
25
Quantum chromodynamics

The primary evidence that hadrons are composed of a simpler substructure
of quarks is the following:

• If one assumes the baryons are composed of quark triplets (qqq) and
the mesons are quark–antiquark pairs (qq̄) then, with appropriate
quantum numbers for the quarks (flavors), one can describe and
predict the observed supermultiplets of hadrons;

• The assumption of interaction with point-like quarks provides a
marvelously simple and accurate description of electroweak currents;

• Dynamic evidence for a point-like quark–parton substructure of
hadrons is obtained from deep-inelastic electron scattering (e, e′)
and neutrino reactions (νl, l

−).

Quarks come in many flavors; the quark field can be written as

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎝

u

d

s

c
...

⎞
⎟⎟⎟⎟⎟⎟⎠ (25.1)

One assigns quarks an additional intrinsic degree of freedom called color,
which takes three values i = R,G, B. The quark field then becomes (we
focus here on the four lightest quarks)

ψ =

⎛
⎜⎜⎝

uR uG uB
dR dG dB
sR sG sB
cR cG cB

⎞
⎟⎟⎠ = (ψR, ψG, ψB) ≡ ψi ; i = R,G, B (25.2)
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222 Part 4 Selected examples

It is convenient to construct a column vector from the color fields

ψ ≡

⎛
⎝ ψR

ψG

ψB

⎞
⎠ (25.3)

Matrices in this color space will be here denoted with a bar under a
symbol. This is a very compact notation

• Each ψi has many flavors;

• Each flavor is a four-component Dirac field.

Quantum chromodynamics (QCD) is a theory of the strong interactions
binding quarks into the observed hadrons. It is a Yang–Mills non-abelian
gauge theory [Ya54]. It is built on the underlying color symmetry and
invariance under local SU(3)C .

The lagrangian density1 for the free quark fields can be written com-
pactly as

L = −ψ̄

(
γμ

∂

∂xμ
+ M

)
ψ (25.4)

Here the mass term is the unit matrix with respect to color. It may be
anything with respect to flavor, for example,

M =

⎛
⎝ m

m

m

⎞
⎠ m =

⎛
⎜⎜⎝

mu

md

ms

mc

⎞
⎟⎟⎠ (25.5)

The lagrangian in Eq. (25.4) has a global invariance with respect to uni-
tary transformations mixing the three internal color variables [SU(3)C].
We denote the generators of this transformation by Ĝa with a = 1, . . . , 8
and the eight parameters characterizing a three-by-three unitary, uni-
modular matrix by θa with a = 1, . . . , 8. There are eight three-by-three,
traceless, hermitian, Gell-Mann matrices λa — the analogs of the Pauli
matrices. These matrices satisfy the Lie algebra of SU(3), the same algebra
as satisfied by the generators

[
1

2
λa,

1

2
λb] = ifabc

1

2
λc (25.6)

Here the fabc are the structure constants of the group; they are antisym-
metric in the indices (abc). The matrices (λa)ij for a = 1, . . . , 8 are given in

1 See [Fe80] for a background discussion of continuum mechanics and lagrangian densities,

and [Bj65a, Fe71] for an introduction to quantum field theory.
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25 Quantum chromodynamics 223

order by⎛
⎝ 1

1

⎞
⎠
⎛
⎝ −i

i

⎞
⎠
⎛
⎝ 1

−1

⎞
⎠
⎛
⎝ 1

1

⎞
⎠
⎛
⎝ −i

i

⎞
⎠

⎛
⎝ 1

1

⎞
⎠
⎛
⎝ −i

i

⎞
⎠
⎛
⎜⎝ 1/

√
3

1/
√

3

−2/
√

3

⎞
⎟⎠ (25.7)

The operator producing the finite color transformation is then given by

R̂ = eiθ
aĜa

(25.8)

It has the following effect on the quark field

R̂ψR̂−1 = U(θ)ψ =
[
e− i

2 λ
aθa
]
ψ (25.9)

Latin indices will now run from 1, . . . , 8, and repeated Latin indices are
summed. The transformation in Eq. (25.9) with constant, finite θa leaves
the lagrangian in Eq. (25.4) unchanged. Here U(θ) is a unitary, unimodular
three-by-three matrix, and the quark field in Eq. (25.3) forms a basis for
the fundamental representation of SU(3). The symmetry is with respect
to color.

One can now make this global color invariance a local invariance where
the transformation θa(x) can vary from point to point in space-time by
using the theory developed by Yang and Mills [Ya54, Ab73]:

1. Introduce massless vector meson fields, one for each generator

Aa
μ(x) ; a = 1, . . . , 8 (25.10)

These vector mesons are known as gluons;

2. Define the covariant derivative by

D

Dxμ
ψ =

[
∂

∂xμ
− i

2
gλaAa

μ(x)

]
ψ (25.11)

3. Define the field tensor for the vector meson fields as

Fa
μν =

∂Aa
ν

∂xμ
−

∂Aa
μ

∂xν
+ gfabcAb

μA
c
ν (25.12)

Here fabc are the structure constants of SU(3);
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224 Part 4 Selected examples

Fig. 25.1. Processes described by the interaction terms in the QCD lagrangian.

4. Under infinitesimal local gauge transformations θa → 0 the vector
meson fields and the field tensor transform according to

δAa
μ = −1

g

∂θa

∂xμ
+ fabcθbAc

μ

δFa
μν = fabcθbFc

μν ; θa → 0 (25.13)

5. A combination of these results leads to the lagrangian of QCD

LQCD = −ψ̄

{
γμ

[
∂

∂xμ
− i

2
gλaAa

μ(x)

]
+ M

}
ψ − 1

4
Fa

μνFa
μν (25.14)

The lagrangian in Eq. (25.14) can be written out explicitly in powers of
the coupling constant g

LQCD = L0 + L1 + L2 (25.15)

L0 = −ψ̄

(
γμ

∂

∂xμ
+ M

)
ψ − 1

4
Fa
μνF

a
μν

L1 =
i

2
gψ̄γμλ

aψAa
μ(x) − g

2
fabcFa

μνA
b
μA

c
ν

L2 = −g2

4
fabcfadeAb

μA
c
νA

d
μA

e
ν

Here

Fa
μν ≡ ∂Aa

ν

∂xμ
−

∂Aa
μ

∂xν
(25.16)

The various processes described by the interaction terms in this lagrangian
are illustrated in Fig. 25.1.

To obtain further insight into these results, it is useful to write the
Yukawa interaction between the quarks and gluons in more detail. Recall,
for example, the structure of the first two λa matrices

λ1 =

⎛
⎝ 1

1

⎞
⎠ λ2 =

⎛
⎝ −i

i

⎞
⎠ (25.17)
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25 Quantum chromodynamics 225

uR dR

etc.

dGuG

A1.2
μ

γ
μ
λ1.2

R.G

Fig. 25.2. Individual processes described by the quark–gluon Yukawa coupling
in QCD.

These matrices connect the (R,G) quarks, and with explicit identification
of the flavor components of the color fields, it is evident that this interac-
tion contains the individual processes illustrated in Fig. 25.2. The quarks
interact here by changing their color, which in turn is carried off by the
gluons; the flavor of the quarks is unchanged and all flavors of quarks
have an identical color coupling. If the gluons are represented with double
lines connected to the incoming and outgoing quark lines respectively, and
a color assigned to each line as indicated in this figure, then color can be
viewed as running continuously through a Feynman diagram built from
these components.

The Euler–Lagrange equations in continuum mechanics follow from
Hamilton’s principle [Fe71]

δ

∫
L
(
q,

∂q

∂xμ

)
d4x = 0 (25.18)

The Euler–Lagrange equations following from the QCD lagrangian are
readily derived as {

γμ

[
∂

∂xμ
− i

2
gλaAa

μ(x)

]
+ M

}
ψ = 0

ψ̄

⎧⎨
⎩γμ

⎡
⎣ ←

∂

∂xμ
+

i

2
gλaAa

μ(x)

⎤
⎦ − M

⎫⎬
⎭ = 0

∂Fa
μν

∂xν
=

i

2
gψ̄γμλ

aψ + gfabcFb
μνA

c
ν (25.19)

It follows from these equations of motion that currents built out of quark
fields and a unit matrix with respect to color are conserved.

∂

∂xμ

(
i

3
ψ̄γμψ

)
= 0 ; baryon current

∂

∂xμ

(
iψ̄γμΣψ

)
= 0 ; flavor current (25.20)
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In the second line, Σ is a unit matrix with respect to color satisfying
[Σ, λa] = 0; the flavor submatrices are arbitrary as long as they commute
with the mass matrix

Σ =

⎛
⎝ σ

σ

σ

⎞
⎠ ; [σ, m] = 0 (25.21)

The conserved electromagnetic current for the (u, d, s, c) quarks, with
charges (2/3, −1/3, −1/3, 2/3) respectively, is given by the point Dirac
value

Jγμ = iψ̄γμQψ (25.22)

Q =

⎛
⎝ q

q

q

⎞
⎠ ; q =

⎛
⎜⎜⎝

2/3
−1/3

−1/3
2/3

⎞
⎟⎟⎠

The gluons are absolutely neutral to the electromagnetic interaction.
It follows from the four-divergence of the third of Eqs. (25.19) and the

antisymmetry of Fa
μν = −Fa

νμ that the color current, the source of the
color field, is also conserved.

∂

∂xμ

(
i

2
gψ̄γμλ

aψ + gfabcFb
μνA

c
ν

)
= 0 (25.23)

The theory of QCD can again be characterized by a set of Feynman
rules. Here we give the Feynman rules for the Green’s functions, which
characterize the quantum field theory [Fe71]. The quark Green’s function
in the vacuum sector is defined by

iGαβ(x1t1, x2t2) ≡ 〈0|P [ψ̂α(x1t1), ˆ̄ψβ(x2t2)]|0〉

≡
∫

d4k

(2π)4
eik·(x1−x2)iGαβ(k) (25.24)

The Feynman rules for iG(k) are derived in [Qu83, Ch84, Ai89, Wa91];
they are as follows:2

1. Draw all topologically distinct, connected diagrams;

2. Include the following factors for the quark, gluon, and ghost lines,
respectively (Fig. 25.3):3

2 See Ref. [Ch84] for a much more extensive discussion, including Feynman rules with

other choices of gauge.
3 All quark indices are now explicit: i, j = R,G, B for color; l, m = u, d, s, c, · · · for flavor.

https://doi.org/10.1017/9781009290616.030 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290616.030


25 Quantum chromodynamics 227

p
j.m

i.1

k
b.ν b

k

a.μ a
quark gluon ghost

Fig. 25.3. Propagators in QCD.

j,m

i,1

a,μ

a,λ

b,μ c,ν
q

r

p

b,μ c,ν

a,λ d,σ

p

a

c

b,μ

Fig. 25.4. Vertices in QCD.

1

i

1

iγμpμ
δijδlm ; quark (massless)

1

i
δab

1

k2

(
δμν − kμkν

k2

)
; gluon (Landau gauge)

1

i
δab

1

k2
; ghost (25.25)

The ghost is an internal element, coupled to gluons, that is required
to generate the correct S-matrix in a non-abelian gauge theory;

3. Include the following factors for the vertices indicated in Fig. 25.4:

−g
1

2
λajiδlmγμ ; (quark)2−gluon

gfabc[(q − r)λδμν + (p − q)νδλμ + (r − p)μδλν] ; (gluon)3

−ig2[fabefcde(δλνδσμ − δλσδμν) + facefbde(δλμδσν − δλσδμν)

+fadefcbe(δλνδσμ − δσνδλμ)] ; (gluon)4

−gfabcpμ ; (ghost)2−gluon (25.26)

4. Take the Dirac matrix product along fermion lines;

5. Conserve four-momentum at each vertex;

6. Include a factor
∫
d4q/(2π)4 for each independent internal line;

7. Include a factor of (−1)F+G where F is the number of closed fermion
loops and G is the number of closed ghost loops;
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Fig. 25.5. Confinement in QCD. Lattice gauge theory calculations indicate that
the separation energy grows linearly with d.

Fig. 25.6. (a) Shielding of point charge by (b) vacuum polarization in QED.

QCDhas two absolutely remarkable properties, confinement and asymp-
totic freedom.

Colored quarks and gluons, the basic underlying degrees of freedom in
the strong interactions, are evidently never observed as free asymptotic
scattering states in the laboratory; you cannot hold an isolated quark
or gluon in your hand. Quarks and gluons are confined to the interior
of hadrons. There are strong indications from lattice gauge theory cal-
culations [Wi74], that confinement is indeed a dynamic property of QCD
arising from the strong, nonlinear gluon couplings in the lagrangian. One
can show in these calculations, for example, that the energy of a static
(qq̄) pair grows linearly with the distance d separating the pair (see Fig.
25.5). What actually happens as the (qq̄) pair is separated is that another
(qq̄) pair is formed, completely shielding the individual color charges of
the first pair, and producing two mesons from one.

The second remarkable property is asymptotic freedom. Recall from
QED that vacuum polarization shields a point electric charge e0 as in-
dicated in Fig. 25.6 (a). The renormalized charge e2

2 changes with the
distance scale, or momentum transfer λ2, at which one measures the inte-
rior charge. The mathematical statement of this fact is the renormalization
group equation of Gell-Mann and Low [Ge54]

de2
2

d ln (λ2/M2)
= ψ(e2

2) (25.27)
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Fig. 25.7. Anti-shielding of color charge in QCD by strong vacuum polarization.

The lowest order modification of the charge in QED arises from the
vacuum polarization graph indicated in Fig. 25.6 (b). The renormalization
group equations can be used to sum the leading logarithmic corrections to
the renormalized charge to all orders. The result is that the renormalized
charge measured at large λ2 � M2 is related to the usual value of the
total charge e2

1 by

e2
2 ≈ e2

1

1 − (e2
1/12π2) ln (λ2/M2)

(25.28)

The first term in the expansion of the denominator arises from the graph
in Fig. 25.6 (b). The renormalized electric charge in QED is evidently
shielded by vacuum polarization; the measured charge increases as one
goes to shorter and shorter distances, or higher and higher λ2.

Similar, although somewhat more complicated, arguments can be made
in QCD. An isolated color charge g0 is modified by strong vacuum
polarization and surrounded with a corresponding cloud of color charge
as indicated schematically in Fig. 25.7. In this case, the renormalization
group equations lead to a sum of the leading ln corrections for λ2 � λ2

1

of the form [Gr73a, Gr73b, Po73, Po74]

g2
2 ≈ g2

1

1 + (g2
1/16π2)(33/3 − 2Nf/3) ln (λ2/λ2

1)
(25.29)

Here Nf is the number of quark flavors.4 An expansion of the denominator
again gives the result obtained by combining the lowest-order perturbation
theory corrections to the quark and gluon propagators and quark vertex.
The plus sign in the denominator in this expression is crucial. One now
draws the conclusion that there is anti-shielding; the charge decreases at
shorter distances, or with larger λ2.5 The implications are enormous, for

4 With Nf = 1, no gluon contribution of 33/3, and the observation tr( 1
2
λa 1

2
λb) =

Nf

2
δab,

one recovers the result in Eq. (25.28). It is the gluon contribution that changes the sign

in the denominator.
5 The vacuum in QCD thus acts like a paramagnetic medium, where a moment surrounds

itself with like moments, rather than the dielectric medium of QED where a charge

surrounds itself with opposite charges.
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one now concludes that it is consistent to do perturbation theory at very
short distances, or high momentum transfer. The renormalization group
equations then provide a tool for summing the leading ln’s of perturbation
theory. The powerful result of asymptotic freedom in QCD is due to Gross
and Wilczek [Gr73a, Gr73b] and Politzer [Po73, Po74]; see also Fritzsch
and Gell-Mann [Fr72a, Fr73a]. References [Ma78, Re81, Wi82, Do93]
contain good background material on QCD.

While a multitude of QCD-inspired models exist [Wa95], the most
ambitious attempt to solve the QCD field equations relies on lattice gauge
theory where the theory is put on a finite space-time lattice [Wi74].6 Low-
energy applications can be found in terms of effective field theory, where
hadronic degrees of freedom are the generalized coordinates of choice, and
an effective lagrangian constructed which reflects the symmetry properties
of QCD [Do93, Se97]. While we will not give an extensive discussion of
effective field theory here, it is possible to capture the spirit of these efforts.

Consider the nuclear domain of massless (u, d) quarks. The kinetic
energy term as rewritten in Eq. (26.2), and hence LQCD, is invariant
under the chiral SU(2)L ⊗ SU(2)R transformation ψL → LψL, ψR → RψR

where L and R are global SU(2) matrices. Consider the pion sector of the
hadronic theory and represent the pion field π through the SU(2) matrix

U = exp (iτ · π/fπ) (25.30)

Here fπ reflects the mass scale (say mp) at which this chiral symmetry,
as manifest in nature, is spontaneously broken. The leading term in an
effective lagrangian can be constructed as follows

L2 + Lcsb = −f2
π

4
tr

(
∂U†

∂xλ

)(
∂U

∂xλ

)
+

f2
πm

2
π

4
tr
(
U + U† − 2

)
(25.31)

If mπ = 0, this lagrangian is invariant under the chiral transformation
U → LUR† (the pion mass term reflects chiral symmetry-breaking at
the lagrangian level through u, d quark masses). This effective lagrangian
should be applicable in the low energy domain where q/fπ � 1. Higher
order terms in the effective lagrangian can now be similarly constructed
in terms of U, ∂U/∂xλ. An expansion of the exponential then leads to

L2 + Lcsb = −1

2

(
∂π

∂xλ

)2

− m2
π

2
π2

− 1

6f2
π

[(
π · ∂π

∂xλ

)2

− π2

(
∂π

∂xλ

)2
]

+
m2
π

24f2
π

π4 + · · · (25.32)

and π–π scattering to O(1/f2
π) can now be calculated from this result.

6 An extensive introduction to lattice gauge theory can be found in [Wa95].
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