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SOME OBSTACLES TO DUALITY 
IN TOPOLOGICAL ALGEBRA 

PAUL BANKSTON 

0. Introduction. Functors $ \sé —» £ë, Y \3i —>seform an equivalence 
of categories (see [8,]) if T($(A)) ^ A and $ ( r ( 5 ) ) ^ B naturally for 
all objects A ivoms/ and B from 3S. Let t ings/* denote the opposite of 
s/y we say that s/ and Se are dual if there is an equivalence between 
J / * and SB. 

Let r be a similarity type of finitary operation symbols. We let LT 

denote the first order language (with equality) using nonlogical symbols 
from r, and consider the class <Jér of all algebras of type r as a category 
by declaring the morphisms to be all homomorphisms in the usual sense 
(i.e., those functions preserving the atomic sentences of LT). If 3? is a 
class i n ^ T (i.e., J f C ^ T a n d j ^ is closed under isomorphism), we view 
J f as a full subcategory of^#T, and we define the order of S^ to be the 
number of symbols occurring in r. 

If 5f is a class of topological spaces and Stf is a class of algebras, let 
¥ - Stif denote the category of "^-topological J^-algebras" (i.e., the 
topologies are in j ^ , the algebras are injT, and the operations are jointly 
continuous) plus continuous homomorphisms. A dual pair, for our 
purposes, is simply a pair (5S - Stf, $~ - <££) where the categories are dual 
to one another. (If 5 denotes the category of sets, we treat S- Siïf and^-S 
as identical with Sf and 3T respectively.) Beautiful examples of dual 
pairs in topological algebra are well known (see (0.1) below), and it is 
our intention in this paper to underscore the special nature of some of 
these examples by laying down fairly general conditions on the classes 
iS^,^", J^ , ando£f ensuring the nonexistence of a duality between ¥'-jf 
a n d ^ - i f . 

In the following, certain categories of special interest will be given 
abbreviations. 

(i) LCH = {locally compact Hausdorff spaces}, CH = {compact 
Hausdorff spaces}, and CCH, ZDCH, and EDCH denote respectively 
the connected, O-dimensional, and extremally disconnected objects 
i nCH. 

(ii) AG = {abelian groups}, and TAG and TFAG denote respectively 
the torsion and torsion free objects in AG. 

(iii) SL = {semilattices}. 
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(iv) BA = {Boolean algebras}, and CBA denotes the complete 
objects in BA. 

(v) RCF = {rings of continuous real-valued functions with domains 
in CHJ, and IFRCF denotes the idempotent-free objects in RCF. 

0.1. Examples. The following are dual pairs, 
(i) ([9]): (LCH-AG, LCH-AG), (CHAG, AG), (CCH-AG, 

TFAG), (ZDCH-AG, TAG). 
(ii) ([10]): (ZDCH-SL, SL). 

(iii) ([14]): (ZDCH, BA), (EDCH, CBA). 
(iv) (A.O. Gel'fand, A. N. Kolmogorov): (CH, RCF), (CCH, 

IFRCF). 
Note that in all of the above pairs (Sf • J^ , Ĵ ~* =5?), the classes JT are 

equational classes; and in all but one example,^7" = $f. In [3] we used 
the ultraproduct construction in a categorical setting (see also [1], [4], 
[6], [12]) to prove that there can be no dual pairs where 5f = 37~ = S 
and J^ , f£ are nontrivial elementary SP-classes (see Section 1 for 
terminology). Here we continue to use ultraproducts and other tech
niques (e.g. the existence of enough free objects) to examine those of 
the above dualities in which ££ is not a nice elementary class and show 
that J$f cannot be replaced by another class ££' which in some sense 
"improves matters". The following is a summary of our results. 

0.2. THEOREM, (i) ZDCH-AG is not dual to either an elementary P-class 
or a class with representable underlying set functor (urepresentable class" 
for short). 

(ii) EDCH is not dual to either an elementary P-class or an SP-class of 
order <c ( = the cardinality of the real line). 

(iii) CCH is not dual to a P-class. 
(iv) CH is not dual to either a representable elementary P-class {e.g. an 

elementary SP-class, a universal Horn class) or a representable class of 
order < c. 

(v) If CH is dual to an elementary P-class then CCH is dual to an 
elementary class. 

In connection with (0.2 (iv)) above, a question which has stubbornly 
remained open is whether CH is dual to an elementary P-class. Trying 
to deal with this problem has led to results of independent interest (see 
[4]). It is interesting to note that, although CH is not dual to an equa
tional class in the usual (finitary) sense, its dual category is monadic, 
hence "like" an equational class from a more abstract categorical 
viewpoint. 
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1. Preliminaries. We specify classes K C <Jér using closure conditions 
as well as "syntactic" conditions, to wit: S^ is a P'-class (resp. S-class, 
H-class, SP-class, etc.) if J f is closed under the formation of arbitrary 
direct products (resp. subalgebras, homomorphic images, both sub-
algebras and products, e tc . ) ; J^ is an elementary class (resp. Horn class, 
universal Horn class, equational class, etc.) if J ^ = the models of a set 
of LT-sentences (resp. Horn sentences, universal Horn sentences, equa
tions, etc. (see [5] for definitions of syntactic notions)). We are thus able 
to talk about elementary P-classes, Horn S-classes, and the like. Among 
the well-known relations involving these sorts of classes are: all Horn 
classes are elementary P-classes; all universal Horn classes are SP-classes; 
and the equational classes are precisely the HSP-classes. 

One important feature of SP-classes is that their underlying set 
functors are representable (i.e., free algebras over singleton sets exist); 
in fact, their underlying set functors have left adjoints (i.e., free algebras 
over arbitrary sets exist). We will not use the full power of this latter 
fact, however. 

The key feature of elementary P-classes, from our standpoint, is that 
they admit an "ultraproduct construction" (see also [1], [3], [4], [6], [12]) 
which behaves nicely. In particular, let s/ be a category with products 
and let (At : i £ I) be an indexed family of ^-objec ts , with D an 
ultrafilter of subsets of / . Then the D-ultraproduct Y[D A t is the direct 
limit, when it exists, of the functor <ï> : D —>s/; where, for J £ D, 
$ ( / ) = r K . / - 4 * ; a n d> whenever J 3 K 6 D, $(J,K) is the natural 
"projection" from JI«€ J ^ < t o YUK A t. When At = A for each i <E J, 
we let A^D) denote Y\D At. A^D) is called the D-ultrapower of A, and 
there is always a naturally defined "^-diagonal" morphism AD : A —» 
A^{D\ The following is well known. 

1.1. THEOREM. Let r be a finitary similarity type. Then ultraproducts 
in^T are always defined and equal to the usual model theoretic ones (à la 
Los, et al). IfS^ Ç ^ T is an elementary P-class then the ultraproduct in3f 
is the one inherited from *Jt\ (J~[if A t = YID A f). Furthermore, the diagonal 
morphism AD : A —+ A(D) is always an elementary embedding {hence in 
particular a monomorphism), and is an isomorphism for all ultrafilter s D 
if and only if (the underlying set of) A is finite (notation: \A\ will denote 
the cardinality of the underlying set of A). 

1.2. Remark. In [6], a notion of finiteness in a c a t e g o r y ^ is defined 
using ultrapowers: A Ç Ob ($/) is se-ultrafinite if AD : A —> A^D) is an 
isomorphism for all ultrafilters D. They give examples of concrete 
categories s/ in which infinite objects are J3/-ultrafinite, and others in 
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which finite objects are not j/-ultrafinite. We will return to this concept 
(and its dual notion) later on. 

2. Subcategories of CH«AG. A well known consequence of the 
Pon try a gin-van Kampen duality is that if G is a compact Hausdorff abelian 
group and if A is the (discrete) group of characters of G then G is con
nected if and only if A is torsion free and G is O-dimensional if and only if 
A is a torsion group. Now TFAG is not an equational class in the type of 
groups; but it is a universal Horn class, which is almost as good. (We 
do not know whether there is a dual pair (CCH • AG, Jzf) where oâf is an 
equational class, as there do not seem to be any known categorical tools 
which distinguish universal Horn classes from equational ones.) 

The situation involving ZDCH-AG is in marked contrast to that 
involving C C H A G (as well as ZDCH-SL and ZDCH). We will have 
established (0.2 (i)) once we prove the following two theorems. 

2.1. T H E O R E M . T A G is not equivalent to an elementary P-class. 

Proof. First of all, TAG does indeed have ultraproducts: simply take 
the torsion subgroup of the usual ultraproduct. Moreover, it is proved in 
[6] that a torsion group A is TAG-ultrafinite if, and only if, for all 
positive integers n, An = [a 6 A : na = 0} is finite. So let A = Q/Z , 
the rationals modulo its subgroup of integers. Then clearly A is TAG-
ultrafinite. Now if $ : TAG •—>«if were an equivalence between TAG 
and an elementary P-class <if, then $(A) would have to beJ^f-ultrafinite, 
hence finite by (1.1). Thus End (A) = Horn (A, A) would be equi-
numerous with End (<È>(̂ 4)), hence also finite. But for each w f Z, the 
mapping a ^-^ na is an endomorphism on A ; moreover for all m, n Ç Z, 
ma = na for all a Ç A if and only if (m — n)r £ Z for all rationals r if 
and only if m = n. Thus End (A) is infinite, a contradiction. 

2.2. T H E O R E M . T A G is not equivalent to a representable class of algebras. 

Proof. Let $ : TAG —»<if be an equivalence, where<if is representable. 
Let Fi G «if be the free S£-algebra over a singleton set, and let A\ = 
Q^iFi). Letting P C Z denote the set of positive primes, and letting 

CP(A) = {a e A : pna = 0 for some n G œ} 

denote the "^-primary component" of an abelian group A (p 6 P ) , we 
can write A\ — 22?ÇP CV(A\) {AX is the direct sum (= coproduct) by the 
"^-primary decomposition theorem"). Thus F1 =^f^PBv, where 
Bp = *(Ci(i4i)). 

For each J C K C P let 

se se 
VJK • z2 Bp —> 22 &p 
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denote the natural "injection". Because each ^~l(a JK) has a left inverse 
in TAG (coproducts are subdirect products) we know that a JK is a 
coretraction, hence an embedding. Let pJK be the left inverse for a JK. 
Since all algebras under consideration are finitary, it follows that Fx is 
the direct limit of the algebras J ^ j Bv for J C P finite. Thus if x 6 F\ 
is the free generator we get that x is in the image of a JP for some finite 
J Q P. Since Fx is freely generated by x, it follows that pJP is also a 
right inverse for ajP, hence A\ can be written as a finite direct sum, 

A1 = cpl(Ai) e ... e cPMi). 
Let p G P exceed each pu 1 ^ i g «. Then there is only the zero homo-
morphism from A\ to Zp = Z/pZ,. Thus 

|Hom (F l f $(Z„)) | = 1. 

This means |$(Z P ) | = 1, so that $(ZP) is the terminal object of ^ (the 
trivial group {0} is the terminal object of TAG). Thus we have Zv = {0}, 
a contradiction. 

3. The category EDGH. Let X G EDCH, and let-4 be its Boolean algebra 
of clopen sets. Then a straightforward consequence of Stone duality is 
that X is extremally disconnected if and only if A is complete. Thus to 
establish (0.2 (ii)) it suffices to show that CBA is not equivalent to 
either an elementary P-class or an SP-class of order <c (it is easy to see 
that CBA is itself a representable P-class, but neither an elementary 
class nor an S-class). 

Let A be a Boolean algebra. We denote by p : A —> (A)m the "Mac-
Neille completion" (= the injective hull, see [2]) of A. Dually, if 
X e ZDCH, we let y : (X)g -> X denote the "Gleason space" over X 
(i.e., the projective cover of X, see [14]). We will establish (0.2 (ii)) in 
part by first proving that ultraproducts in CBA do not exist generally. 

3.1. THEOREM. Let (Ai : i G I) be a family of complete Boolean algebras, 
with D an ultrafilter on I. Then Y[<BBA A t exists if and only ifYl^Ai is 
complete. 

Proof. Certainly if [ I D ^ Î is complete then it is the ultraproduct in 
CBA (since CBA is a P-class). For the converse we show first that if 
n S B A A t exists then n g B A A < = ([\D A t)

m. So for each J £ D let 

«j'.YlitjA^Yl^A, 

be the direct limit morphism, and let 

PJ -HitjAi -+EU-4* 

be the usual ultraproduct homomorphism 
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Then there is a unique 

x:rL>^-nsBA^ 
such t ha t X o ftj = a j for all / £ D, and there is a unique 

such t ha t ô oaj = /x o 0 j for all 7 £ P . We show first t ha t <5 o X = fx. 
Indeed, pick [ / ]D £ YYD At. Then for some J (z D, 

«(x([/u) = «(xo8/(/r-^))) = *(M/r^>) 
= M08^(/r/)) = /*([/]*). 

Since n is one-one, so also is X. We next show tha t <5 is one-one as well. 
By definition of the MacNeille completion there is an 

with Y) o fjL = X. Now for all J £ D, 

Î Î O Ô O Û J = r) o IJL o @j = X o / 3 j = a j . 

By definition of direct limit, this forces 77 o ô = identity, whence ô is 
indeed an embedding. We then conclude tha t 5 is an isomorphism since 
([\D A i)m is the minimal complete extension of Y[D A t. 

T o finish the proof, suppose B is any Boolean algebra which is not 
complete, and let X be the Stone space of B. Then 7 : (X)9 —> X is a 
surjective map which is not a homeomorphism, so there is an x G X with 
more than one 7-preimage. This means tha t there is always a homo-
morphism v : B —» 2 with more than one extension to (J3)m. This failure 
of uniqueness prevents ([\D A i)m from being a direct limit in the proper 
sense whenever Y\D A t is incomplete. Therefore I 1 D B A A t fails to exist 
for Y\D A i incomplete. 

3.2. COROLLARY. Let A G CBA be infinite, and let D be a countably 

incomplete ultrafilter. Then -4CBA does not exist. 

Proof. By (3.1), we need only show tha t A(D) is not complete. Indeed, 
since D is countably incomplete, A^D) is coi-saturated (in the sense of 
[5]). Since A(D) is also infinite, there are countable subsets with no 
maximal elements. By coi-saturatedness, these subsets can have no 
suprema either. 

3.3. COROLLARY. CBA is not a category with ultraproducts. Thus CBA 
cannot be equivalent to an elementary P-class. 

3.4. Remark. T h a t (A(D))m fails in general to be the D-ultrapower of A 
in CBA is ironic, since the natural candidate for the J9-diagonal morphism, 
M o AD, is an elementary embedding in the parlance of model theory. T o 
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see this, note that every complete algebra is "separable", meaning that 
its set of atoms has a supremum. Now the class of separable Boolean 
algebras (see [11]) is elementary, and its theory admits quantifier 
elimination by the addition of one predicate which says of an element 
that it is atomic, and other predicates which say that an element contains 
n atoms, n = 1 , 2 , . . . . It thus follows that embeddings of models of 
this expanded theory are elementary, whence /x : A —» (A)m is elementary 
if and only if A is separable. 

To finish the proof of (0.2 (ii)) we have the following more general 
result. 

3.5. THEOREM. Let se be a full subcategory of CBA which contains both 
the two-element and the four-element Boolean algebras. Then S$ cannot be 
equivalent to an SP-class of order < c. 

Proof. Let $ : CBA —>Jzf be an equivalence witnessing the negation 
of the theorem. Then S£ has free algebras, so let a be a cardinal and 
denote by Fa the free J^-algebra, over an a-element set, with Aa = 
^^(Fa). Since F0 is the initial object of J£, A0 is the initial object of stf. 
Therefore, by hypothesis, A0 = 2, the two-element algebra; and A^ = 22, 
the four-element algebra, is the free CBA-algebra over a singleton 
(so \A\ = |Hom (A0\ A)\ for all A £ s/). 

Since<if has order < c, we know that \Fa\ < c for all a. ^ co. We claim 
that Fx is finite. For suppose otherwise. Then 

co ^ \FX\ = |End (F1)\ = |End (Ai)\, 

whence Ai is an infinite complete Boolean algebra. By a theorem of 
R. S. Pierce [13], \Ai\ ^ c. Let Xi be the Stone space of Ai. Then 
| ^ i | ^ Mil, so 

c S Mil ^ |Zi | ^ |End CY0I = |End (A,)\ = |End (FX)\ = \Fx\, 

a contradiction. Therefore, Fi is finite; and since .Fo is a retract of Fi, Fo 
is finite as well. 

Finally, End (Fu) is infinite. Therefore, End (AJ) is infinite; whence 
\AJ\ ^ cy again by Pierce's theorem. Thus 

c ^ \A„\ = |Hom (^o2, Au)\ = |Hom (F0
2, F„)\. 

But \FU\ < c and \F0
2\ < co. This gives a contradiction. 

4. The categories CH and CCH. Let Z Ç C H and let A = C{X) be its 
ring of continuous real-valued functions. By the duality theorem of A. O. 
Gel'fand and A. N. Kolmogorov (see [7]), this correspondence establishes 
a duality between CH and the class of rings RCF = {CÇX) : X G CH}. 
Moreover, X is connected if and only if A has no idempotents other than 
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0 and 1 (i.e., A is "idempotent free", or an object of IFRCF). Now 
neither RCF nor IFRCF is an S-class or a P-class and neither class is 
elementary. (One way to see this last statement is to note that only the 
reals R = C({point}) is a field. Since every proper ultrapower extension 
of R is also a field, it cannot be in RCF.) 

What is more important for our purposes is that CCH does not have 
coproducts (there is no coproduct of two singleton spaces, for example). 
Thus (0.2 (hi)) is immediate. To establish (0.2 (iv, v)) , we will need to 
study "ultracoproducts" in CH, i.e., ultraproducts in CH*. (In [4] a 
deeper study is made of this construction, but we will need very little 
of the finer topological details here.) 

Let (Xt : i £ / ) be an indexed family of compact Hausdorff spaces, 
with D an ultrafilter on / . Then the D-ultracoproduct ^D X t = ^2%H Xt 

is the inverse limit of the functor <ï> : D —» CH ; where for each J £ D, 

CH 

(the coproduct in CH) and for / Z) K £ D, $(J, K) is the natural 
"injection" irom^^Xt to^fjXt. Noting that 

f)x< = P(\JXA 

(= the Stone-Cech compactification of the disjoint union) and using 
basic facts about inverse limits in CH, it is easy to verify t h a t ^ ^ X * 
is naturally homeomorphic to the subspace of P(Ù ici Xt) consisting of 
all ultrafilters p of zero sets from OteiXt which "extend" D in the 
sense that 0*e J Xt Ç p for each J £ D. In the case of ultracopowers we 
use the notation X(D) and let VD:X(D) —> X denote the uD-co-
diagonal" map. We define X G CH to be CR-ultracofinite if V D : X(D) 
—» X is a homeomorphism for all ultrafilters D. 

4.1. Remark. It is easy to show that CH has ultraproducts, but 
Y[DK ^ i is a singleton whenever D is a free filter (i.e., C\ D = 0) and 
{i ; xt ^ 0} G D. Thus X is CH-ultrafinite if and only if \X\ ^ 1. In 
[4] it is proved that X is CH-ultracofinite if and only if X is a finite 
space. We will need only an easy special case of this fact here, however. 

4.2. LEMMA. Every singleton space is CH-ultracofinite. 

Proof. Let X = {x}. Then p = {{x} X / : / G D) is the only member 
of X(D), since D is an ultrafilter. 

The next theorem settles the first clause of (0.2 (iv)) and then some. 

4.3. THEOREM. Let se be a full subcategory of CH which is closed-here
ditary (i.e. j closed under closed subspaces) and closed under CH-coproducts. 
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Ifs/ is dual to a representable elementary F-class (such as an elementary 
SP-class) thens/ Ç ZDCH. 

Proof. By the above discussion,^ is closed under CH-ultra-coproducts. 
Hence by (4.2), singletons are J^-ultracofinite objects. Suppose 
<ï> : s/ —> ££ is a duality where ££ is a representable elementary P-class, 
and assume j / $2 ZDCH. Then there is a connected C G s/ with more 
than one point, hence C is infinite. Since constant maps are continuous, 
we know 

« ^ \C\ è |End (C)\ = |End ($(C)) | ; 

whence $(C) must be infinite. Let 5 G s/ be a singleton. 5 is s/-u\tra,-
cofinite, so $(S), being <if-ultrafinite, is finite. Let Fx G <=$f be the free 
<if-algebra over a singleton and let Xi = 3>-1(Fi). Then 

|Xi| = |Hom (5,Zx) | = |Hom (Fx, $(S)) | = |$(S) | . 

Thus Xi is finite, so only the constant maps from C to X\ are continuous. 
Therefore 

l-XTil = |Hom (CtX1)\ = |Hom (F l f S(C))| = |*(C) | , 

a contradiction since $(C) was proved to be infinite. 

To finish with (0.2 (iv)) we prove the following. 

4.4. THEOREM. Let s/ be a full subcategory of CH which is closed-
hereditary and closed under CH-products (i.e., Tichonov products). If s/ 
is dual to a representable class J£ of order < c then se Ç ZDCH. 

Proof. Let <J> : s/ —> ££ be a duality where J^/ and J5f are as above, 
and assume s/ Çt ZDCH. Then there is an infinite connected C G s/. 
Since s/ is closed under Tichonov products, there are connected objects 
in s/ of arbitrarily large cardinality. 

Let Fi G eêf be the free «if -algebra over a singleton with Xi = $>-1(Fi). 
We claim that |Xi| < c. Indeed otherwise we would have 

c ^ \Xi\ ^ |End (Xi)\ = |End (Fi)| = |Fi|, 

contradicting the fact that ^£ is of order < c. Now compact Hausdorff 
spaces of cardinality < c are totally disconnected. Therefore for any 
connected C £s/, 

\XX\ = |Hom (C.XOI = |Hom (F l f 3>(C))| = |$(C) | . 

This contradicts the fact that there is a proper class of homeomorphism 
types of connected objects ois/. 

In order to prove (0.2 (v)) we will need some more facts about ultra-
coproducts. If (Xi : i G I) is a family of compact Hausdorff spaces and 
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D is an ultrafilter on I then the topology on ^D Xu inherited from that 
of /3(\JieiXi), is basically generated by sets of the form <JDMÙ where 
Mi Q Xt is cozero, and aDSt denotes {p G ^2DXÎ : OieiSi extends a 
member of p). 

4.6. LEMMA. Let (X{ : i G I) and D be as above, and let A * be the clopen 
set algebra of Xu i G I. 7/ A is the clopen set algebra of ^pX^ then 
A = Y[D A i> In particular, ^D X\ is connected if and only if 

{i : Xtis connected) G D. 

Proof. Let / G I l ^ / ^ t (f(i) is a clopen subset of Xt). We define 
v(f)= <rrf(i)' It is then straightforward to verify that rj(f ) = 77(g) if 
and only if \i:f(i) = g(i)} G D, that i ? ( / U g ) = u ( / ) U , ( g ) , and 
that ??(/c) = 0? ( / ) ) c (where (-)c is complementation). Thus 77 is an 
embedding of Y[D A t into A. To check that 77 is onto, we show that every 
clopen subset of 22D X t is of the form aDCi where Ci C Xt is clopen, 
i G / . So let C Q^nXi be clopen. Then C is a finite union of basic 
clopen sets, 

C = (<TDMn) W . . . U ( c r A ) = ^ ( M u U . . . W M*), 

M „ Ç X , cozero for 1 £ j £ n, i € I. Then M, = Mn U . . . U M<n 

is cozero. Another easy verification gives the fact that aDMt is clopen 
if and only if 

{i : Mi is clopen} G Z?; 

and 7] is thus an isomorphism. 
Finally ^D Xt is connected if and only \i A = 2 <=* [i : At = 2\ G D 

<=> {i : Xi is connected} G P . 

4.7. THEOREM. / / CH is dual to an elementary P-class Jzf £Aew CCH w 
dual to an elementary classa' Çjèf. 

Proof. Let $ : CH —»«Sf be a duality, where «Sf is an elementary 
P-class; and let <if ' Q^ be the <£-image of CCH. To show that ££' is 
an elementary class it suffices, by the well known characterization of 
elementary classes in terms of ultraproducts [5], to show that ultra-
products of algebras in jSf' are also in «£?' ; and that f£' is closed under 
elementary equivalence. Now (4.4) plus our duality assumption assures 
thatoSf' is closed under ^-ultraproducts. As for closure under elementary 
equivalence, we use in addition the Keisler-Shelah Ultrapower Theorem; 
that two relational structures are elementarily equivalent if and only if 
an ultrapower of one is isomorphic to an ultrapower of the other. 

5. Some questions. The following are some of the more interesting 
questions arising during the course of this investigation. 
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5.1. Is CH dual to an elementary P-class? 

5.2. Can the cardinality restrictions be removed from the hypotheses 
of (3.5) and (4.4)? 

5.3. Are there any dual pairs (¥* • Jf , 3T - i f ) where ¥ = 3T = CH 
(y = EDCH, 3T = S) andjT,<if are nontrivialelementary SP-classes? 

5.4. Is TFAG equivalent to an equational class? 

Added in Proof. B. Banaschewski has recently shown that: 
(i) Any SP-class which is equivalent to an equational class is itself an 

equational class, hence the answer to (5.4) is no; and 
(ii) CH is not dual to an SP-class, thus providing a companion for 

our results (4.3, 4.4). 
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