CMS
}ZSMC

http://dx.doi.org/10.4153/CJM-2017-034-5

Canad. J. Math. Vol. 71 (1), 2019 pp. 183-212 J
© Canadian Mathematical Society 2017

Boundary Quotient C*-algebras of Products
of Odometers

Hui Li and Dilian Yang

Abstract. In this paper, we study the boundary quotient C*-algebras associated with products of
odometers. One of our main results shows that the boundary quotient C*-algebra of the standard
product of k odometers over n;-letter alphabets (1 < i < k) is always nuclear, and that it isa UCT
Kirchberg algebra if and only if {Inn; : 1 < i < k} is rationally independent, if and only if the
associated single-vertex k-graph C*-algebra is simple. To achieve this, one of our main steps is to
construct a topological k-graph such that its associated Cuntz-Pimsner C*-algebra is isomorphic to
the boundary quotient C*-algebra. Some relations between the boundary quotient C*-algebra and
the C*-algebra Qy introduced by Cuntz are also investigated.

1 Introduction

In [Lil2], Xin Li associated several C*-algebras with a discrete left cancellative semi-
group P. One of them is called the full C*-algebra C*(P) of P, and is generated by
an isometric representation of P and a family of projections parametrized by a fam-
ily of right ideals of P satisfying certain relations. Since then the study of semigroup
C*-algebras has been regaining a lot of attention; see, for example, [ABLS16, BOSI5,
BLS16,BRRW14,Stam16,Star15] and the references therein. In [BRRW14], Brownlowe,
Ramagge, Robertson, and Whittaker defined a quotient C*-algebra Q(P) of C*(P).
They called it the boundary quotient of C*(P). In fact, [BRRW14, Definition 5.1]
applies to right least common multiple (LCM) semigroups only, but [BRRW14, Re-
mark 5.5] proposes a definition for arbitrary left cancellative semigroups. Roughly
speaking, if we think of C*(P) as a “Toeplitz type” C*-algebra, then Q(P) is of
“Cuntz-Pimsner type”

In [BRRW14, Section 6], the authors investigated many examples of the boundary
quotients of the full C*-algebras of semigroups coming from Zappa and Szép prod-
ucts, which are also right LCM semigroups. The last example there, i.e., [BRRW14,
Subsection 6.6], is concerned with the standard product of two odometers

(z,{0,1,...,n-1}) and (Z{0,1,...,m~-1}),
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where m and n are two coprime positive integers greater than 1. If we “divide” the
elements in {0,1,...,mn — 1} by n and m, respectively, then we get a bijection 6
from {0,1,...,n-1}x{0,1,...,m-1}t0 {0,1,...,m—-1} x{0,1,...,n—1}. Then we
obtain a special semigroup F§, which is actually a single-vertex 2-graph (see [DY09;]).
Since n and m are coprime, I is right LCM. Moreover, one can form the Zappa-Szép
product [F§ x Z, which also turns out to be right LCM and so falls into the class studied
in [BRRW14]. As observed in [BRRW14], it is easy to see that the 2-graph C*-algebra
Og of I} is simple, as the coprimeness of # and m implies the aperiodicity of Iy (see
[DY09;]). However, unlike the other examples, Q(IF§ x Z) was not well understood
there.

Let ny, ..., ng be k positive integers (where k = oo is allowed). For each 1 < i <
k, let X; := {x; :0 <5 < n; -1}, and let Z act on each X; as an odometer. For
1 < i < j <k, completely similar to the above, one has a bijection 0,;: X; x X; —
X; x X;. This induces a single-vertex k-graph F§j where 6 = {6;; : 1 < i < j <
k} ([DY09:]). So one can form a Zappa-Szép product F§ » Z, which is called the
standard product of odometers {(Z,{0,1,...,n; —1})}* . We first construct a family
of topological k-graphs {A, : n € N¥} that are k-dimensional analogues of Katsura’s
topological graphs {E,; : n € N} in [Kat08], and then show that their associated
Cuntz-Pimsner C*-algebras Ox,,) are isomorphic to Q(Fg x Z). On the way to our
main results, we carefully study the generators and relations of the boundary quotient
C*-algebras of a class of Zappa-Szép products of the form [F » G, where Iy is a single-
vertex k-graph and G is a group. We should mention that F§; here is not necessarily
right LCM, and so [F; x G is not right LCM in general. Therefore, one cannot apply the
results in the recent works on right LCM semigroups, such as [ABLS16,BOS15, BLS16,
BRRW14, Stam16, Starl5], to our cases. Our main result on the boundary quotient
C*-algebras associated with standard product of odometers can be summarized as
follows.

Theorem (Theorems 5.4 and 5.13) Let Fy w Z be the Zappa-Szép product induced

by the standard product of k odometers {(Z,{0,1,...,n; —=1})}* .

(i) Q(Fj w Z) is isomorphic to Ox(x,)-

(i) Q(Fy x Z) is nuclear.

(iii) Q(Fj w Z) is a unital UCT Kirchberg algebra <> {In n; }1<;< is rationally inde-
pendent < T} is aperiodic < the k-graph C*-algebra Og of F§ is simple.

Therefore, the boundary quotient C*-algebras Q(IFy x Z) are classifiable by K-the-
ory when {In#; }1<;<x is rationally independent, due to the celebrated Kirchberg-
Phillips classification ([Phi00]). Consequently, the above theorem with [BOS15, The-
orem 6.1] provides a very clear picture for the boundary quotient C*-algebra given in
[BRRW14, Subsection 6.6], as mentioned above.

As a byproduct, we also prove that there is a natural homomorphism from
Q(IFy  Z) into the C*-algebra Qy introduced by Cuntz [Cun08]. It turns out that
this homomorphism is injective if and only if {In n; }1<;<x is rationally independent.
In particular, one has Q(Fj « Z) = Qy if {n; };2, is the set of all prime numbers.

https://doi.org/10.4153/CJM-2017-034-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-034-5

Boundary Quotient C*-algebras of Products of Odometers 185

This paper is organized as follows. In Section 2, some necessary background, which
will be used later, is given. With very careful analysis, in Section 3, we exhibit the gen-
erators and relations of the boundary quotient C*-algebras of Zappa-Szép products
of the form Fy w G, where I} is a single-vertex k-graph and G is a group (see The-
orem 3.3). As an important application of the results in Section 3, we obtain a very
simple presentation of the boundary quotient C*-algebra of the standard product of
k odometers (see Definition 4.6) in Section 4. Roughly speaking, it is the univer-
sal C*-algebra generated by a unitary representation of G and a *-representation of
IF; which are compatible with the odometer actions (see Theorem 4.9). In our main
section, Section 5, we first construct the class of topological k-graphs {A, : n € N},
which is a higher-dimensional analogue of a class of topological graphs {E,, ; : n € N}
given by Katsura [Kat08]. By Yamashita’s construction in [Yam09], there is a product
system X(A,) over N¥, The first main result in this section shows that the associated
Cuntz-Pimsner C*-algebra Ox,,) of Ay is isomorphic to the boundary quotient C*-
algebra of the standard product of k odometers (see Theorem 5.4). Then, motivated
by and with the aid of some results in [Cun08,Kat08, Yam09], we prove Theorem 5.12,
which says that Ox 4, is simple if and only if {Inn; : 1 < i < k} is rationally inde-
pendent, and Ox,,) is also purely infinite in these cases. The nuclearity of Ox(y,)
is obtained by applying some results from [CLSV1l, Yee07] to our case. Also, Ox(4,)
satisfies the Universal Coefficient Theorem (UCT) from [RS87] due to [Tu99]. There-
fore, Ox(a,) is a unital UCT Kirchberg algebra if and only if {In 7; },<;< is rationally
independent.

2 Preliminaries

In this section, we provide some necessary background, which will be useful later. We
also take this chance to fix our terminologies and notation.

Notation and Conventions

Let N be the additive semigroup of non-negative integers. Denote by N* the multi-
plicative semigroup of positive integers. Let 1 < k < oo. For any semigroup P, denote
by P* (resp. Hle P) the direct sum (resp. product) of k copies of P (they coincide if
k < 00). Let {e; }* | be the standard basis of N¥. For n € N¥, we write nn = (ny, ..., n).
Forn,m e NF, z ¢ Hle T, denote by nvm (resp. nAm) the coordinatewise maximum
(resp. minimum) of n and m, and let z" := Hf-‘zl z;".

Forl1<neN,let[n]:={0,1,...,n-1}. ByF}, we mean the unital free semigroup
with n generators.

In this paper, k is an arbitrarily fixed positive integer that could also be oo, unless
otherwise specified.

All semigroups in this paper are assumed to be unital (and so are monoids). For a
semigroup U, its identity is denoted by 1y (or just 1 if the context is clear).

2.1 Cuntz-Pimsner Algebras of Product Systems Over N¥

In this subsection we recap the notion of product systems over N¥ from [Fow02].
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Let A be a C*-algebra. A C*-correspondence over A (see [Fow02,FMRO03]) is a right
Hilbert A-module X together with a *-homomorphism ¢: A - £(X), which gives
a left action of Aon X by a-x := ¢(a)x forall a € Aand x € X. A (Toeplitz)
representation of X in a C*-algebra B is a pair (y, i), where y: X — B is a linear map,
and m: A — B is a homomorphism such that

v(a-x)=n(a)y(x);y(x) v(y)=n({x,y)) forall aecAandx,yeX.
Notice that the relation y(x - a) = y(x)n(a) holds automatically, due to the above
second relation. It turns out that there is a homomorphism y(: X (X) — B satisfying

(2.1) 1//(1)(®x,y) =y(x)y(y)" forall x,yeX,

where @y, (z) := x - (y,2) 4 for z € X is a generalized rank-one operator. A represen-
tation (v, ) is said to be Cuntz-Pimsner covariant if

v (¢(a)) = n(a) forall ae¢(K(X)).
Recall that X is said to be essential if span{¢(a)x : a € A,x € X} = X, and regular
if the left action ¢ is injective and ¢(A) € K(X).

Definition 2.1 Let A be a C*-algebra, and let X = | |, X, be a semigroup such
that X,, is a C*-correspondence over A for all n € N¥. Then X is called a product
system over N with coefficient A if the following hold:

(i) Xo=4

(i) X, Xm C Xpem for all n, m e NK;

(iii) for n,m € Nk« {0}, there exists an isomorphism from X, ®4 X, onto X1,
where X, ®4 X,,, denotes the balanced tensor product, by sending x ® y to xy
forall x € X, and y € X3

(iv) for n € N¥, the multiplication X, - X,, is implemented by the left action of A
on X,, and the multiplication X,, - X, is implemented by the right action of A
on X,.

Definition 2.2 Let A, B be C*-algebras, let X be a product system over N¥ with
coefficient A, and let y: X — B be a map. For n € N¥, denote by v,, := y|x,. Then v is
called a (Toeplitz) representation of X if
(T1) (yu> o) is a representation of X, forall n € Nk;
(T2) ¥ (2)Wm(¥) = Wnim(xy) forall n,m e NK, x € X,,, y € X,p..
We write 1//21) for the homomorphism from K(X,,) to B as in (2.1). The representation
y is said to be Cuntz-Pimsner covariant if (y,, W) is Cuntz-Pimsner covariant for
all n e NF,

The product system X is said to be essential (resp. regular) if X, is essential
(resp. regular) for all n € N¥.

Standing Assumptions

All product systems are always assumed to be essential and regular throughout the
rest of the paper. Under these assumptions, every Cuntz-Pimsner covariant repre-
sentation is automatically Nica covariant (see [Fow02, Proposition 5.4]).

https://doi.org/10.4153/CJM-2017-034-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-034-5

Boundary Quotient C*-algebras of Products of Odometers 187

Proposition 2.3  Let X be a product system over N¥ with coefficient A. Then there
exists a universal Cuntz-Pimsner covariant representation jx:X — Ox such that jx
generates O, and for any Cuntz—-Pimsner covariant representation ] of X into a C*-
algebra B, there is a unique homomorphism J:Ox — B such that ] o jx = J. The
C*-algebra Ox is called the Cuntz-Pimsner algebra of X.

For a representation v of X, a gauge action is a strongly continuous homomor-
phism a:[T*, T - Aut(C*(y(X))) such that a,(y,(x)) = 2"y, (x) for all z €
Hf;l T, n € N¥, x € X,,. The universal Cuntz-Pimsner covariant representation jx ad-
mits a gauge action y: Hle T — Aut(Ox). The gauge-invariant uniqueness theorem
for a product system over N¥ is highly nontrivial to achieve. However, this problem
was completely resolved by Carlsen, Larsen, Sims, and Vittadello in [CLSV11] (their
nice work covers much more general product systems). Combining [CLSV11, Corol-
lary 4.12] and [SY10, Corollary 5.2], we obtain the following version of the gauge-
invariant uniqueness theorem, which is analogous to the one in [FMR03].

Theorem 2.4 Let X be a product system over N¥ with coefficient A and let y be a
Cuntz-Pimsner covariant representation of X that admits a gauge action. Denote by
h:Ox — C*(y(X)) the homomorphism induced from the universal property of Ox. If
hljxo(a) is injective, then h is an isomorphism.

For later use, let us record the following two simple lemmas.

Lemma 2.5 Let A, B be C*-algebras where A is generated by G. Let X be a C*-corres-
pondence over A, which has a subset 3 whose linear span is dense in X. Let yo:spanJ —
B be a linear map, and let m: A — B be a homomorphism. Suppose that

@ §-FcF

(i) wo(a-x)=mn(a)yo(x) forallx e FandaeG;

(iil) wo(x)*wo(y) = ({x, y)a) forallx,y € F.

Then o is a bounded linear map with the unique extension y to X, and (y,n) is a
representation of X. Moreover, if y™ (¢(a)) = n(a) for all a € S, then (v, ) is also
Cuntz-Pimsner covariant.

Proof This is straightforward to prove and left to the reader. ]

Lemma 2.6 Let X be a product system over N¥ with coefficient A and let y: X — B be
a representation. Suppose that (Y., o) is Cuntz-Pimsner covariant for all1 < i < k.
Then y is Cuntz-Pimsner covariant.

Proof For1 < i,j < k, there exists an isomorphism from X,, ® X, onto X,,.;
sending x ® y to x - y forall x € X,y € X, and there exists a linear map y., ®
Ve;: Xe, ® Xe; — Bsuch that y,, ® v, (x ® y) = v,,(x)y,,(y) forall x € X,, and
y € X,;. Similar to the proof of [Pim97, Lemma 3.10], one can see that (y., ® ¥, Vo)
is Cuntz—-Pimsner covariant. Hence y is Cuntz—Pimsner covariant. |
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2.2 Topological k-graphs

In this subsection we recall the definition from [Yee07] of topological k-graphs, which
are generalizations of k-graphs studied by Kumjian-Pask in [KP00]. Then we briefly
recall the product system associated wiht each topological k-graph from [YamO09].

Definition 2.7 A topological k-graph is a k-graph A equipped with alocally compact
Hausdorff topology such that

* the composition of paths is continuous and open;
¢ the range map r, the source map s, and the degree map d are all continuous;
* s is alocal homeomorphism.

For n € N¥, let A" be the set of all paths of degree n. The topological k-graph A is
said to be regular if r|s« is proper and surjective for all 1< i < k.

One can show that if A is regular, then r|» is proper and surjective for all n € N,

Let A be a regular topological k-graph. One can construct a product system X (A)
over N¥ as follows. Given n € N¥, define a topological graph E, := (AO, A", 1,s).
Let X,(A) := X(E,) be the graph correspondence of E, in the sense of Katsura
(cf. [Kat04,]). By [Kat04,, Proposition 1.10],

Xu(A) = {x€C(A") : (x,x)c,(a0) € Co(A®)}.
For n,m € N¥, x € X,, and y € X,,, define a diamond operation x ¢ y: A"*" — C by
x o y(u) =x(a)y(B) for u e A" with y = aB,d(a) = n,d(p) = m.
Notice that x o y is well defined due to the unique factorization of . Let

X(A):= U X,(A).

neNk

Then X(A) is a product system over N¥ with coefficient Co(A®) under o. We call
X (A) the product system associated with A. Notice that X (A) is essential and regular.

2.3 Single-vertex k-graphs

In this subsection we recap the theory of single-vertex k-graphs and their C*-algebras
from [DY09;, DY09,]. Let A be a single-vertex k-graph. For1 < i < k, let {x! :
5 € [m;]} be the set of all edges in A of degree e;. It follows from the factorization
property of A that, for 1 < i < j < k, thereis abijection 0;: [m; ] x [m;] — [m;]x [m;]
satisfying the following 8-commutation relations:

xixl=xlxl, if 0ij(s,t) = (t',s").
Then A coincides with the semigroup Fj defined by (cf. [DY09,])
o= (xlise[mi) 1<i<k xix] = x] xL, whenever 6;;(s,t) = (t,5")),
which is also occasionally written as

g=(xlise[m], 1<i<k 6;,1<i<j<k).
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It is worthwhile mentioning that I'; has the cancellation property due to the factor-
ization property of A. It follows from the 8-commutation relations that every element
w € F§ has the normal form w = x], ~~-xfjk for some u; € F;, (1 < i < k). Here we
use the multi-index notation: x), =x} ---x! ifu; =s,---5, ¢ F;}, .

For k = 2, every permutation § determines a 2-graph. But for k > 3,
0 ={6;;:1<i < j <k} determinesa k-graph if and only if it satisfies a cubic condition
(see, e.g., [DY09,,FS02] for its definition). Here, it is probably worth mentioning that
this is also related to the Yang-Baxter equation (see [Yanl6;, Yanl6,]).

By a *-representation S of Fj in a C*-algebra A, we mean that S is a semigroup
homomorphism of Fy that is subject to the relations: S}, S, =1 (s € [m;]), for
1 < i < k, and the defect free condition ¥ ,cn,] Sxi S;L = 1. The k-graph C*-algebra

Og of Iy is defined to be the universal C*-algebra for *-representations of F'y.

2.4 Zappa-Szép Products of Semigroups

In this subsection we review the definitions of the full C*-algebra of a left cancella-
tive semigroup from [Lil2], its boundary quotient C*-algebra from [BRRW14], and
the Zappa-Szép product of two semigroups from [BRRW14] (see also [Bri05]). The
odometer action is also given to induce a class of Zappa-Szép products.

Let P be a left cancellative semigroup. For p € P, we also denote by p the left
multiplication map q — pq. The set of constructible right ideals is defined as

IP)={p' Py qnP 2 1,1 qus s s G € PYU {2}
A finite subset F of J(P) is called a foundation set if for each Y € J(P) there exists
XeFsuchthat XnY # @.
For p,q € P, we say that p is a right multiple of q if there exists r € P such that
p = qr. P is said to be right LCM if any two elements of P having a right common
multiple have a right least common multiple.

Definition 2.8 ([Lil2, Definition 2.2], [BRRW14, Remark 5.5])  Given a left cancella-
tive semigroup P, the full semigroup C*-algebra C* (P) of P is the universal C*-algebra
generated by a family of isometries {v, } pcp and a family of projections {ex } xes(p)
satisfying the following relations:
(L1) vpvg = vpq forall p,q € P;
(L2) vper; = epx forall pe P, X € J(P);
(L3) ey =0andep =1;
(L4) exey = exny forall X, Y € J(P).

The boundary quotient Q(P) of C*(P) is the universal C*-algebra generated by a
family of isometries {v, } pep and a family of projections {ex } xc7(p) satisfying Con-
ditions (L1)-(L4), and furthermore

(Q5) TIxer(1-ex) =0 for all foundation sets F c J(P).
In this paper, Q(P) is simply called the boundary quotient C*-algebra of P.

Definition 2.9 ([BRRWI14, Definition 3.1]) Let U and A be semigroups. Suppose
there are two maps Ax U — U, (a,u) » a-uand Ax U — A, (a,u) ~ al, such that
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forall a, b € Aand u, v € U, we have

(B1) 14 - u = u; (B5) alr, = a;

(B2) (ab)-u=a-(b-u); (B6) aluy = alulvs

(B3) a-ly =1y; (B7) 1A|u =1y

(B4) a-(uv) = (a-u)(al,-v); (B8) (ab)|, = alp-ub)u-

Let, U x A := U x A, equipped with the multiplication
(u,a)(v,b) == (u(a-v),a|,-b) forall (u,a),(v,b)eUxA.

Then U x A is a semigroup under this multiplication, called the (external) Zappa-Szép
product.
We call a - u the action of a on u, and al, the restriction of a to u.

Let us record the following remark for later use.

Remark 2.10 If U and A in Definition 2.9 are both left cancellative semigroups,
and if for any a € A, the map u — a - u is an injection on U, then U x A is also left
cancellative.

One very useful way to produce Zappa-Szép products is from self-similar actions.

Definition 2.11 ([Nek05, Definition 1.5.1]) Let X be a non-empty finite set. Consider
the free semigroup X* generated by X. Suppose that a group G acts faithfully on X*.
Then this action is called self-similar if

(i) g-o=oforalgeG;
(ii) for g € Z,x € X, there exist unique y € X, h € G such that g- (xw) = y(h-w)
forall w e X™.

We also call (G, X) a self-similar action.

If we let g+ x := y and gl := h, then these two maps induce two maps G x X* —
X*,(gu) » g-uand G x X* > G, (g, u) — g, satisfying Conditions (B1)-(B8) of
Definition 2.9. Identifying X* with F&l, we obtain a Zappa-Szép product FIJB(I xG.

A very important example of self-similar actions (see [LRRW14, Nek05]), which
will be frequently used later, is given below.

Example 2.12 (Odometers) Letn >1and X = {x :s € [n]}. Define

1 Xg = X(511) modn fors e [11],

0 ifs<n-1,
1|X5: .
1 ifs=n-1

This determines a self-similar action (Z, X), which is known as an odometer or an
adding machine.

The following lemma will be used later and is of independent interest as well.
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Lemma 2.13 Let U be a left cancellative semigroup and let G be a group. Let Gx U —
U,(a,u) » a-u,and G x U - G, (a,u) — al, be two maps satisfying Conditions
(B1)-(B8) of Definition 2.9. Suppose that for u € U, b € G, there exists a € G such that
al, =b. Then UG = GU and J(U n G) = J(U) x G (with @ x G := @). Here, U is
identified with (U, 1) < U x G and similarly for G.

Proof Let (u,g) € U x G. By assumption, there is h € G such that k|, = g”'. From
Definition 2.9 (B2) and (B8), one has that A" (h(u)) = u and h™[;;(,,) = . Then

(1,8) = (u:16)(1v, ) = (1, A7) (h(1), 1a).
Thus, UG = GU. The rest of this lemma follows immediately. |

3 Generators and Relations of Q(FF; x G)

When applying the construction given in Definition 2.8 to the Zappa-Szép product
U » A of two semigroups A and U, usually we find it hard to understand its boundary
quotient C*-algebra Q(U x A). This is not surprising due to several factors: for in-
stance, the constructible right ideals of U x A could be very complex; its foundation
sets are not easy to describe.

In this section, we study a class of Zappa-Szép products Fj; m G, where G is a
group and [ is a single-vertex k-graph such that the restriction map satisfies a certain
condition. In this case, Q(Fj  G) can be nicely presented by a unitary representation
of G and a *-representation of 'y such that they are compatible with the action and
restriction maps.

Lemma 3.1 Let U be a left cancellative semigroup and G be a group. Let G x U —
U,(a,u) » a-uand GxU — G, (a,u) — al, be two maps satisfying conditions (B1)-
(B8) of Definition 2.9. Suppose that for u € U, b € G, there exists a € G such that a|, =
b. Then Q(U w G) is isomorphic to the universal C*-algebra 2 generated by a family
of isometries {t, },cu, a family of projections {qx }xeg(v)> and a family of unitaries
{4 }ac satisfying the following properties. Foru,v € U,X,Y € J(U),a,b € G,

(1) tyty = tyys

(11) tuQXt; = quXs

(i) saqxs) = qaxs'

(iv) gg=0andqu =1

(v) qxqy = 4xny;

(vi) TIxer(1-9gx) = 0 for every foundation set F c J(U);
(vii) $uSp = Saps

(viii) saty = tauSa),-

Proof By Lemma 2.13, one can assume that {0y, a) } (u,a)eunc (r€Sp. {€xxc } xeg(v))
are the families of isometries (resp. projections) that generate Q(U x G).
For (u,a) € Ux G and X € J(U), define

A(u,u) = ty8, and Exxg = qx.

INotice that a - X € J(U) by Lemma 2.13.
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Given (u,a), (v,b) € Ux G and X, Y € J(U), we have the following properties:
° A(u,u)A(v,b) = tySatySp = tu(u-v)5a|.,b = A(u,a)(v,b)~
° A(u,a)EXXGAzu’a) = tuSaQXSZt: =qu(aX) = Euaxxc = E(u,a)XxG'
* Ex=qp=0and Eyug = qu =1
* ExxcEyxc =9x9y = 9xny = E(xxG)n(¥xG)-
* For a foundation set {X; x G }1<i<n of J(U x G), since {X; }., is a foundation set
of J(U), we have

Ii—lll(l—ExixG) = _Ir_—lll(l— qgx,) = 0.

Hence, relations (L1)-(L4) and (Q5) of Definition 2.9 hold. By the universal property
of Q(U » G), there exists a homomorphism p: Q(U x G) — 2 such that p(8,,,) =
A(u,ay and p(exxc) = Exxc forall (u,a) e Ux G and X € J(U).

Conversely, foru € U, X € J(U) and a € G, define

Ty =0(u1e)s Qx:=exxG> Sa=0(y,a)

For a € G, we compute that
SaSa = 8(15,a) €UnGO(1y,a) = €(1y,a)(UG) = €UnG = L.

So S, is unitary. Then one can easily check that conditions (i)-(viii) hold. By the
universal property of 2, there exists a homomorphism m:2 — Q(U x G) such that
n(ty) =Ty, n(gx) = Qx,7(sy) =Sy forallu e U, X € J(U),a € G.

Finally, it is straightforward to see that mop = id and por = id. Therefore, Q(UxG)
is isomorphic to 2. ]

Lemma 3.2 Let I} be a single-vertex k-graph, and let T be a *-representation of F,
in a C*-algebra A. Given y1,v1,. .., thn, vy in IFj, denote by

o (Fp)™ (uip viaior)  ifl<i<n,
F:= i> i "17 € ]F+ : i»Pi) € o i
(fxz /31)171 ]1:[1 0 (061 ﬁl) {(Fg)mm(‘ui,vi) lfi -1,

where (F})™™(u,v) denotes the set of minimal common extensions of y and v. Then

the following statement hold true.

(i)  For distinct tuples (a;, B:)7, and (yi,w;), € F, we have d(a,) = d(y,),
d(Bn) =d(wn), an # yn, and B, # w,.

(i) pp'va i FG = Uy er @nFg.

(iii) Each constructible right ideal of ¥}y has a unique representation as the union of
disjoint principal right ideals of .

) 3(Fp) = { U il d(a) = = (@)}

(v)  For any finite subset F c I}, we have {alF} }scr is a foundation set of J(F}) if
and only if F is exhaustive (see [RSY04, Definition 2.4]).

Proof (i) follows from the unique factorization property of Fy.
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We verify (ii) by induction. It is straightforward to see that (ii) holds for n = 1.
Suppose that (ii) holds for n > 1. Let

! ._ n+l 2(n+1) + .
F = ((X,’,ﬁi i=1 € nl FG H (‘xi)ﬁi) €
j=

Then

(F)™™ (i, viaig) ifi>1,
(F5)™ (pis vi) ifi=1

-1 -1 -1 +
U1 Vnsilly Va -ty Mg

= l/‘;ilvnﬂ( U “nF;)
(tx,-,/},-);’:leF

= U ﬂ;iﬂ’nﬂ(“nFE)
(i>fi)t_|€F

-1 +
= U Hps1 Va1 &g
({X,-,ﬂ,-);':IGF
"
= U U ‘xn+1]F9
(aisBi) 1 €F (anrtsBurr)€(Fy )™ (Unrr, V1)

= U 067,+1F-§.

(ai,Bi)itleF

So this proves (ii), and (iii)-(v) easily follow from (ii). [ |

Theorem 3.3  Let T} be a single-vertex k-graph, G be a group, and let G x Fy —
Fg,(g-u) = g-pand G xFy — G, (g, 1) = gl be two maps satisfying conditions
(B1)-(B8) of Definition 2.9. Suppose that for yu € Fy, h € G, there exists g € G such that
gly = h. Then Q(Fy w G) is isomorphic to the universal C*-algebra A generated by a
unitary representation u of G and a *-representation v of Fy satisfying

(3.1) UgVy = Vgulg, forall peFgandgeG.

Proof We apply the characterization of Q(F; » G) from Lemma 3.1. That is,
Q(Fg » G) is the universal C*-algebra generated by a family of isometries {t, } er:,
a family of projections {qx } xeg(r;)> and a family of unitaries {s4 } sec satisfying con-
ditions (i)-(viii) of Lemma 3.1.

First of all, for y € F}, g € G and X = UL, a;Fj € J(Fy), define T, := v,, S, :=
Uug, Qx = Xis) Va, Vg, Itis clear that T, and S, are isometric and unitary, respectively.
Also notice that Qy is a well-defined projection due to Lemma 3.2. In what follows,
we only verify that {T,,Sg, Qx : 4 € Fj, g € G,X € J(IFy)} satisfies conditions (v)
and (vi) of Lemma 3.1, as the other conditions hold easily.

To prove condition (v) of Lemma 3.1, let us fix X = UL, a;Fy and Y = U7, B,y
inJ(Fy). Then X n'Y = Ui jU(u,v)eamin(a,,p;) @itiFy. So

_ * *
QxQy = Z VoV, VB; VB
i,j

= Z Z Vaiy";jv (see [KP0O, Lemma 3.1])
07 (u)e(F5)mn (as,67)
= Qxny-
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For the proof of Lemma 3.1(vi), pick a foundation set {X; := U] LaiiFa Y, of
J(IF3). Notice that {a;;jFy : 1< i < n,1< j<m;} is also a foundation set of J(IF).
By Lemma 3.2, {a;j : 1 < i < n,1 < j < m;} is exhaustive. Then it follows from
[RSYO04, Proposition B.1]) that

3

i

1(1 le:] oc,) 0.

=
:]:

(1—QX)

I

—_
-

I

By the universal property of Q(F§ x G), there exists a homomorphism 7: Q(IFg »
G) — A such that 77(t,) = Ty, m(sg) = Sg.m(qx) = Qx forall y € Fp,g € G, X ¢
I(Fg).

Conversely, let
Vii=ty, Ugi=sg forall pe F§> geaG.

Clearly, V, is an isometry and Uy is a unitary. We verify that V' is a *-representation
of . Obviously, we only need to show that 3 e Vu Vi =1 forall1<i< k. To
this end, let 1 < i < k. For distinct y, v € (IF§)*, by Lemma 3.1(ii), we get £t = qur;
and t,t; = q,p;. By Lemma 3.1(v), we have #,t;t,t; = 0. Since {uFy }ME(FJ,)E isa
foundation set of J(F3), we have

1- Y VuVi=1- > tut,

pe(Fy)e pe(Fy)<i
= I (-tuty)
we(Fy)e
= I (1—qﬂﬂz+) (by Lemma 3.1(vi))
ue(F))es
=0.

Thus, by the universal property of A, there exists a homomorphism p: A - Q(Fg»G)
such that p(v,,) = Vy, p(ug) = Ug forall p e Fj, g € G.

It remains to show that 7 and p are inverses of each other. For this, let X :=
UL, a;F5 € J(F;). Denote by F := (F)4) \ {a;}7. Then {a;F},aF) :1< i<
n,a € F} and {X, aF} : a € F} are foundation sets of J(IF§ ). By Conditions (v)-(vi)
of Lemma 3.1, we have

Hl(l_qaiF;') HF(l_an{;) = anJF quxlF* =0,
= o€ i=1 aeF
(1-ax) T (1= qus;) =1-4x = 3 qury =0

aeF acF

So pom(gx) = qx. Then it is easy to see that p o w = id, 7 o p = id. Therefore, we are
done. ]

Remark 3.4 'Theorem 3.3 is an analogue of [BRRW14, Theorem 5.2]. However,
since a single-vertex k-graph Fj is not necessarily right LCM in general (also see
Proposition 4.7), the assumptions of [BRRW14, Theorem 5.2] are not satisfied in our
case. So here one cannot apply [BRRW14, Theorem 5.2].
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Remark 3.5 If Gistrivial, Theorem 3.3 implies that the boundary quotient C*-alge-
bra Q(F}) is isomorphic to the graph C*-algebra Oy of ;. We should also mention
that the C*-algebra C*(IF}) in [DSY08, DSY10] is really Q(Fy) here, instead of the
full C*-algebra of (the semigroup) 5. (To avoid confusion, the notation Oy was first
used in [Yanl0].)

4 An Application to the Standard Products of Odometers

Applying the main result in Section 3 to the standard product of k odometers, we
further simplify the presentation of its boundary quotient C*-algebra. Our result,
loosely speaking, says that the boundary quotient C*-algebra in this case is generated
by a unitary representation of a group and a *-representation of a single-vertex k-
graph, which are compatible with the odometer actions.

For our purpose, we first generalize [BRRW14, Proposition 3.10] to higher dimen-
sional cases.

Proposition 4.1 (and Definition) Let G be a group and let
o= (xlise[m] 1<i<k xix] = x]xi, whenever 8;;(s,t) = (¥,5))

be a single-vertex k-graph. Suppose that G acts self-similarly on each F;, (1< i < k).
Then the action and restriction maps G x X; — X;,(g,x}) = g-xl and G x X; -
G,(g,xl) = glyi can be extended to G x F§ — F§, (g u) = g-pand G xFy —
G, (g 1) glu satisfying conditions (B1)-(B8) in Definition 2.9, if and only if

(41) (8-%)(gley +x0) = (&) (gl - x1)

for all generators g of G and Gij(x;,xj) = (x{,,x;,) (1<i<j<k).
The induced Zappa-Szép product F; » G is called the product of self-similar actions

{(G, [}y

Proof “Only if”: If 8;;(xi,x]) = (x},xl,), then xix] = x/,xL,. So from (B4) and
(B6), one has

(g %8)(8les - x0) = g~ (xix{) = g- (x}xly) = (g'x{f)(g|x{, “Xg),
8leily = 8lysvi = &l i =8l 1,

for all g € G. In particular, (4.1) holds true.
“If": In fact, for g e Gand u; € F}, (1< i< k), define

1

g (uxi, o x) = (g%, (gl - X

1 .x -..( 1
Xuy uz gxul

k
a, Lo ),
g|x,“1x§2~-~x1’jk = g|x}41 |x,§2 T |x,’jk :
Notice that using (B2) and (B8) one can easily see that (4.1) holds true for all g € G.
Here we only check condition (B4) in Definition 2.9, the others being similar.
Clearly, it suffices to verify

g (i oxet) = (8- x) (8l %)+ (8la o wla xgt),
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where all i,;s are distinct and 5 ¢ [m,-j]. But this follows from the facts that (B2) and
(B8) hold true on each (G, [m;]), and that each word x! - -- x2 can be obtained from
x%l --~xfk after finite steps by switching the super indices i, and i,; with i, > i,
only one at a time. ]

Remark 4.2 To see that the above proposition is a generalization of [BRRW14,
Proposition 3.10], let k = 2, 0 := 01y, x := x}, y == x%, x}, = Ox(xs, y¢) and y? =
Oy (x5, y¢). Then
{g-ﬂy(x,y):9y(g~x,glx~y), }
8oy (x.y) " Ox(x,y) = Ox(g- X, 8lx - ¥)
< (g:0v(x,))(8oy(x,y) " Ox(x, 7)) = Oy(g-x, glx - ¥)Ox (g x, glx - ¥)
(by the unique factorization property of F)
< g (0y(x,y)0x(x,y)) = (g-x)(glx - ¥)
=g (xy)=(g-x)(glxy)
Example 4.3 Letn; =nforalll<i<kand®;(s,t) = (s,t) foralll1<i<j<k.

Then it is easy to check that I is a k-graph (also see [DY09,]). Let G be an arbitrary
group self-similarly acting on each F} in the same way. So if

g-e.=eg, gle;:h, h-e{:e{I, h|e{:h1,

then

g-el=el, g|e£:h, h-eg=ey, hls=h.

1

Thus,
(8- €1)(gles -el) = ehel —ehel = (- D) (g, -l
g|e;|2{ = h‘e{ =h = h|e’; = g|els-|e’;'

It follows from Proposition 4.1 that one obtains the product Fj x G of self-similar
actions (G, [n]).

It is worth mentioning that the above F§ is not a right LCM at all (as IF is periodic),
and so in this case 'y G is not right LCM.

In the sequel, we exhibit a class of products of self-similar actions satisfying all
conditions in Theorem 3.3, which plays a vital role in this paper.

Example 4.4 Let ny,...,n, be k positive integers. For each1 < i < k, let X; :=
{x! : 5 € [n;]}, and let Z act on each X; as an odometer (see Example 2.12). For
1<i<j<klet8;: X; x Xj - X; x X; be a bijection defined by

(4.2) Gij(x;,xj) = (x{,,x;,) ifs+tn; =t +5'n; (5,8 [n;], .t € [n]).

Let
Fg=(x{:te[n],1<i<k;0;in(42),1<i<j<k).
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One can easily check that I satisfies the cubic condition, and so [ is indeed a single-
vertex k-graph. Moreover, relation (4.1) is satisfied. Then applying Proposition 4.1
gives a Zappa-Szép product F§ xZ, which is the product of odometers {(Z, [n;]) }£_,.

Remark 4.5 By induction, one can check that, given y € Fj and [ € Z, there exists
I" € Z such that I'|, = I. So the restriction map satisfies the condition required in
Theorem 3.3.

Definition 4.6 The Zappa-Szép product I x Z given in Example 4.4 is called the
standard product of odometers {(Z, [n;])}*_,.

The following proposition is a generalization of a result from [BRRW14].

Proposition 4.7  Keep the same notation as in Example 4.4. Then the following state-
ments are equivalent:

(i)  the n;s are pairwise coprime;

(ii) forl1<i< j<k, given(s,t'") € [n;] x [nj], there exists a unique pair (s',t) €
[ni] x [n;] such that x;x{ = x{,x;,;

(iii) any two elements u,v € 'y having a right common multiple have a unique right
least common multiple with degree d(u) v d(v);

(iv) Ty isright LCM.

Proof (i)=(ii). Fix1 < i < j < kand (s,t') € [n;] x [n;]. Assume that (s',t),

(s”,t") € [n;]x[n;] such thatx)x{ = x{,x., and xx/, = x{,x},. Thens+tn; = t'+s'n;
and s + t"n; = t' +5"nj. So (t - t")n; = (s’ - §")n;. Since n; and n; are coprime,
t=t"ands' =s".

(ii)=(iii) and (iii)=(iv). The proofs are straightforward.

(iv)=(i). To the contrary, suppose that there exist 1 < i < j < k such that n; and n;
are not coprime. Let [ := gcd(#n;, n;). Then I > 1. By the definition of 6;; in (4.2), we

have

xéxij/l = xéx;i/l and  x)x) = x)xg.
We deduce that x{ and xé have right common multiples, but they do not have a right
least common multiple. This contradicts the assumption that 'y is right LCM. There-

fore, n;s are pairwise coprime. |

Remark 4.8 In order to include more examples, let us emphasize again that the n;s
are arbitrary positive integers. As shown in Proposition 4.7, Iy is right LCM if and
only if n; are pairwise coprime. Therefore, [BRRW14, Theorem 5.2] only applies to
the case where the n;s are pairwise coprime. However, with the aid of Theorem 3.3,
we are still able to simplify Q(Fj « Z) without any conditions for the n;s.

Theorem 4.9  Let Fj w Z be the standard product of odometers {(Z, [n;])}%_,. Then
Q(IFy w Z) is isomorphic to the universal C*-algebra A generated by a unitary f and a
family of isometries {g,i : 5 € [n;],1< i < k} satisfying

(i) Yselni] gx;g;i =1forall1<i<k;
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&i, fO0<s<ni-1

i) for1<i<k, xi =

(ii) f fe {gxof ifs = mi— 1

(ili) gxi &xi = &, &xi, Whenever 0;;(s,t) = (¥,8") forall1 <i < j<k 5,5 €[n]
and t,t' € [n;].

Proof We adopt the characterization of Q(IFy » Z) from Theorem 3.3. Let
{tu,sn:ueFy, N e Z} be the generators of Q(Fy » Z).

For N € Z, define Sy := f~. Clearly, S is a unitary representation of Z in A. Define
Ty :=1and T, = g, fors € [n;] (1< i < k). By (iii), for any word w = 1y -+~ uy € Fy
withu; € [n;], we can define an isometry T,, := 8x1, 7" &k - SO this yields an isometric
representation of ' in A. Then it follows from (i) that T is a *-representation of F'j.

For1< i< kands € [n;], (ii) implies that
gy if0<s<n; -1,

s+1 = Tl~x; Sllxi .
5

$iT,i = i =
14xi fgxs {gxof ifs=n; -1

Then one can easily check that Eq. (3.1) holds true. By the universal property of
Q(IF§ w Z), there exists a homomorphism ¢: Q(Fj » Z) — A such that ¢(sy) = Sy
and ¢(t,) = T, forall N € Zand y € Fy.

Conversely, define F := s; and Gyi := t,; fors € [n;] (1 < i < k). Since t is
a x-representation of F}, (i) and (iii) automatically hold true. For1 < i < k and
s € [n;], it follows from (3.1) that

G, if0<s<n; -1,

FGxi = Sltxi = t1~xi Sll .= { Tor1
PTG ifs =1,
0

which implies (ii). By the universal property of A, there exists a homomorphism
mA - Q(F§ wZ) such that n(f) = F,71(g,i ) = Gyi foralll<i < kands € [n;].
It now follows easily that 7w o ¢ = id, ¢ o 7 = id. Therefore, we are done. ]

The following properties will be used later.

Corollary 4.10  Keep the same notation as in Theorem 4.9. Then
(1) 8xi8y) = gxégxéforalll <i<j<k;

(il) f°gx = gui foralll<i<kandse[n;];

(iii) ”Nl gxthforalll<z<kl>ONeZ

Proof The proofs of (i) and (ii) follow directly from Theorem 4.9.

Clearly, the identities of (iii) hold trivially when either I = 0 or N = 0. So we
can assume that / > 1and N # 0. Since f is a unitary, it suffices to Verlfy them for
N > 0. Also, it is easy to see that one only needs to show f"ig migl = g f and we
do it by 1nduct10n Property (ii) of Theorem 4.9 gives f™ g, = gx0 M f. Suppose that
f" g f holds for I > 1. Then

f l+1 _ gx fn,gxo i+1f'
This finishes the proof. u
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5 Q(FF} w Z) via Topological k-graphs

In this main section, we first construct a class of topological k-graphs { A, : n € N},
which is a higher-dimensional generalization of a class of topological graphs {E, ; :
n € N} studied by Katsura [Kat08]. By Yamashita’s construction in [Yam09], there is
a product system X (A, ) over N¥. The first main result here shows that the associated
Cuntz-Pimsner C*-algebra Ox,, ) of X(Ay) is isomorphic to the boundary quotient
C*-algebra Q(IFj x Z) of the standard product of k odometers (Theorem 5.4). Then,
motivated by and with the aid of some results in [Cun08,Kat08, Yam09], we prove our
second main theorem (Theorem 5.12) in this section: Ox,,) is simple if and only if
{lnn; :1<i < k} is rationally independent, and is also purely infinite in these cases.
The nuclearity of Ox(,,) is obtained by applying some results in [CLSV11, Yee07].
By [Tu99], Ox(a,) satisfies the UCT as well. Combining these two theorems gives
a very clear picture on Q(Fy x Z) (Theorem 5.13). At the end of this section, we
also provide some relations between Q(F x Z) and the C*-algebra Qy introduced by
Cuntz [Cun08].

From now on, we only consider the standard product Fj x Z of the odometers
{(Z,[n;])}X,. For our convenience, we use the notation

k
1:=(L...,1), n:=(nm,....,n;), nf:=]]nf (peNF).
i=1

5.1 Realizing Q(F; » Z) as Topological k-graph C*-algebras

In this subsection, we first construct a class of topological k-graphs, whose C*-algebras
will be shown to be isomorphic to Q(Fy « Z).

Definition 5.1  Let Ay := |penx T be a topological k-graph constructed as follows:
Al =T x {0}. Given (z, p) € Ay, let
1(2p) = (2.0), s(z.p) = (27,0), d(zp)=p.
For (z, p), (w,q) € Ay with s(z, p) = r(w, q), define
(z.p)-(w.q) = (z.p+q).
One can also describe A, as follows:
Aj=T, r(z,e;):=(20), s(z,e;):=(z",0)(zeT,1<i<k).
The commuting squares of A, are given by
(z,ei)(2",ej) = (z,ej) (2", e;) forallze Tand1< i # j < k.

Thus it is not hard to see that the graph A, is a k-dimensional generalization of
Katsura’s topological graph E,; in [Kat08], which can also be obtained as ("« x,,,; T.
In fact, let A be the single-vertex k-graph with one edge for each degree e;. Then one
could think of A, as A xp; T.

Remark 5.2 A, is indeed a topological k-graph (for k > 1). In fact, it suffices
to verify that A, satisfies the cubic condition for k > 3. To this end, consider A =
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(z,ei) (2", ej)(2"", e¢) of degree (1,1,1). Then
A=(z,¢;)(z",e;) (2", ex) = (z,€j) (2", e¢) (2", €;)
(2 e (2" ) (2 )
=(z,ei)(2",ee) (2", ¢j) = (2, e¢) (2", i) (2" ).
This says exactly that the cubic condition holds true.

Lemma 5.3  There is a Cuntz-Pimsner covariant representation of X(An) in
Q(Fy = Z).

Proof In the sequel, we adopt the characterization of Q(Fj x Z) from Theorem 4.9.
Let 1 A — C be the embedding map. Since f is a unitary in Q(F} x Z), there
exists a homomorphism yo: C(A°) - Q(F} = Z) such that yo(1) = f.
Fix 0 # p € N¥. For [ € Z, define y;: A, - Cby
yi(z,p):=z" forall zeT.

LetJ := {y;}1ez and G := {1}. It is straightforward to see that |y| x,(a,) < V0? |y [sup
for all y € X,(An). By the Stone-Weierstrass theorem, the linear span of J is dense

in X,(An). It is also straightforward to see that G generates C(A®). Furthermore,
G-FcT.

Step 1. We construct a linear map y,: X,(An) - Q(F§ x Z) such that (y,,y0) isa

representation of X,(An). Let ip :== min{l1 < i < k: p; # 0} and g} := HLOH gﬁf.
0

Clearly,  is linear independent. Define a linear map y,:span F — Q(Fj x Z) by
(5.1) Vp(Vorniy1) = n2g 0flgp"’ lgg forall se[n;]andle€Z.
Then we have
Vp (1 Ysrny1) = Vo ()Yp(Ysin, 1) forall se[n;]andleZ.

This is done by the following calculations: For 0 < s < n;; —land [ € Z,

io -1
l//p(l Y5+n,ol) pr()/5+1+n,ol) nzg o fg'P p

-1

=0t g f 8l 80 = Yo (Yasn, )
and by Corollary 4.10,
vyt Yn,'o—l+niol) = WP(YH,'O(HI)) = nggx;ofl”gp,’;’ lgé'
= n%fgx;g_o_ S8l 8 = Yo (e (Y rom 1)
Now for s,5" € [n;,] and I,1" > 0 with 5 + n; 1,8’ + n;,I" € [n?], we claim that
(5.2)  Yp(Vsrnytenem) Vp(Vsrenig 174nom) =
1//0( <YB+n,'Ol+n1’m’ Vs'+ni I’ +nPm’ )C(Ag))

for all m, m’ € Z.
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On the one hand, by a direct calculation, one has

1//0(<V5+mol+n1’m’y5'+niol’+an’)C(Ag)(Z’0))
:1//0( Z Ws'—5+n,-0(l'—l)+np(m'—m))

wiP =z
= 65,5’8l,l’nPW0 (Z

m'—m
= 55,5r81,1/npf .

’
m—m)

On the other hand, repeatedly applying Corollary 4.10(iii), we have

(53) ¥p(Psny Lenrm) Vp (Porny ronom)
P
(51) np(go) (g)‘l::g—l) (fl+niom) ( xio) 10f ”xo P:g lgg

Plo_l * 1 l+—(m -m) pi,-1
( g, i g’ (asg ,Og o = Os.s7)

0) () s
= 05m”(gf)" (g"::: N g o g
) )’

llPxolpfmm

:65,5'np(gg *(gp:g_l g 10

where 0? := [],4;, nt = e i1 as pi =0 foralli < i.

If I = I’, then it follows from (5 3) that

pr(Y5+niol+an)*Wp()/5’+n,«ol’+an’) = 55,5’npfm -

If I # I, then repeatedly applying Corollary 4.10 to (5.3), we obtain

Vp(Vsrniylenom) Vp(Varsny 1r+nom) = 0.
Thus,
Vp(Vsrnigl4nrm) Vp (Vsrang 1r4nom’) = 5s,sf5l,l'npfml_m-
Therefore, we prove (5.2).
By Lemma 2.5, ¥, can be uniquely extended to a bounded linear map on X, (Ay),

which is still denoted by y,. From above, we have shown that (y,, ) is a represen-
tation of X, (Ay).

Step 2. We show that {(y,,yo) : p € N¥} satisfies condition (T2) of Definition 2.2.

Fix p,q € N¥. Letip := min{1<i < k:p; # 0yand if := min{l < i < k: q; # 0}.
Without loss of generality, let us assume that iy < i5. Repeatedly applying Corollary

https://doi.org/10.4153/CJM-2017-034-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-034-5

202 H.Liand D. Yang

4.10 yields
(5.4) Wp(ys+niol)1//q()’s'+nisl')

(5.1) rta 1 Pig—1 4 q;r -1
Snrgaf(gn)" sg S (84) 8
s/ 0
ptq

0¥ (80) ™ 8 g 1S (8,0)" el
0 0

ptq 1 piy—1 k- Piyg! G g -1
n: gx;f)f (gx(’;o) 0 f(l'[,floﬂn, )s gﬁgx,-(;f (gxi{)) o gl
0 0

_ a2t 1 Pig=1 A(TTisya i) (s 4y 1) _p 4iy 4
=ngafl(gn) " £ o g(8 ) 8
0
iy, Pig™1
rtq I+(TTE o nfyn, 0 (8" +ny 1) Pig=1 p qir g
=nzg f e P (g) " g0 (84) e
0
Notice that
p.q Y
gp+q 8080 : if i = iy,
= p il q P ./
0 go(gx,-(r)) og, if ip < ig.
0
Then continuing (5.4) gives
‘/’p()’s+nfol)‘/’q()’s’+n,-al’)
pta l+(I'[f=i°“nfi)nfi°_1(5'+nizl') Pig*qiy—1 _p+q ... .
g f o T (gy) g ' ifio=ip,
T e 1+ 22 (s"+n, 1) Pig=l_p+q ifi <l
n: gxgof ig 0 ( x(i,o) 8o if 1o < 1y,

= Vpea Vorn( l+%(5’+ni61’)) )
= V’p+q( Vs+nigl © y5’+ni61’) .
Here, the last “=” above holds true due to the following:
Vsaniyl © y$’+"f31’(Z>P +q) = Ystniyl © YE’+ni(,)ll( (z,p)(znp’q))
= Yormy1 ((29)) ysrany 1( (2", )
) Zs+ni0( l+%(s'+ni61'))

- y5+ni0 ( l+%(5’+m(]l’)) ( (Z’p * q)) :
Thus far, we have finished the proof of Step 2.

Therefore, by piecing the {y, } ,en together we get a representation y: X(An) —
Q(Fy = Z).

Step 3. We prove that y is Cuntz-Pimsner covariant. By Lemma 2.6, it suffices to
show that (y,,, o) (1 < i < k) are Cuntz-Pimsner covariant. Notice that a simple
calculation shows that

(y"’ y'”’)_ N ifm'—-m=n’NforNeZ,
Ve el o ifm - m ¢ nPZ.
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Then one can obtain that

se[n;] i i
Hence
(1) 3 Vs+1 Vs \*
v/e,- (¢ei(l)) - Il/Ei V’e,-
Z vl vl )
Vs Vs \*
= 2 vyl =) Ve
55%1:,.] ’ (ﬁz) (\/E;)
= ) f8agh
se[n;]
= f (by Theorem 4.9(i))
=yo(1).
By Lemma 2.5, (v,,, ¥o) is Cuntz-Pimsner covariant for 1 < i < k. [ |

The following theorem is inspired by [Kat08].

Theorem 5.4  Let A, be the topological k-graph constructed in Definition 5.1, and
X (An) be the product system associated to Ay. Then Q(IFgwZ) is isomorphicto Ox(n, ).

Proof As before, denote by i: A2 — C the embedding map. To simplify our writing,
denote by j: X(An) = Ox(a,) the universal Cuntz-Pimsner covariant representation
of X(Ap) satisfying that j generates O x(,,). Let y: X(Ay) — Q(F;xZ) be the Cuntz-
Pimsner covariant representation constructed in the proof of Lemma 5.3. Then there
exists a unital homomorphism ¢: Ox(,,) = Q(Fy % Z) such that g o j = y.
Conversely, define
I:=j0(1cary) and F:=jo(1).
Then I is the identity of Ox 4,y and Fisa unitaryin Ox(,,). For1 < i < kands € [n;],
let £2: A% — C be the function &X(z, e;) = z°/\/n; for all z € T, and define
fo;, = Je (E;)’
For (z,0) € A2, we have
(£ Ea)can) (2:0) = > &5 (wsen)?
{(w,ei)eAg :whi=z}
1
= > — =1
{(w,e;)eAswhi=z} i
So
Gy G = 10({8, &) =1

Hence Gx; is an isometry in Ox,,)-
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For x € C(A%) and (z, e;) € Ay}, we have

2. Op.p(N)(ze) = Y &z e x)cmn(2"0)
s€[n;] se[n;]

S

z
;]T({we'ﬂ'wzt =z"i} \/_
1 > > 2wix(w,e;)

Mi fiweTiwmi=z"} se[n;]
x(z, e;)
= ‘/’e;(IC(Ag))(x)(Z> €i)s

where the above 4th “=” holds true because ¥ o¢[,,1 2°W" = 0 unless w = z. So

Z @Ex Ex ¢€ IC(AO))
se[n;]

Since j is Cuntz-Pimsner covariant, we obtain

Y GuGli= Y 1 () (E)) =59 z O ¢ )

se[n;] se[n;] se[n;]

=0 ( e, (IC(Ag))) = Jo(lc(as)) = I.

For0<s<n;—1land (z,e;) € A, we have

(- E) (e = 2

x(w e; ))

251
= 55+1(Z’ ei)-
n;

So
FGx; = Gxx

s+1

For s = n; — 1, we compute that

(&) (ze) = (2,008, (2 e5) =

So

ni

z

NG

= & (ze)i(2",0) = (§ - 1) (2 e).

FG,i =G,:F.

Xy %o

Observe that

(z,ei +ej) = (z,e;)(2",ej) = (z,¢j)(2", e;)
forallz € Tand 1< i < j < k. Then for 5,5" € [#;] and t,t’ € [n;] satisfying that
s+tn; = t' +s'nj, we have
25 Ztn,- Zt' Zs'nj
=&(z,¢))80(2", &) = (fjf o E;,)(z, (ej + e,-)).
So &l o & = &, o &, By condition (T2) of Definition 2.2, one has
GuG.i=G,; Gy .
5 Xy xy X

(&0 &)(z (i +¢))) = Ei(z ) El(2" ¢5) =
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Therefore, {F, G, : 5 € [n;],1< i < k} satisfy conditions (i)-(iii) of Theorem 4.9.
By Theorem 4.9, there exists a unital homomorphism 7: Q(Fy » Z) — Ox(a,) such
that 7(f) = Fand 71(g,i ) = G,: foralls € [n;]and 1 < i < k.

Since

C*(7(X(An))) = C ({70(X(An)0)s Jer (X(An)e) 1< i <k} ),

it is straightforward to see that w o ¢ = id, ¢ o 7 = id. Therefore, we are done. ]
5.2  Nuclearity, Simplicity, and Pure Infiniteness of Q(F} x Z)

In this subsection, we investigate the conditions under which Q(IFj x Z) is nuclear,
simple, and purely infinite.
It is necessary to recall the following definitions from [Yam09].

Definition 5.5 A topological k-graph A is said to satisfy Condition (A) if for any
v € A% and for any open neighborhood V of v, there exist v/ € V and p € v'A* such
that o? () # 09(u) whenever p # q € N¥,

Definition 5.6  Let A be a regular topological k-graph. For v € A® and for y € vA®,
denote by

Orb*(v) := r(s'(v)) and Orb(v, ) := eLék Orb™ (u(n,n)).

Definition 5.7 Let A be a regular topological k-graph, and let V be a nonempty
precompact open subset of A°. Then V is said to be contracting if there exist finitely
many nonempty open subsets U; ¢ AP, wherei=1,...,1, p; € N¥\ {0}, such that
(i) r(U;)cVforalll<ic<l;

(i) w(0,pinp;)#v(0,pinpj)foralll<i#j<l,ueU;veUs;

(iii) V & Ui s(Uy).

Furthermore, A is said to be contracting if there exists v € A® such that Orb" (v) = A°
and any open neighborhood of v contains an open contracting set.

Remark 5.8 In order to pursue the simplicity condition of Q(Fj » Z), we wish
to apply [YamO09, Theorems 4.7]. However, it was pointed out by Nicolai Stammeier
that there is a flaw in the proof of [Yam09, Theorems 4.7]. Fortunately, we are able
to provide it an alternative proof when 1 < k < oo (see Theorem 5.9 and its proof)
by invoking the work of Brown, Clark, Farthing, and Sims [BCFS14] and the work of
Yeend [Yee07].

For this, we need to exploit the groupoid C*-algebra technique, which can be re-
ferred to [Ren80]. In the sequel, we give a very sketchy introduction to the boundary
path groupoid arising from a regular topological k-graph (see [Yee07]).

Letl < k < oo and A be a regular topological k-graph. By recalling the construction
of [Yee07], we get the set of boundary path 0A = A°°, which is endowed with the
topology generated by the basic open sets Z(U) := {x € A® : x(0,n) € U} where U is
an open subset of A" for some n € N¥. The boundary path groupoid G » of A is defined
by Ga = {(x,p—q,¥) € 0OA x ZF x dA : 0P (x) = 09(x)}, which is endowed with the
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topology generated by the basic open sets Z(U, V) := {(x,p—q,y) e Ux Z¥ x V :
oP(x) = 09(x)} where U and V are open in A? and A1, respectively.

Theorem 5.9 ([Yam09, Theorems 4.7 and 4.13]) Let1< k < oo. Let A be a regular
topological k-graph. Suppose A satisfies Condition (A) and Orb(v, u) = A° for any
v e A% and y € vA™. Then Ox ) is simple. Furthermore, suppose that A is contracting.
Then Ox ) is purely infinite.

Proof [Yee07, Theorem 6.8] yields that G, is amenable. So C*(G5) = C:(Ga) is
nuclear. By [CLSV11, Theorem 5.20] and [SY10, Corollary 5.2], C*(G5) 2 Ox(a)- So
we must show that C* (G, ) is simple.

By [Yee07, Theorem 5.2], G, is topologically principal. Let D be a non-empty open
invariant subset of §%. Suppose D # G9, for a contradiction. Then there exists x €
G4 ~D,and so Orb(x(0,0), x) = A by our assumption. Since D is open, take n € N¥
and a non-empty open subset U of A" satisfying Z(U) c D. Then there exist y, v €
A,m e NF such that y € U,s(u) = r(v),s(v) = x(m,m). So y := uvo™(x) € D
and (x,m — (n + d(v)),y) € Ga. Since D is invariant, one has x € D. This is a
contradiction. Hence, D = 9?\. Therefore, G4 is minimal. By [BCFS14, Theorem 5.1],
C*(G4) is simple. [ |

One of the referees kindly informed us that Theorem 5.9 can be also obtained from
[RSWY09, Theorem 5.3 and Proposition 5.8].
Before giving our main results, we need two lemmas.

Lemma 5.10 Let A, be the topological k-graph constructed in Definition 5.1. If
{Inn; }1<i<k is rationally independent, then A, satisfies Condition (A).

Proof Since {In n; }1<;< is rationally independent, we have n? # n? forall p # q €
Nk, Fix (z,0) € AY and an open neighborhood V of z. Pick up w € V such that
w = 2% with 0 ¢ (0,1) N Q. Notice that, for any I, € Z,wh = wh if and only if
I = . Let u be the unique infinite path in (w, 0) A% such that u(p, q) = (W™, q-p)
for all p < g € N¥. For p # q € N¥, since n? # n4, we have ”(1)(0,0) # 0()(0,0)
and so 0?(u) # 09(u). Therefore, A, satisfies Condition (A). [ |

Lemma 511 Let Fy x 7 and F}, w Z be two standard products of the odometers
{(Z,[n:])}s., and {(Z,[m] le, respectively. Suppose that1 < ¢ < £ < oo and that
n;=m;jforalli=1,...,t Then there is a unital embedding from Oy, into Ox(a,,)-
Hence there exists a unital embedding from Q(F w Z) into Q(Fy, x Z).

Proof Denoteby 1: X(Ay) = Ox(a,)and j: X(Am) = Ox(4,,) the universal Cuntz-
Pimsner covariant representations of X(Ay) and X(Ay,), respectively. We realize
N* as a subsemigroup of N* by p — (p,0). For p € N¥, we also realize X(An),
as X(Am), as they are isomorphic as C*-correspondences over C(T). For p € N,
define yp: X(Am) = Ox(a,) to be j,. By piecing {y,} ave together, one obtains
a Cuntz-Pimsner covariant representation of X(Ay). Let h: O X(An) O X(Am) be
the unital homomorphism induced from the universal property of Ox 4, ). By [SY10,
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Theorem 4.1, Corollary 5.2], h|,,(x(a,)) is injective. Let y be the gauge action for ;.
Then by restriction, y induces a gauge action for y. Invoking Theorem 2.4 yields that
h is injective. The second statement follows from Theorem 5.4. ]

Theorem 5.12  Let A, be the topological k-graph constructed in Definition 5.1.

(i) Ox(a,) is nuclear and satisfies the UCT.

(ii) Then Ox(y,y is simple if and only if {Inn; }1<;<x is rationally independent.

(iil) If {Inn; }1<i<k is rationally independent, then Ox ) is purely infinite.

(iv)  Ox(a,) is @ unital UCT Kirchberg algebra if and only if {In n; } << is rationally
independent.

Proof (i) First of all, suppose k # oco. From the proof of Theorem 5.9, we obtain
that G5, is amenable and C* (G4, ) = Ox(a,). Therefore, Ox(,,) is nuclear and also
satisfies the UCT due to [Tu99].

Now suppose that k = oco. By Lemma 5.11, we obtain an increasing sequence
in Ox(a,). Since each A; is nuclear by the preceding paragraph, we deduce that
Ox(a,) is nuclear and satisfies the UCT.

(ii) The proof of “If”: Suppose that k # co. By Lemma 5.10, A, satisfies Condition
(A).

Fix (z,0) € A%, and let u be the unique infinite path in (z,0) A, For p € N and
w € T such that w* = z, we have r(w, p) = (w,0),s(w, p) = (w",0) = (2,0). So
(w,0) € Orb™((2,0)). Let (z/,0) € A2 and € > 0. Then we can always find p € NF
with n? large enough so that the distance between z’ and one of n?-th roots of z is
less than €. Hence Orb™ ((2,0)) is dense in AY. Since Orb* ((2,0)) c Orb((z,0), ),
clearly Orb((z,0), ) is dense in A as well. Therefore by Theorem 5.9, Ox(a,) is
simple.

Now suppose that k = oo. By Lemma 5.11, we obtain an increasing sequence
in Ox(4,)- Since each A; is simple by the above argument, we deduce that Ox (4, is
simple.

The proof of “Only if”: We must show that the rational dependence of {In n; }1<;<k
implies that Ox(,,) is not simple; equivalently, Q(Fy x Z) is not simple by Theorem
5.4. Now suppose that {In#; },<;< is rationally dependent. Then there exist p # q €
Nk such thatn? =n?. Let A= {1<i<k:p;<q;yandB:={l1<i<k:p;>q;}
We can assume that A # @. Then [T;e, n? 7" = [T;c5 n?"~ . Inspired by [Cun08], in
what follows, we construct a representation of Q(F}  Z) on €*(Z). To this end, let
{8 } mez denote the standard orthonormal basis of £*(Z). Define

F(8m) = 0mw1 (meZ),
Gx;(5m) = Osrmm (M€Z,s5€[n;],1<i<k).

Then F is a unitary and G,is are isometries. Some calculations show that
{F,G,i :5€[n;],1<i <k} satisfy conditions (i)-(iii) of Theorem 4.9. By Theorem
4.9, there exists a nonzero homomorphism 7: Q(F} = Z) — B(¢*(Z)) such that
m(f) = F,n(gx) = Gy foralls € [n;],1 < i < k. Since [Tjeq n? P = [Tiepnf™ 7,
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one has [];c4 GZ£‘Pi = Tien Gf:(,f)'_q". Suppose that HieAgzé_p" = Tien gﬁ({_q" for a
contradiction. Let y:TT5, T — Aut(Q(F} w Z)) be the gauge action induced from
the universal property of Ox(y,). By Theorem 5.4,
0= q:—p; _ p:—qi — Z{li—Pi q:—pf _ p:—qi
)/z( il;lq & igi’ &y ) il;[LX ! ile_,[fa &, igs &y
forall z € HleT such that z; = 1 whenever i € B. Since p; < q; fori € A # @, we
deduce that [T;c4 gZ'f*p " = 0, which is impossible. So

qi—pi pi—qi
04 ,-g,gx& ggxé € ker(m).
Thus, ker(7) is a nontrivial closed two-sided ideal in Q(F xZ), implying that Q(F «
Z) is not simple.

(iii) Suppose that k < oco. Then Ox(,,) is simple from (ii). As shown in (ii),
Orb*((1,0)) is dense in AY. Fix an open neighborhood U of 1. Then there exists
8 > 0 such that 7,8 is small enough (say < 1/4) and V := {e?"% : § € (-6,8)} c U.
Denote by U; := V x {e;}. It is straightforward to see that r(U;) ¢ V x {0} and
V x {0}  s(U;). So V x {0} is contracting. Hence, A, is contracting. By Theo-
rem 5.9, Ox(a,) is purely infinite.

Now suppose that k = co. By Lemma 5.11, we obtain an increasing sequence

in Ox(x,)- Since each A; is simple and purely infinite by the above paragraph, we de-
duce that Ox(,,) is simple and purely infinite.
(iv) This now easily follows from (i)-(iii). [ |

As an immediate consequence of Theorems 5.4 and 5.12, one has the following
theorem.

Theorem 5.13  Let [P} x Z be the standard product of odometers {(Z, [n;])}%,. Then

(i) Q(Fj w Z) is nuclear;

(i) Q(Fj w Z) is a unital UCT Kirchberg algebra <> {Inn; }1;< is rationally inde-
pendent <> Og is simple <> [y is aperiodic.

Proof By Theorems 5.4 and 5.12, it remains to show that Fj is aperiodic < Oy is
simple <> {In n; }1<;< is rationally independent.

[P} is aperiodic = Oy is simple: If k # oo, then this follows from [DY09,, Corol-
lary 8.6]. If k = oo, then there is an increasing sequence {A;} 72, of C*-subalgebras of
Og such that each A; is the C*-algebra of an aperiodic single-vertex finite-rank graph
and the union of {A;}, is dense in Og. So Oy is simple.

Qg is simple = {Inn;}icj<k is rationally independent: We prove its con-
traposition.  Suppose that {In#;}ic;<x is rationally dependent. Notice that
{gxi 15 €[n;],1< i<k} is a Cuntz-Krieger IFg-family in Q(F§ x Z). Then there is
a homomorphism p: 09 - Q(Fj x Z) induced from the universal property of Og.
Let m: Q(F} » Z) — B(¢*(Z)) be the nonzero homomorphism given in the proof of
Theorem 5.12. Since the kernel of 7o p is a nontrivial closed two-sided ideal of Oy, Og
is not simple.
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{In n; }1<i<k is rationally independent = I} is aperiodic: If k # oo, then this fol-
lows from [DY09,, Theorem 3.4, Definition 3.6 and Theorem 71]. If k = oo and if
IF} is periodic, then there exists 1 < | < oo such that the I-graph F; determined by
{n; 5:1 is periodic as well ([Yan15]). So {Inn;}<;<; is rationally dependent. Hence,
{In n; }1<i<k is also rationally dependent. Therefore, we are done. [ |

As an immediate consequence of Theorem 5.13, the boundary quotient C*-algebra
left in [BRRW14] is now well understood.

Corollary 5.14  Let I x Z be the standard product of 2-odometers over n-letter and
m-letter alphabets with gcd(n,m) = 1. Then Q(Fy w Z) is a unital UCT Kirchberg
algebra.

Remark 5.15 (1) By Theorem 5.13, when {In #; }1<;< is rationally independent,
the C*-algebras Q(IF; « Z) are, due to the celebrated Kirchberg-Phillips classification
([Phi00]), classifiable by K-theory.

(2) When {n;}* c N\{0,1} isa pairwise coprime set, it is also shown in [KOQl4,
Staml15], by different approaches, that Q(IF§ x Z) is a unital UCT Kirchberg alge-
bra. In this case, Barlak-Omland-Stammeier in [BOSI15] investigated the K-theory
of Q(IF; x Z) and obtained a complete classification for k < 2.

As an extreme case, let k = 11in Theorem 5.13. Then we obtain that the boundary
quotient C*-algebra Q(F;; « Z) of the odometer action on a n-letter alphabet with
n > 2 is nuclear, simple, and purely infinite. Recall from Theorem 4.9 that Q(F;, x« Z)
is the universal C*-algebra generated by a unitary f and n isometries g, (i € [n])

such that
(a) > gugi =1
ie[n]
gxin HO0<i<n—1,
b . =
(®) f&x {gxof ifi=n-1

Also, given n > 2, the n-adic ring C*-algebra Q,, of the integers is the universal
C*-algebra generated by a unitary u and an isometry s satisfying
(5.5) S u's(u's)* =1 and u”s=su.
ie[n]

Corollary 5.16  There is an isomorphism r: Q(F} wZ) — Q,, such that n(f) = u and
n(gy,) = u's forall i € [n].

Proof From (5.5) itis easy to check that {7(f), m(gy,) : i € [n]} satisfies conditions
(a) and (b) above. So by the universal property of Q(F} x Z), 7 can be extended to
isomorphism as Q(F} x Z) is simple by Theorem 5.13. [ |

It turns out that Q, is isomorphic to the graph C*-algebra O(E, ) of the topo-
logical graph E,, ; of Katsura studied in [Kat08], where it is shown that Q,, is nuclear,
simple, and purely infinite. So we recover this result here. Also let us remark that Q,
was systematically studied by Larsen-Li in [LLI2].
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Example 5.17  Consider the standard product Fy » Z of the odometers (Z, [n;])
with n; = nforall1 < i < k < co. To make our example more interesting, let n > 2
and k > 2. This is a special case of Example 4.3 with G = Z and the self-similar action
being the odometer. By Theorem 5.13, Q(IF x Z) is not simple.

5.3 Relations Between Q(FF} x Z) and Qy

Cuntz [Cun08, Definition 3.1] defined Qy to be the universal C*-algebra generated by
a unitary u and a family of isometries {s, } ey~ satisfying
n-1

SnSm = Spm>  U'S, = Sul, Z u'spsiu~' =1 forall n,meN*.
t=0

In what follows, we discuss some relations between Qy and the boundary quotient
C*-algebra Q(IF} w Z) of the standard product of odometers {(Z, [1;])}%_,. For this,
define

Fi=u, Gy := u's,, (te[n],1<i<k).
A simple calculation shows that {F, G, : t € [n;],1 < i < k} satisfy conditions (i)-
(iii) of Theorem 4.9. By Theorem 4.9, there exists a homomorphism
(5.6) p:Q(FywZ) - Qy

such that p(f) = Fand p(g,:) = G, forall te [n;],1<i <k
If k = oo and {n;}$2, is the set of all prime numbers, then p is an isomorphism by
Theorem 5.13. Thus, one has the following corollary.

Corollary 518 Ifk = oo and {n;}:2, is the set of all prime numbers, then
Q(F} w Z) = Qy.

Let us finish this paper by characterizing when the above homomorphism p is
injective.

Theorem 5.19  The homomorphism p in (5.6) is injective if and only if {Inn; }1<;<x is
rationally independent.

Proof If {Inn;}i<; is rationally independent, then Q(F§ x Z) is simple by Theo-
rem 5.13. So p is injective.

Conversely, suppose that {In n; } ;< is rationally dependent. Then there exist p #
q € NF such that n? = n9. It is straightforward to see that

k k
pi) _ qi
(Mef) =e( 1)
Hence, p is not injective. |
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