BULL. AUSTRAL. MATH. SOC. VOL. ! (1969), 11-13

Free products and residual nilpotency

I. M. S. Dey

Let G be the free product of groups G_{α} , $[G_{\alpha}]$ the cartesian subgroup of G and $k[G_{\alpha}]$ the intersection of $[G_{\alpha}]$ with the k-th term of the lower central series for G. Then the $k[G_{\alpha}]$ form a descending chain of subgroups of $[G_{\alpha}]$ and it is shown that if the intersection of all the subgroups in this chain is trivial then G and hence each G_{α} , is residually nilpotent. This answers a question of S. Moran.

Let G_{α} , $\alpha \in \Lambda$ be a set of non-trivial groups where the cardinality of Λ is at least 2 and let $G = {}_{\alpha \in \Lambda}^{\star} G_{\alpha}$ be the free product of the G_{α} . If $[G_{\alpha}]$ is the *cartesian subgroup* of G, that is the kernel of the map from G to the direct product of the G_{α} , we define subgroups $k[G_{\alpha}]$ of $[G_{\alpha}]$ for each integer $k \geq 1$ as follows;

$$1[G_{\alpha}] = [G_{\alpha}]$$
, $k[G_{\alpha}] = [G, (k-1)[G_{\alpha}]]$.

These subgroups were first introduced by Golovin and it follows from his results that

$$\gamma_{\nu}(G) \cap [G] = k[G_{\alpha}] \tag{1}$$

where $\gamma_k(G)$ is the k-th term of the lower central series of G (see Moran [1], p. 559).

If we put $\omega[G_{\alpha}] = \bigcap_{k \ge 1} k[G_{\alpha}]$ and $\omega G = \bigcap_{k \ge 1} \gamma_k(G)$

then Moran ([1], p. 561, Theorem 8.6) proves the following theorem.

THEOREM 1. If G_{α} , $\alpha \in \Lambda$ is a set of residually nilpotent groups such that either no G_{α} possesses generalized periodic elements or, for

Received 3 February 1969.

some prime p no ${\rm G}_{_{\rm C}}$ possesses elements of infinite p-height then $\omega[{\rm G}_{_{\rm C}}]$ = 1 .

Moran states that he does not know if the condition of residual nilpotence for the G_{α} is necessary. Here we show that this is so.

THEOREM 2. If G is the free product of a set of groups G_{α} , $\alpha \in \Lambda$ such that $\omega[G_{\alpha}] = 1$ then $\omega G = 1$.

COROLLARY. In the statement of Theorem 1 the condition that each G_{α} is residually nilpotent is necessary.

Proof of the Corollary. If $\omega[G_{\alpha}] = 1$ then Theorem 2 implies that $\omega G = 1$ which is just the statement that G is residually nilpotent. Now any subgroup of a residually nilpotent group is also residually nilpotent so that each G_{α} , as a subgroup of G, is also residually nilpotent.

Proof of Theorem 2. Let $K = \omega G$; then $K \subseteq \gamma_k(G)$ for each k so that

$$K \cap [G_{\alpha}] \subseteq Y_{k}(G) \cap [G_{\alpha}]$$
$$\subseteq k[G_{\alpha}] \text{ from (1)}$$

This implies

$$K \cap [G_{\alpha}] \subseteq \omega[G_{\alpha}] = 1$$

so that K and $[G_{\alpha}]$ are two normal subgroups of G with trivial intersection and therefore the normal subgroup M of G generated by K and $[G_{\alpha}]$ is their direct product.

Now the Kurosh Subgroup Theorem (MacLane [4]) implies that M is itself a free product of a free group and certain conjugates of subgroups of the factors G_{α} . However from Baer and Levi [2] a free product can not be expressed non-trivially as a direct product; so either M is infinite cyclic or, as M is normal in G, M is a subgroup of some factor G_{α} .

As $[G_{\alpha}] \subseteq M$ and $[G_{\alpha}]$ is a subgroup of G which intersects each factor G_{α} trivially, M must be infinite cyclic. Now as an infinite cyclic group is directly indecomposable and $[G_{\alpha}]$ is a free group of rank at least one (Dey [3]), $K = \omega G$ must be trivial as required.

References

- [1] S. Moran, "Associative operations on groups II", Proc. London Math. Soc. (3) 8 (1958), 548-568.
- [2] Reinhold Baer und Friedrich Levi, "Freie Produkte und ihre Untergruppen", Compositio Math. 3 (1936), 391-398.
- [3] Ian M.S. Dey, "Relations between the free and direct products of groups", Math. Zeitschr. 80 (1962), 121-147.
- [4] Saunders MacLane, "A proof of the subgroup theorem for free products", Mathematika 5 (1958), 13-19.

Department of Pure Mathematics, SGS, Australian National University, Canberra. A.C.T.