have H = A⊗C HSn . Furthermore, HSn has precisely two one-dimensional represen-
tations:

ε−1 ∶ Ti ↦ −1 for i = 1, . . . , n − 1; and
εq t ∶ Ti ↦ qt for i = 1, . . . , n − 1.

We now treat Cases (ii) and (iii) simultaneously. Recall that, in these cases, the
algebra H is described by an affine Coxeter diagram of type C̃n . We let H0 and Hn
denote the algebras obtained by removing the vertices which correspond to T0 and Tn ,
respectively. In other words, H0 is generated by T1 , . . . , Tn as an A-algebra, whereas
Hn is generated by T0 , . . . , Tn−1. Note that we have H = A⊗C Hn = A⊗C H0. We
now prove the following result.

Proposition 3.4 (Cases (ii) and (iii)) Let Π be an H-module which is isomorphic to A
as an A-module. Then

Π ≅ H ⊗H0 ε0 or Π ≅ H ⊗Hn εn .

Here, ε0 (resp. εn) is a one-dimensional representation of H0 (resp. Hn).

Proof We first restrict our attention to the subalgebra generated by T1 , . . . , Tn−1,
which is contained in both H0 and Hn . This is precisely the algebra HSn discussed
in [11]. The possible HSn -structures on A are determined in Section 2.2 there. To
summarize the relevant results, there exists an invertible element g0 ∈ A on which
the operators T1 , . . . , Tn act by the same scalar, either qt or −1.

We now determine how T0 and Tn act on g0. Since g0 is invertible, we have Tn g0 =
f g0 for some f ∈ A. Recall that Tn satisfies the quadratic relation

T2
n = (qr − 1)Tn + qr

as well as the commutation relation

Tn f − f ∨Tn = ((qr − 1) + 1
Xn

(√qr+s − √qr−s)) f − f ∨

1 − 1/X2
n

.

Here, and throughout the proof, we let r = s = 0 if we are considering Case (ii). Recall
that f ∨ denotes the function f ∨(X1 , . . . , Xn) = f (X1 , . . . , Xn−1 , 1

Xn
). Using the above

and comparing the two sides of T2
n g0 = (qr − 1)Tn g0 + qr g0, we get

f f ∨ = (qr − 1)
Xn f ∨ − 1

Xn
f

Xn − 1
Xn

− (√qr+s − √qr−s) f − f ∨

Xn − 1
Xn

+ qr .

To simplify notation, we now set b = qr − 1 and c = (√qr+s − √qr−s). We also tem-
porarily drop the index n, writing X instead of Xn . Clearing out the denominators, we
rearrange the above equation into

(X2 − 1) f f ∨ = b(X2 f ∨ − f ) − c(X f − X f ∨) + qr(X2 − 1).(*)

Our first goal is to find the possible solutions f ∈ A of this equation.
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Lemma 3.5 The above equation has the following solutions:

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + cX1−2d + qt X−2d , d ∈ Z>0(i)

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + cX1−2d − X−2d , d ∈ Z>0(ii)

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + bX−2d ± √qr±s X−2d−1 , d ∈ Z≥0(iii)

f = ∓√qr±s X2d+1 − bX2d − cX2d−1 − ⋯ − cX , d ∈ Z≥0(iv)

f = −qr X2d − cX2d−1 − ⋅ ⋅ ⋅ − bX2 − cX , d ∈ Z>0(v)

f = X2d − cX2d−1 − ⋯ − bX2 − cX , d ∈ Z>0(vi)

along with the constant solutions f = qt and f = −1. ∎

Proof Each f ∈ A can be written as

f = ak Xk + ak−1 Xk−1 + ⋯ + a0 + a−1 X−1 + ⋯ + a−l X−l(†)

for some functions a−l , . . . , ak ∈ A′[X±1 , . . . , X±n−1], with ak , a−l ≠ 0. We write
maxdeg( f ) for k and mindeg( f ) for −l . Now, let f be a solution of (*). We begin
our analysis of (*) by solving some special cases. We claim the following:

If f = a0 , then a0 = qr or a0 = −1.
If f = a1 X , then a1 = ∓√qr±s .
If f = a0 + a−1 X−1 and a−1 ≠ 0, then a0 = b and a−1 = ±√qr±s .

(3.1)

To verify this, we first look at solutions f = a0. In this case, the equation (*) reduces to
a2

0 = ba0 + qr . This equation has two constant solutions, a0 = −1 and a0 = qr . These
are also the only solutions, since A has no zero divisors. When f (X) = a1 X, the
equation becomes a2

1 + a1c − qr = 0. Again, the only two solutions of this equation are
the constant ones: a1 = ∓√qr±s . Finally, when f = a0 + a−1 X−1, the equation reduces
to the following system:

a1b = a1a0 and a2
0 + a2

−1 = a0b + a−1c + qr .

Since we are assuming that a1 ≠ 0, the first equation gives us a0 = b, and then the
second becomes a2

−1 − ca−1 − qr = 0. Again, we have two solutions: a−1 = ±√qr±s .
Next, when f is a solution of (*) given by (†), we observe

k and l cannot both be positive.(3.2)

Indeed, let LHS and RHS denote the left-hand side and the right-hand side of
(*), respectively. We then have maxdeg(LHS) = k + l + 2, whereas maxdeg(RHS) ≤
max{l + 2, k + 1, 2}. Therefore, equality of degrees cannot be achieved unless k ≤ 0 or
l ≤ 0. In fact, the same argument gives us a slightly stronger statement in one case:

If k > 0, then a0 = 0.(3.3)
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Finally, we make use of the following fact, which is readily verified by direct compu-
tation:

For any positive integer d , f is a solution of (*) if and only if

X2d f − Rd is also a solution.
(3.4)

Here, Rd = bX2 + cX
X2 − 1

(X2d − 1) = bX2d + cX2d−1 + ⋅ ⋅ ⋅ + bX2 + cX.

We are now ready to find all the solutions. By (3.2), any solution of f contains either
only positive powers of X, or only nonpositive. We therefore consider two separate
cases.

Case A: f has only nonpositive powers, i.e., f = a0 + a−1 X−1 + ⋯ + a−l X−l .

Let d = ⌊l/2⌋. We use (3.4) and look at another solution, g = X2d f − Rd .
We first assume that l = 2d is even. In this case, g only has nonnegative powers of X,

but it has a nonzero constant term, a−l . Therefore, (3.3) shows that the coefficients next
to the positive powers must be zero: a0 − b = a−1 − c = ⋯ = a−l+1 − c = 0. Now, (3.1)
shows that there are only two possibilities for the constant term: a−l = qt or a−l = −1.
We thus get two solutions:

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + cX1−2d + qt X−2d and

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + cX1−2d − X−2d .

Next, assume that l = 2d + 1 is odd. Now, g has a nonzero coefficient (i.e., a−l ) next to
X−1, so by (3.2) the coefficients next to positive powers must be equal to 0. This gives
us a0 = b, a−1 = c, . . . , a2−l = c. Furthermore, g is thus of the form a1−l + a−l X−1, so
we can read off the coefficients a1−l and a−l from (3.1). We thus arrive at two more
solutions:

f = b + cX−1 + bX−2 + ⋅ ⋅ ⋅ + bX−2d ± √qr±s X−2d−1 .

Case B: f only has positive powers, i.e., f = ak Xk + ⋅ ⋅ ⋅ + a1 X.

This time, we set d = ⌊k/2⌋ and use (3.4) to obtain the solution g = 1
X2d ( f + Rd).

First, assume that k = 2d + 1 is odd. Then g has a nonzero coefficient (i.e., ak) next
to X, so (3.2) and (3.3) imply that all the lower coefficients are zero. This immediately
gives us a1 = −c, a2 = −b, . . . , a2d = −b. Furthermore, we have g = ak X, so (3.1) shows
that we have two possibilities for ak . We therefore get two solutions:

f = ∓√qr±s X2d+1 − bX2d − cX2d−1 − ⋯ − cX .

Finally, assume that k = 2d is even. First, if k > 2, consider another solution g′ =
X2−2d( f + R2d−2). Now, g′ has a nonzero coefficient (i.e., ak) next to X2, so the
coefficient next to nonpositive powers of X have to be 0 by (3.2) and (3.3). This gives us
a1 = −c, a2 = −b, . . . , a2d−2 = −b. In particular, this shows that g = (ak + b) + (ak−1 +
c)X−1. Since ak + b ≠ b (i.e., ak ≠ 0), (3.1) shows that we have only two possibilities:

ak−1 + c = 0 and ak + b ∈ {qr , −1}.
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In other words, ak−1 = −c and ak ∈ {−qr , 1}. We thus get the remaining solutions:

f = −qr X2d − cX2d−1 − ⋅ ⋅ ⋅ − bX2 − cX and f = X2d − cX2d−1 − ⋅ ⋅ ⋅ − bX2 − cX .

∎

We continue the proof of Proposition 3.4. We have just proved that Tn g0 = f g0
where f ∈ A is one of the elements listed in Lemma 3.5. First, assume that f is one
of the constant solutions, i.e., f = −1 or f = qr . Then g0 is an invertible element
of A on which T1 , . . . , Tn−1 , Tn all act as scalars. In other words, we have a one-
dimensional representation ε0 of the algebra H0. Since H = A⊗C H0, it follows that
the corresponding H-module structure on A is isomorphic to

H ⊗H0 ε0 .

Now, if f is of type (i) or (ii) listed in the statement of Lemma 3.5, set

g1 = (X1 X2 ⋅ ⋯ ⋅ Xn)−d g0 .

Since (X1 X2 ⋅ ⋯ ⋅ Xn)−d commutes with T1 , . . . , Tn−1, g1 is still an eigenvector for each
of these operators. We claim that g1 is an eigenvector for Tn as well. Indeed, using the
appropriate commutation relation and the fact that Tn commutes with X1 , . . . , Xn−1,
we get

Tn g1 = (X1 X2 ⋅ ⋯ ⋅ Xn−1)−d ⋅ Tn X−d
n g0

= (X1 X2 ⋅ ⋯ ⋅ Xn−1)−d (Xd
n Tn + bXn + c

X2
n − 1

(X−d
n − Xd

n)) g0

= (X1 X2 ⋅ ⋯ ⋅ Xn−1)−d (Xd
n f + bXn + c

X2
n − 1

(X−d
n − Xd

n)) g0

= (X1 X2 ⋅ ⋯ ⋅ Xn−1)−d (X2d
n f − bXn + c

X2
n − 1

(X2d
n − 1)) g0 .

Simplifying the expression in the parentheses, we obtain λX−d
n , so that Tn g1 = λg1,

where λ = qt (resp. −1) when f is of type (i) (resp. (ii)). We have thus once more found
a common eigenvector for T1 , . . . , Tn−1 , Tn . Again, we deduce that the corresponding
H-module structure is isomorphic to H ⊗H0 ε0, where ε0 is a one-dimensional
representation of H0.

When f is of type (v) or (vi), we use the same argument and arrive at the same
conclusion. The only difference in this case is that we have to set g1 = (X1 X2 ⋅ ⋯ ⋅
Xn)d g0 in order to obtain a common eigenvector for T1 , . . . , Tn−1 , Tn .

In the remaining cases—that is, when f is of type (iii) or (iv)—we cannot find
such an eigenvector, but we claim that we can find an invertible g1 ∈ A which is a
common eigenvector for T0 , T1 , . . . , Tn−1. Just like in the previous cases, this will imply
that the H-structure on A is isomorphic to H⊗Hn εn for some one-dimensional
representation εn of Hn .

If Tn g0 = f g0 with f of type (iii), we set g1 = (X1 X2 ⋅ ⋯ ⋅ Xn)−d g0. If f is of type
(iv), let g1 = (X1 X2 ⋅ ⋯ ⋅ Xn)d+1 g0. In both cases, g1 is an eigenvector for T1 , . . . , Tn−1
and a computation analogous to the one we carried out in for Cases (i) and (ii) shows
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that we have

Tn g1 = (b ±√qr±s X−1
n )g1 .

The following lemma then shows that g1 is also an eigenvector for T0 and thus
concludes the proof of Proposition 3.4.

Lemma 3.6 Let g be an invertible element of A, which is an eigenvector for
T1 , . . . , Tn−1, such that Tn g = (b ± √qr±s X−1

n )g. Then g is also an eigenvector for T0.

Proof Recall that T0 = √qs+2(n−1)t+r X1T−1
w , with Tw = T1⋯Tn−1Tn Tn−1⋯T1. In both

cases, all the operators T1 , . . . , Tn−1 act by the same scalar λ ∈ {−1, qt}. We therefore
have

T0 g = √qs+2(n−1)t+r λ−(n−1)X1T−1
1 ⋅ ⋯ ⋅ T−1

n−1T−1
n g .

We now recall that T−1
n = 1

qr (Tn − b); this follows from the quadratic relation for Tn .
Therefore, by the assumption in the statement of the lemma, T−1

n g = ±√q±s−r X−1
n .

Thus,

T0 g = μ ⋅ λ−(n−1) ⋅ √q2(n−1)t X1T−1
1 ⋅ ⋯ ⋅ T−1

n−1 X−1
n g ,(3.5)

with μ ∈ {−1, qs}. Finally, it remains to notice that, for every i = 1, . . . , n − 1, we have

T−1
i X−1

i+1 = 1
qt X−1

i Ti .(3.6)

Indeed, from the quadratic relation, we have T−1
i = 1

q t (Ti − (qt − 1)). Combining this
with the commutation relation for Ti , we get (3.6). Successively applying (3.6) to (3.5)
(and taking into account that each Ti acts on g by λ), we get

T0 g = μg ,

which we needed to prove. Notice that the possible eigenvalues are precisely the zeros
of (x − qs)(x + 1) = 0, the quadratic equation satisfied by T0. ∎

The above lemma shows that, in Cases (iii) and (iv), we have an invertible element
g1 ∈ A which is a common eigenvector for T0 , T1 , . . . , Tn . Consequently, the H-
module structure on A is given by H⊗Hn εn for some one-dimensional represen-
tation εn of Hn . This concludes the proof of Proposition 3.4.

In view of Proposition 3.4, there are eight candidates for the H-structure (four, if
n = 1): First, we may take the tensor product over H0 or Hn ; after that, there are four
one-dimensional representations of H0 (resp. Hn) to choose from. To verify this, note
that the braid relations imply that—in any one-dimensional representation—the oper-
ators T1 , . . . , Tn−1 act by the same scalar, which has to be a zero of the quadratic relation
satisfied by Ti : (x − qt)(x + 1) = 0. We therefore have two possibilities for the action
of the operators Ti , and two additional possibilities (again, the zeros of the quadratic
relation) for Tn (resp. T0). For example, the one-dimensional representations of H0
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are given by

ε−1,−1 ∶ {Tn ↦ −1, Ti ↦ −1}, εqr ,−1 ∶ {Tn ↦ qr , Ti ↦ −1},
ε−1,q t ∶ {Tn ↦ −1, Ti ↦ qt}, εqr ,q t ∶ {Tn ↦ qr , Ti ↦ qt}.

Corollary 3.7 General case. Let Π be an H-module which is isomorphic to A as an
A-module. Then there exists a finite subalgebra HW ≅ C[W], where W is a finite group,
such that H ≅ A⊗HW , and

Π ≅ H ⊗HW ε,

where ε is a one-dimensional representation of HW .

Proof Recall that H is a tensor product of Hecke algebras each of which is isomor-
phic to the Iwahori Hecke algebra of GLn or an algebra of type C̃n with unequal param-
eters. Propositions 3.3 and 3.4 deal with these two cases, with additional flexibility that
allows A = A′[X±1 , . . . , X±n ], where A′ = C[Y±1 , . . . , Y±m]. Thus, the corollary follows
by repeated application of these two propositions. ∎

3.2 The Gelfand–Graev module

To complete the analysis of the Gelfand–Graev representation, we need to determine
which of the H-module structures from the previous section is isomorphic to Π =
(c − indG

U(ψ))s. We consider Cases (i)–(iii) separately.

Case (i). Let δ be the unique irreducible subrepresentation of ρν n−1
2 × ρν n−3

2 × ⋯ ×
ρν 1−n

2 . Then π = δ ⋊ τ is an irreducible generic representation. The corresponding
H-module is one-dimensional: By the Bernstein version of Frobenius reciprocity, we
have

HomG(Γs , π) = HomM(c − indM
M○(ρ ⊗ ⋯ ⊗ ρ ⊗ τ), ν

1−n
2 ρ ⊗⋯⊗ ν

n−1
2 ρ ⊗ τ

⊕ ν
1−n

2 ρ∨ ⊗⋯⊗ ν
n−1

2 ρ∨ ⊗ τ).

(3.7)

Since ρ∨ is not an unramified twist of ρ in this case, the above Hom-space is only one-
dimensional. By Proposition 3.3, HomG(Γs , Π) is isomorphic to either Π ≅ H ⊗HSn

ε−1 or Π ≅ H ⊗HSn
εq t . To determine which, we need only look at the action of H

on the one-dimensional module π. We now need to examine the definition of the
operators Ti , i = 1, . . . , n − 1. In [17], Ti is defined in Section 5.2 by the formula

Ti = R i + (qt − 1) X i/X i+1

X i/X i+1 − 1
.(3.8)

The intertwining operator R i has a pole at 0, and a zero at the point of reducibility (see
[17, Section 1.8]). Since ν 3−n

2 −i ρ × ν 3−n
2 −i+1ρ reduces, the operator R i acts by 0 in this

case. It therefore remains to determine the action of X i/X i+1. Equation (3.7) shows
that it suffices to determine the action of X i/X i+1 on

HomM(c − indM
M○(ρ ⊗⋯ ⊗ ρ ⊗ τ), ν

1−n
2 ρ ⊗ ⋯ ⊗ ν

n−1
2 ρ ⊗ τ).
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Recalling the definition of X i (Section 2.6), we immediately see that X i/X i+1
acts by

(∣�∣ 3−n
2 −i)t

(∣�∣ 3−n
2 −i+1)t

= qt( n−3
2 +i)

qt( n−3
2 +i−1)

= qt .

This implies that Ti also acts by (qt − 1) qt

qt − 1
= qt . Since π is a quotient of Π, we

conclude that we must have Π ≅ H ⊗HSn
εq t .

Case (iii). In this situation, the s-component of the Gelfand–Graev representation has
two irreducible generic representations whose H-module is one-dimensional. These
are the two (generalized) Steinberg representations: π and π′, which are the unique
irreducible subrepresentations of

να+n−1ρ ×⋯× να ρ ⋊ τ and νβ+n−1ρ− × ⋯ × νβ ρ− ⋊ τ,

respectively. Recall that α (resp. β) is the unique positive real number such that
να ρ ⋊ τ (resp. νβ ρ− ⋊ τ) reduces (see Section 2.6). We now compare the action of
the operators T0 , . . . , Tn on these two representations—that is, on HomG(Γs , π) and
HomG(Γs , π−), where Γs is the projective generator defined in Section 2.4.

We start by analyzing the action on π. We first focus on Ti , i = 1, . . . , n − 1. Again, Ti
is defined by (3.8), and once more, the operator R i acts by 0. By the Bernstein version
of Frobenius reciprocity, we have

HomG(Γs , π) = HomM(c − indM
M○(ρ ⊗⋯ ⊗ ρ ⊗ τ), ν−α−n+1ρ ⊗⋯⊗ ν−α ρ ⊗ τ).

We immediately see that X i/X i+1 acts by

(∣�∣−α−n+i)t

(∣�∣−α−n+i+1)t = qt(α+n−i)

qt(α+n−i−1) = qt .

Again, this shows that Ti acts by (qt − 1) qt

qt − 1
= qt . For Tn , we have a similar

formula:

Tn = Rn + (qr − 1)
Xn (Xn − qtβ − qtα

qr − 1
)

X2
n − 1

.(3.9)

Once more, Rn acts by 0, and Xn acts by (∣�∣−α)t = qtα . Recalling that r = t(α + β),
we see that Tn acts by qr . Finally, since

T0 = √qr+2t(n−1)+s X1T−1
1 ⋅ ⋯ ⋅ T−1

n−1T−1
n T−1

n−1 ⋅ ⋯ ⋅ T−1
1 ,

and since X1 acts by q(α+n−1)t , we see that T0 acts by
√qr+2t(n−1)+s

q2t(n−1) ⋅ qr q(α+n−1)t = qs .

We do the same with π−. Again, X i/X i+1 acts by qt , which shows that Ti acts by
qt as well. This time Xn acts by −qtβ : Recall that ρ− = χ0 ⊗ ρ with Xn(χ0) = −1, so
Xn(χ0ν−β) = −qtβ . Repeating the above calculations, we now see that Tn acts by qr ,
whereas T0 acts by −1.
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The above analysis allows us to single out the H-module structure on Π. Since T0
does not act by the same scalar on π and π−, we deduce that Π = H ⊗H0 ε for some
one-dimensional representation ε of H0. Now, since every Ti (i = 1, . . . , n − 1) acts by
qt and Tn acts by qr , we deduce that Π = H ⊗H0 εqr ,q t (see the end of Section 3.1 for
notation).

Case (ii) The first part of our analysis remains the same as in Case (iii). The represen-
tation

νn−1ρ × νn−2ρ × ⋯ × ρ ⋊ τ

has two irreducible subrepresentations (both of which are in discrete series when n > 1,
and tempered when n = 1), only one of which is generic. Denote the generic subrepre-
sentation by π. Let π− denote the generic representation resulting from an analogous
construction, when ρ is replaced by ρ−. Again, theH-modules corresponding to π and
π− are one-dimensional, and the same calculations we used in Case (iii) show that the
operators Ti , i = 1, . . . , n − 1, act by qt . This leaves us four possible H structures to
consider

H ⊗H0 ε0 , with ε0(Tn) = ±1 (and ε0(Ti) = qt , i = 1, . . . , n − 1); and
H ⊗Hn εn , with εn(T0) = ±1 (and εn(Ti) = qt , i = 1, . . . , n − 1).

(3.10)

So far, we have been able to view Case (ii) as a special instance of Case (iii) which
occurs when r = s = 0. However, to obtain an explicit description of the Gelfand–
Graev module, we need more information than we used above in Case (iii). The
reason is that the standard intertwining operator χρ ⋊ τ → χ−1ρ∨ ⋊ τ no longer has
a pole when Xn(χ) = ±1. In Case (iii), the operator Rn (see formula (3.9))—which
is constructed from the standard intertwining operator—vanishes at the point of
reducibility, and the action of Tn is determined by the action of the function

(qr − 1)
Xn (Xn − qtβ − qtα

qr − 1
)

X2
n − 1

used to remove the poles of Rn . In this case, however, Rn no longer vanishes and is
regular at the point of reducibility; consequently, the above function does not appear
in the construction and we have Tn = Rn . We know that this operator acts by 1 or −1
on the H-modules π and π−, but we still have a certain amount of freedom in our
choices. Indeed, as one verifies easily, the operator T ′n = (−1)e X f

n Tn (where e ∈ {0, 1}
and f ∈ Z) satisfies the same relations as Tn . Therefore, we obtain the same Hecke
algebra if we replace Tn by T ′n , but the action of T ′n on π obviously differs from the
action of Tn .

In fact, we know that Xn acts on π by 1, and on π− by −1. Therefore, X2
n acts by 1 on

both, so replacing Tn by X2
n Tn does not affect our description of the Gelfand–Graev

module. We thus have four choices that affect the description (e = 0 or 1; f even or
odd), and as we vary the four choices, the description of the Gelfand–Graev module
varies through all the four possibilities described in (3.10).
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This discussion shows that—to determine the action explicitly—we need to specify
the choices appearing in the construction of the operator Rn . We now explain one
possible normalization using Whittaker models. To be concrete, we now focus on G =
SO(2N + 1); the same approach is possible when G is symplectic or even orthogonal.
We also specialize our discussion to the case n = 1 to simplify notation (thus, the
cuspidal representation which defines the component is ρ ⊗ τ); the general case is
analogous and follows from this one. We thus drop the subscripts and write T , X
instead of Tn , Xn .

We fix a nondegenerate character ψ of the unipotent radical U of G = SO(2N + 1).
Let Vρ denote the space of the representation ρ, and let λ be a ψ-Whittaker functional
on Vρ : λ(ρ(u)v) = ψ(u)λ(v), for v ∈ Vρ . Notice that λ is then also a ψ-Whittaker
functional for ρ ⊗ χ for any unramified character χ ∈ GLk(F): We have

λ((χ ⊗ ρ)(u)v) = χ(u)ψ(u)λ(v) = ψ(u)λ(v),

since det u = 1 and thus u ∈ ker χ. Abusing notation, we also let λ denote the ψ-
Whittaker functional of ρ ⊗ τ (or χρ ⊗ τ for any unramified χ, as we have just shown).
Following Proposition 3.1 of [24], we now form a ψ-Whittaker functional Λχ on the
space of iG

P (χρ ⊗ τ) by setting

Λχ( f ) = ∫
N

λ ( f (wn))ψ(n)−1dn,(3.11)

where w is a representative of the nontrivial element of the Weyl group; in our case,
we take w to be the block antidiagonal matrix

⎛
⎜
⎝

Ik
I2(N−k)+1

Ik

⎞
⎟
⎠

.

Since π and π− are generic, it suffices to determine the action of T on their respec-
tive Whittaker functionals if we want to determine how T acts on the H-modules
HomG(Γs , π) and HomG(Γs , π−).

For any unramified character χ, we have the specialization map
spχ ∶ Γs ↦ iG

P (χρ ⊗ τ) (cf. [17, Section 3.1]). The unique (up to scalar multiple)
element of HomG(Γs , π) factors through sp1 ∶ Γs → iG

P (ρ ⊗ τ); similarly, any element
of HomG(Γs , π−) factors through spχ0

(recall that ρ− = χ0 ⊗ ρ). Notice that Λ1 and
Λχ0 are the Whittaker models of π and π−, respectively.

To determine the action of T on Λχ (for any χ), we must compare Λχspχ and Λχ ○
spχ ○ T . The operator T is defined by the following property:

spχT = φ ○ J(χ−1) ○ spχ−1

(cf. [17, Sections 3.1 and 3.2]). Here, J(χ−1) denotes the standard intertwining operator
iG
P (χ−1ρ ⊗ τ) → iG

P (χρ∨ ⊗ τ). To explain φ, recall that ρ is assumed to be self-dual.
Therefore, we can fix an isomorphism φ ∶ ρ∨ ↦ ρ and induce to an isomorphism
iG
P (χρ∨ ⊗ τ) → iG

P (χρ ⊗ τ) for any unramified χ, which we again denote by φ by
abuse of notation.
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Let Λ∨χ denote the Whittaker functional on iG
P (χρ∨ ⊗ τ) obtained using (3.11) from

a fixed Whittaker functional λ∨ for ρ∨. By the uniqueness of Whittaker functionals,
Λχ ○ φ = c ⋅ Λ∨χ for some constant c. Furthermore, since φ is induced from an isomor-
phism φ ∶ ρ∨ ↦ ρ, it follows immediately that c does not depend on χ. Therefore, we
have

Λχ ○ spχ ○ T = c ⋅ Λ∨χ ○ J(χ−1) ○ spχ−1 .

Note that there is a natural way to normalize φ in such a way that c = 1. We denote by
gτ the transpose of an element g ∈ GLk(F) with respect to the antidiagonal (and with
g−τ its inverse). One can then define a new representation ρ1 by ρ1(g) = ρ(g−τ). This
representation is isomorphic to the contragredient of ρ; the advantage is that it acts
on Vρ , the space of ρ. Furthermore, for any diagonal matrix (i.e., an element of the
maximal torus) t ∈ GLk(F), we may conjugate ρ1 to get ρ2(g) = t ρ1(g) = ρ1(t−1 gt).
Then ρ2 ≅ ρ1, and with a suitable choice of t, ρ2 becomes ψ-generic with the same
Whittaker functional λ. For example, assume that ψ is given by

ψ(u) = ψ0(u1,2 + ⋯ + uk−1,k),

where ψ0 is a nontrivial additive character of F, and u is an upper-triangular unipotent
matrix with entries u1,2 , . . . , uk−1,k above the main diagonal. Then one checks imme-
diately that t = diag(1, −1, . . . , (−1)k−1) gives

λ(ρ2(u)v) = ψ(u)λ(v)

for any v ∈ Vρ . In short, we may assume that Λχ ○ spχ ○ T = Λ∨χ ○ J(χ−1) ○ spχ−1 .
This leads to the second choice we have to make in the construction of T: that

of the normalization of the intertwining operator J. Here, we choose the standard
normalization introduced by Shahidi (cf. [24, Theorem 3.1]). Under this assumption,
we have

Λ∨χ ○ J(χ−1) = Λχ−1

for every unramified character χ. Thus,

Λχ ○ spχ ○ T = Λχ−1 ○ spχ−1 .

With this, we are ready to compare the action of T on π and π−. For π, we specialize
at χ = 1; this gives us

Λ1 ○ sp1 ○ T = Λ1 ○ sp1 ,

i.e., T acts trivially.
For π−, we specialize at χ0. We notice that χ−1

0 = χ0η for some character η such
that η ○ ρ ≅ ρ. This shows that spχ−1 = ϕη ○ spχ0

, where ϕη is the isomorphism ρ ↦
η ⊗ ρ defined in [17, Section 1.17] (again, we induce to ϕη ∶ iG

P (ρ ⊗ τ) → iG
P (ηρ ⊗ τ)

and abuse the notation). Finally, using the uniqueness of Whittaker functionals again,
we see that Λχη ○ ϕη = d ⋅ Λχ for some constant d which does not depend on χ. We
can normalize ϕη so that d = 1; then we have

Λχ0 ○ spχ0
○ T = Λχ−1

0
○ spχ−1

0
= Λχ0 η ○ ϕη ○ spχ0

= Λχ0 ○ spχ0
.

Therefore, T acts trivially on π− as well.
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To summarize, if we use Shahidi’s normalization of the standard intertwining
operator, and normalize φ as we did above, it follows that T acts trivially on both
π and π−. This implies that the Gelfand–Graev module is isomorphic to

H⊗H0 ε0

(see (3.10)), where ε0(Tn) = 1. Note that this is analogous to our results in Case (iii),
because Tn again acts by qr , only this time r = 0.

This completes our analysis of the structure of H. We conclude the section by
providing an alternative proof for the following result of [6].

Corollary 3.8 We have

EndH(Π) ≅ Z(H),

the center of H.

Proof Obviously, Z(H) is contained in EndH(Π), so we need to prove that any
element of EndH(Π) is given by a multiplication with an element f ∈ Z(H). We prove
the corollary in Case (iii); the proof in Cases (i) and (ii) is analogous.

We start by recalling that Z(H) = AW , the Weyl group invariants of A. Note that
any element of EndH(Π) can be viewed as an element ofA. Indeed, let f ∈ EndH(Π).
We have EndH(Π) ⊆ EndA(Π), but we know that Π = A as an A-module. Therefore,
f ∈ EndA(A) = A. Thus, it remains to prove that f is invariant under the action of the
Weyl group.

It suffices to prove that f is invariant under the set of simple reflections which
generate the Weyl group. In other words, we need to prove that

f ∨ = f and f s i = f , i = 1, . . . , n − 1,

using the notation of Section 2.6. This follows immediately from what we now know
about the structure of Π as an H-module: Π = H ⊗H0 ε. In other words, we have
shown that there exists an element g ∈ A ≅ Π (constructed in Section 3.1) on which the
elements T1 , . . . , Tn−1 and Tn act by scalar multiplication with qt , and qr , respectively.

We now look at the commutation relation

Tn f − f ∨Tn = ((qr − 1) + 1
Xn

(√qr+s −√qr−s)) f − f ∨

1 − 1/X2
n

satisfied by Tn and f. Applying this to g (recall that Tn g = qr g), and using the fact that
f is in HomH(Π) (so that Tn f g = f Tn g), we get

( f − f ∨)qr ⋅ g = ((qr − 1) + 1
Xn

(√qr+s − √qr−s)) f − f ∨

1 − 1/X2
n

⋅ g .

This is an equality in A. Since qr ≠ ((qr − 1) + 1
Xn

(√qr+s − √qr−s)) 1
1−1/X2

n
and g ≠ 0,

it follows that f − f ∨ must be 0. Therefore, f = f ∨. We get f = f s i in the same
way, using the commutation relations satisfied by the operators Ti . This proves the
corollary. ∎
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4 An application to the GGP restriction problem

The theory of Bernstein–Zelevinsky derivatives implies that the restriction of an
irreducible supercuspidal representation σ of GL(n + 1) to GL(n) is isomorphic to
the Gelfand–Graev representation of GL(n). Thus, given a maximal ideal J in the
Bernstein center of GL(n), there exists only one irreducible GL(n)-quotient of σ
annihilated by J. The goal of this short section is to show that a similar statement
holds when restricting a cuspidal representation of an orthogonal group O(m + 1) to
a subgroup O(m) ⊂ O(m + 1).

Lemma 4.1 Let σ be an irreducible representation of O(m + 1). For any inertial data
s of O(m), let σ[s] be the corresponding Bernstein summand of σ. We have:

• If σ is supercuspidal, then it is a projective O(m)-module.
• dim HomO(m)(σ , π) ≤ 1 for any irreducible representation π of O(m).
• σ[s] is a finitely generated O(m)-module.
The same conclusions hold if we replace orthogonal by special orthogonal groups.

Proof The first statement is an observation: σ is a direct summand of C∞c (O(m + 1))
(the space of locally constant and compactly supported functions on O(m + 1))
and C∞c (O(m + 1)) stays projective after restriction to O(m). The second is the
multiplicity one theorem [2]. For the third, observe that we have a surjection

C∞c (O(m + 1)) → σ∨ ⊠ σ .

By Theorem A of [1] or Remark 5.1.7 of [23], the Bernstein components of C∞c (O(m +
1)), considered as an O(m + 1) × O(m)-module, are finitely generated. The third
bullet now follows at once. ∎

The following is the main result of this section.

Proposition 4.2 Let σ be an irreducible supercuspidal representation of O(m + 1). Let
s be inertial data for a subgroup O(m) ⊂ O(m + 1) such that σ[s] ≠ 0. Let Z be the
center of the Bernstein component corresponding s. The block σ[s] is indecomposable,
and for every maximal ideal J in Z, there exists unique irreducible representation π of
O(m) annihilated by J such that HomO(m)(σ , π) ≅ C.

Proof Assume that m is even. Let Γs be the projective generator associated with
the inertial data s, and let H be the algebra of endomorphisms of Γs. Since σ[s] ≠ 0,
combining the above lemma and Remark 3.2, one concludes that

HomO(m)(Γs , σ) ≅ A

as A-modules, proving indecomposability of the block, and then by Corollary 3.7

HomO(m)(Γs , σ) ≅ H ⊗HW ε

for some finite subalgebra HW ≅ C[W], where W is a finite group, such that H ≅
A⊗HW and AW is the center Z of H, that is, the center of the Bernstein component
corresponding to s.
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Now, recall that all irreducible representations annihilated by J are subquotients of
a single principal series representation

H⊗A χ ≅ HW ,

where χ is a character of A. Observe that the principal series is isomorphic to HW ≅
C[W] as an HW -module. Since the one-dimensional type ε appears with multiplicity
one in HW , there exists unique irreducible representation annihilated by J containing
the type ε. But precisely, these representations are irreducible quotients of H⊗HW ε,
by the Frobenius reciprocity.

Now, assume that m is odd. In this case, we shall derive the result working with
SO(m) and its Hecke algebras. Observe that O(m) = SO(m) × {±1m}, so represen-
tations of O(m) and SO(m) are easy to relate. Let s0 be the restriction to SO(m) of
the inertial data s. On the other hand, the inertial data s0 give a pair of inertial data
s± of O(m) by specifying how −1m acts. Let σ0 be the restriction of σ to SO(m + 1).
We have two cases. Assume that σ0 is irreducible. Then we can apply the above lemma
to special orthogonal groups to prove the proposition for special orthogonal groups,
that is, σ0[s0] is indecomposable and has an explicit H-structure by Corollary 3.7.
Now, observe that −1m ∈ O(m) naturally acts on σ0[s0]. By indecomposability of
σ0[s0], −1m has to act by the same scalar on whole block. Therefore, either σ[s+] ≠ 0
or σ[s−] ≠ 0 and proposition holds in this case, for whichever of this two blocks
is nontrivial. Now, assume that σ0 is reducible. Then σ ⊗ det ≅ σ . Decompose σ =
σ+ ⊕ σ−where −1m acts by 1 and −1 on the two summands. Since σ ⊗ det ≅ σ , it follows
that σ+ and σ− are isomorphic multiplicity-free, projective SO(m)-modules. Now,
arguing as before, it follows that the proposition holds for both components σ[s+] ≠ 0
and σ[s−] ≠ 0. ∎

Note that the above result is compatible with Gan–Gross–Prasad conjectures [13],
and it sheds some light on the restriction problem beyond tempered representations.
Of course, the above proposition holds for any σ that is projective as an O(m)-module.
It would be interesting to classify irreducible σ that are projective when restricted to
O(m). Projectivity of restriction from GL(n + 1) to GL(n) was studied in [12], and a
complete classification of irreducible representations of GL(n + 1) that are projective
as GL(n)-modules was obtained in [9].

Appendix A An isomorphism of projective generators

Let G be a reductive group, and let s be an inertial class of cuspidal data (M , σ), where
M is a Levi subgroup of G. Now, recall the Bushnell–Kutzko theory of types [8]: Any
such s is expected to have a type (J , λ), where J is a compact subgroup of G, and
λ is an irreducible representation of J such that c − indG

J λ is a projective generator
for Reps(G). One is interested in the structure of the Hecke algebra H(G , λ) =
EndG(c − indG

J λ). In this section, we show that, under certain conditions (when (J , λ)
exists), the Hecke algebra H(G , λ) = EndG(c − indG

J λ) is isomorphic to the algebra
Hs = EndG(Γs) constructed in Section 2.4. More precisely, we have the following:

Theorem A.1 Assume that G is a classical group and that the residue charac-
teristic of F is different from 2. Let s = [(M , σ)] be an inertial equivalence class
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in G. There exists an s-type (J , λ) such that the generators Γs and c − indG
J λ are

isomorphic.

We break up the main part of the proof into three auxiliary results (see Lemmas
A.2–A.4) which hold for arbitrary reductive p-adic groups. We use the theory of covers
developed by Bushnell and Kutzko. Any inertial equivalence class s = [(M , σ)] in
G also determines a (cuspidal) inertial equivalence class sM = [(M , σ)] in M. Let
(J , λ) be a type for s, and let (JM , λM) be a type for sM . We say that the (J , λ)
is a cover of the type (JM , λM) if J decomposes with respect to M (in particular,
JM = J ∩ M and λM = λ∣M) and the equivalence of categories Reps(G) → H(G , λ)-
Mod commutes with parabolic induction and the Jacquet functor in the appropriate
sense (see Definition 8.1 and paragraph 5 of Introduction of [8]). We then have the
following.

Lemma A.2 (Theorem 7.9(iii) of [8]) Let P be any parabolic subgroup with Levi
factor M. For any smooth representation V ∈ Rep(G), the Jacquet functor with respect
to P induces an isomorphism

V λ = (VN)λM .

Here, V λ denotes the λ-isotype of V, i.e., the sum of all G-invariant subspaces of V
isomorphic to λ.

We use this to reduce the proof of Theorem A.1 to the case of cuspidal components.

Lemma A.3 Let (J , λ) be a type for s = [(M , π)] in G, and let (JM , λM) be a type for
sM = [(M , π)] in M. Assume that (J , λ) is a cover of (JM , λM).

If the Bernstein generator ΓsM is isomorphic to the Bushnell–Kutzko generator
c − indM

JM
λM for the cuspidal component RepsM

(M), then we also have an isomorphism
of generators for the component Reps(G).

Proof Lemma A.2 shows that we have

ResJ
JM

((ResG
J V)λ) = (ResM

JM
rN(V))λM

for any G-module V. Here, ResG
H denotes the restriction functor from G to H, and

rN denotes the Jacquet functor with respect to P = MN . In other words, we get the
following isomorphism of functors Rep(G) → Rep(JM):

ResJ
JM

○ (λ-iso) ○ ResG
J = (λM-iso) ○ ResM

JM
○ rN ,(*)

where we have used λ-iso (resp. λM-iso) to denote taking the λ- (resp. λM-) isotype.
All of the above functors have left adjoints:

– c − indJ
JM

and c − indM
JM

for ResJ
JM

and ResM
JM

, respectively;
– iG

P for rN (this is the Bernstein form of Frobenius reciprocity; here, P = MN is the
parabolic subgroup opposite to P);

– λ-iso and λM-iso are self-adjoint, because we are working with (necessarily
semisimple) representations of compact groups J and JM .

Since adjoints are unique (up to equivalence), taking the adjoint of (*), we get

c − indG
J ○ (λ-iso) ○ c − indJ

JM
= iG

P ○ c − indM
JM

○ (λM-iso).
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We now apply both sides of the above equality to λM . On the right-hand side,
we get iG

P (c − indM
JM

λM). By the assumptions from the statement of the lemma, we
have c − indM

JM
λM = ΓsM ; therefore, iG

P (c − indM
JM

λM) is exactly the Bernstein generator
iG
P (ΓsM ) = Γs . Here, we used the fact that the construction of the Bernstein generator

does not depend on the choice of parabolic P (we choose P) with fixed Levi M (cf. [4,
Proposition 35]).

On the left-hand side, we get c − indG
J ((c − indJ

JM
λM)λ). However, Frobenius reci-

procity gives us dim HomJ(c − indJ
JM

λM , λ) = dim HomJM (λM , λ∣M) = 1, which fol-
lows from λ∣M = λM . Therefore, (c − indJ

JM
λM)λ = λ, and the left-hand side becomes

c − indG
J (λ), i.e., the Bushnell–Kutzko generator. Thus,

c − indG
J (λ) ≅ Γs ,

as claimed. ∎

The above lemma allows us to focus on cuspidal components of the form sM =
[(M , σ)] in M. If we want to prove the isomorphism of generators in general, it
remains to prove that the generators of the cuspidal components are isomorphic. In
other words, we would like to show that

c − indM
M○σ0 = c − indM

JM
λM ,

where σ0 is an (any) irreducible constituent of σ ∣M○ . We shall accomplish this under
the following assumptions. Assume that

σ = c − indM
J̃M

λ̃M ,

where (see (5.5) in [8]):

• J̃M is compact modulo center subgroup of M such that JM = J̃M ∩ M○,
• the restriction of λ̃M to JM is λM ,
• any x ∈ M which intertwines the representation λM belongs to J̃M .

Lemma A.4 Let σ = c − indM
J̃M

λ̃M be a cuspidal representation of M where the pair
(J̃M , λ̃M) satisfies the above three bullets. Then σ0 = c − indM○

JM
λM is an irreducible

M○-summand of σ, and we have a canonical isomorphism (provided by induction in
stages)

c − indM
M○σ0 ≅ c − indM

JM
λM .

Proof Using Frobenius reciprocity and Mackey theory (provided by [28, Section 5.5]
in this setting), we get

HomM○(σ0 , σ0) ≅ HomM○ (c − indM○
JM

λM , c − indM○
JM

λM)

≅ HomJM (λM , ⊕
x

c − indJ
JM∩Jx

M
ResJx

M
JM∩Jx

M
λx

M) ,
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where the sum is taken over a set of double coset representatives in JM/M○/JM . Fixing
one such x, we see that

HomJM (λM , c − indJ
JM∩Jx

M
ResJx

M
JM∩Jx

M
λx) ≅ HomJM∩Jx

M
(λM , λx

M)

(here, we are using Frobenius reciprocity for a compact group, so that restriction is
also a left adjoint for c − ind). Since only x ∈ J̃M intertwine λM , and JM = J̃M ∩ M○,
we have

HomM○(σ0 , σ0) ≅ HomJM (λM , λM) = C,

which we needed to prove. ∎

Finally, we may put together the above results.

Proof According to (5.5) in [8], if M is a general linear group over a division algebra,
then the conditions of the above lemma are satisfied for every irreducible cuspidal
representation σ of M. Clearly, if the conditions are satisfied for (M1 , σ1) and (M2 , σ2),
then they are satisfied for M = M1 × M2 and σ = σ1 ⊗ σ2. Recall that a Levi subgroup
in a classical group is a product of general linear groups and a smaller classical group.
By a result of Stevens [26], irreducible cuspidal representations of classical groups are
induced from open compact subgroups if F has odd residue characteristic. Thus, in
these cases, for every irreducible cuspidal representation σ of M, there exists a type
(J̃M , λ̃M) satisfying the three bullets above, and Lemma A.4 applies. Moreover, by
[7, 27] (for general linear groups) and [21] (for classical groups), G admits a type
(J , λ) which is a cover of type (JM , λM), so we can apply Lemma A.3 to obtain an
isomorphism of generators for Reps(G).

This completes the proof of Theorem A.1. ∎

We remark that Theorem A.1 holds beyond classical groups, provided that the
conditions of two lemmas are satisfied. For exceptional G2 examples, see [5].
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