
J. Functional Programming 8 (6): 627–632, November 1998. Printed in the United Kingdom

c© 1998 Cambridge University Press

627

F U N C T I O N A L P E A R L S

Diets for fat sets

MARTIN ERWIG
FernUniversität Hagen, Praktische Informatik IV. 58084 Hagen, Germany

(e-mail: erwig@fernuni-hagen.de)

1 Introduction

In this paper we describe the discrete interval encoding tree for storing subsets of

types having a total order and a predecessor and a successor function. In the

following, we consider for simplicity only the case for integer sets; the generalization

is not difficult.

The discrete interval encoding tree is based on the observation that the set of

integers {i | a ≤ i ≤ b} can be perfectly represented by the closed interval [a, b].

The general idea is to represent a set by a binary search tree of integers in which

maximal adjacent subsets are each represented by an interval. For example, inserting

the sequence of numbers 6, 9, 2, 13, 8, 14, 10, 7, 5 into a binary search tree, respectively,

into a discrete interval encoding tree results in the tree structures shown in figure 1.

The efficiency of the interval representation, both in terms of space and time,

improves with the density of the set, i.e. with the number of adjacencies between set

elements. So what we propose is a ‘diet’ (discrete interval encoding tree) for ‘fat’ sets

in the sense of ‘the same amount of information with less nodes’.

In the next section, we define the discrete interval encoding tree with operations for

inserting, deleting and searching for elements. An analysis is presented in section 3,

and we comment upon some applications and actual running times in section 4.

#
##

Q
QQ

bbbb
����

�
�

�
��

�
��

@
@

T
TT

J
J

[5,10]

9

5 8

7

6

13

1410

2 [2,2] [13,14]

Fig. 1. Binary tree and discrete interval encoding tree.

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

628 M. Erwig

2 The diet

The nodes in a diet store intervals. This means that isolated elements will be

represented by degenerate one-element intervals. This greatly simplifies the following

definitions, and so we will use the following type:

datatype diet = EMPTY | NODE of int * int * diet * diet

All definitions are given in ML, the translation to other functional languages is

obvious.1 In an interval node the first integer gives the left border and the second

integer gives the right border of the stored interval. This means that the integer

pairs in a diet T are actually ordered:

∀ [x, y] ∈ T : x ≤ y
An important invariant for any diet is that its intervals neither overlap nor touch.

More precisely, between each two intervals of a diet T there is a gap of at least one

element:

∀ [u, v], [x, y] ∈ T : v + 1 < x ∨ y + 1 < u

Another view of this invariant is that intervals in a diet are always chosen maximally.

All operations on diets must keep this invariant intact.

Testing for set membership in a diet is similar to binary search trees:

fun member (z,EMPTY) = false

| member (z,NODE (x,y,l,r)) =

if z>=x andalso z<=y then true else

if z<x then member (z,l) else

(* z>y *) member (z,r)

This definition is very simple, since the tree is not changed, and we thus need not

be concerned about maintaining the invariant.

Inserting an element z into a diet T follows principally the insertion algorithm

for binary search trees, but it has to consider the following special cases: if z extends

an existing interval, i.e. if

∃ [x, y] ∈ T : (i) z = x− 1 ∨ (ii) z = y + 1,

then instead of creating a new node for z in T , the interval [x, y] is changed to [z, y]

in case (i) or to [x, z] in case (ii). Once such an interval extension has happened we

have to be careful to maintain the tree invariant: there might now be an interval

[u, v] in the left subtree of [z, y] (or in the right subtree of [x, z]) with v + 1 = z (or

with z + 1 = u). If this is the case, both intervals can and must be fused into one,

i.e. into [u, y], respectively, into [x, v]. The candidate interval for such an invariant

violation is either the predecessor of [z, y] or the successor of [x, z] in T . These can

be found as the maximum (minimum) of the left (right) subtree of [z, y] ([x, z]).

1 For ML and Haskell sources, see http://www.fernuni-hagen.de/inf/pi4/erwig/diet

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

Functional pearls 629

The adjustment that is possibly needed after an interval extension is realized by

two functions joinLeft and joinRight that make use of two functions splitMax

and splitMin for splitting off the maximum/minimum interval in the left/right

subtree. Below we only show the implementation for splitMax and joinLeft, the

case for splitMin and joinRight is analogous:

fun splitMax (NODE (x,y,l,EMPTY)) = (x,y,l)

| splitMax (NODE (x,y,l,r)) = let val (u,v,r’) = splitMax r

in (u,v,NODE (x,y,l,r’)) end

fun joinLeft (t as NODE (x,y,EMPTY,r)) = t

| joinLeft (NODE (x,y,l,r)) =

let val (x’,y’,l’) = splitMax l

in if y’+1=x then NODE (x’,y,l’,r)

else NODE (x,y,l,r)

end

If the left subtree l of a left-extended interval, say i, is empty, joinLeft has nothing

to do. Otherwise, splitMax yields the borders x’ and y’ of the maximal interval

i′ in l together with l’ which is l with i′ being removed. If i′ is adjacent to i, i is

extended further by changing its left border to x’ and by replacing its left subdiet

with l’. Otherwise, i remains unchanged.

Now the function insert proceeds much like for plain binary search trees, except

for considering interval extensions:

fun insert (z,EMPTY) = NODE (z,z,EMPTY,EMPTY)

| insert (z,t as NODE (x,y,l,r)) =

if z<x then

if z+1=x then joinLeft (NODE (z,y,l,r))

else NODE (x,y,insert (z,l),r) else

if z>y then

if z=y+1 then joinRight (NODE (x,z,l,r))

else NODE (x,y,l,insert (z,r))

else t (* z in [x,y] *)

Deleting an integer z from the tree T is again almost identical to the case for binary

search trees. If T is empty, we are finished. Otherwise, we have to distinguish the

following cases: let [x, y] be the current interval under consideration. If z /∈ [x, y],

deletion has to recursively move into the left or right subtree. If z ∈ [x, y], we

proceed as follows: if x = y, the node must be deleted, which means if both subtrees

are not empty to replace it with the maximum of the left subtree. This is achieved by

the function merge using splitMax. If y > x and if z = x or z = y, the interval can

be simply reduced at the corresponding border. Otherwise, that is, when x < z < y,

the interval must be split into two intervals [x, z − 1] and [z + 1, y]. Both intervals

are of size ≥ 1, and the invariant of a non-empty gap is also maintained.

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

630 M. Erwig

fun merge (l,EMPTY) = l

| merge (EMPTY,r) = r

| merge (l,r) = let val (x,y,l’) = splitMax l

in NODE (x,y,l’,r) end

fun delete (z,EMPTY) = EMPTY

| delete (z,NODE (x,y,l,r)) =

if z<x then NODE (x,y,delete (z,l),r) else

if z>y then NODE (x,y,l,delete (z,r)) else

if z=x then

if x=y then merge (l,r)

else NODE (x+1,y,l,r) else

if z=y then NODE (x,y-1,l,r)

else NODE (x,z-1,l,NODE (z+1,y,EMPTY,r))

Since the invariant cannot be violated by delete, no further adjustment as in the

case of insert is needed. Note that the last line, which realizes the interval split

case, might cause the diet to get out of balance. This can be improved by using

NODE (x,z-1,l,insertMin (z+1,y,r))

instead, where insertMin is the inverse of splitMin, i.e. a specialized version of

insert placing the interval [z + 1, y] at the leftmost position in r.

3 Best, worst and average case analysis

In the best case, when there are no ‘holes’ in the stored set, the interval representation

consists of just one single interval. This means O(1) space requirement, and finding,

inserting or deleting an element can be done in constant time. In the worst case,

there are no two adjacent elements in the set, and the representation has the same

number of nodes as an ordinary binary search tree (although with the simplified

implementation described here each stored integer is duplicated). Thus, the space

requirement of a diet is never worse, asymptotically, than for a binary tree, but is in

many cases better. Concerning running time we observe that insert, delete and

member work almost the same as for ordinary binary trees, except for the occasional

necessity of joining adjacent intervals. The required number of steps is, however,

bounded by the height differences of the two intervals to be joined. This means that

a corresponding insertion into an ordinary binary tree requires the same number of

steps anyhow. (Some tests have revealed that there is actually not much time spent

on joining intervals.)

In practice, it is more interesting to figure out the performance in the average case

than just knowing the best and worst case of the structure. As a measure for the

complexity of tree operations, we can take the number of nodes in the tree because

the tree height, which gives an upper bound for the time spent by all three presented

operations, grows at least logarithmically with the number of nodes. Compared with

an ordinary binary search tree (balanced or not), the number of nodes is reduced

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

Functional pearls 631

by exactly the number of adjacencies among the stored elements where two distinct

integers x and y are adjacent iff |x−y| = 1. More precisely, we call a pair (x, y) with

x+ 1 = y an adjacency.

Let us consider the representation of an arbitrary subset S ⊆ U = {1, . . . , n} with

|S | = k, and let N(k, n) denote the average number of nodes in a diet for S . It is

clear that the (average) number of nodes in an ordinary binary tree is always k, and

thus N(k, n) is given by subtracting from k the average number of adjacencies in

S . This average number of adjacencies can be obtained by determining A(k, n), the

number of all the adjacencies in all k-subsets, and dividing by the number of such

subsets,
(
n
k

)
. A formula for A(k, n) is obtained by the following consideration:

We observe that there are exactly n− 1 adjacencies in U, namely (1, 2), (2, 3), . . .,

(n − 1, n). Now let us find out how many times each adjacency can occur in any

k-subset (k ≥ 2), i.e. let

C(x, y, k, n) = |{S ∈ 2U : |S | = k ∧ {x, y} ⊆ S}|
All the k-subsets S that contain x and y can be constructed by fixing x and y and

choosing the missing k − 2 elements from the remaining n − 2 elements of U. This

means that C(x, y, k, n) =
(
n−2
k−2

)
. Hence the number of all adjacencies is given by the

sum of C(x, y, k, n) for all possible adjacencies (x, y) of which there are exactly n− 1.

Thus:

A(k, n) =

(
n− 2

k − 2

)
(n− 1) =

(
n− 1

k − 1

)
(k − 1)

The average number of adjacencies is therefore

A(k, n)/

(
n

k

)
=

(
n− 1

k − 1

)
(k − 1)/

(
n

k

)

=
(n− 1)!(k − 1)k!(n− k)!

(k − 1)!(n− k)!n!

=
(k − 1)k

n

The average number of nodes in a diet is thus

N(k, n) = k − (k − 1)k

n
= k

(
1− (k − 1)

n

)
Since k/n is a measure for the density of the elements in the stored set, this means

that the number of nodes in a diet reduces linearly with growing density of the set.

4 Applications and some test results

The diet is not meant to be a general purpose set representation. Here we have

only presented a minimal set of operations (also known as a dictionary data type).

Although a true set data type with union, difference, etc. is also possible, it requires

a lot of effort to keep the interval invariant intact without sacrificing efficiency.

Most of the additional operations are amenable to divide-and-conquer solutions,

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

632 M. Erwig

however, we have, for example, to consider and separately deal with all 13 possible

cases of interval overlapping in the implementation of set difference. Another way of

generalizing sets is to extend them to a mapping data type. This is, in principle, also

possible for diets, but the opportunities for exploiting adjacencies will be infrequent

because this is only possible for adjacent integers that are mapped to the same value.

(The same comment applies to the diet representation of bags.)

However, for certain application areas the interval representation performs quite

well. For example, for the part of Andrew Appel’s integer set benchmark2 doing

only (random) insertions, deletions and retrievals, diets are about 45% faster than

the winning implementation of Adams (1993). This picture will be certainly different

if we compare a general purpose extension of diets, in particular, if we work with

sorted input (although balancing strategies can also, in principle, be applied to diets

as well).

A particularly well-suited application area is given by graph algorithms: many

algorithms move through the graph and have to remember the nodes they have

already visited. In a functional setting this means to thread a set of visited nodes

through function calls. What makes this particularly interesting for diets is that

these node sets are typically growing until they are completely filled. For example,

depth first search on sparse graphs (of degree 4) takes 30% longer when using the

balanced trees of Adams (1993) than with using diets. It is evident that the payoff of

building intervals rises with the number of lookups, and so, as expected, for denser

graphs the advantage of diets is even larger, e.g. for a node degree of 25 depth first

search with diets is twice as fast as with balanced trees.

Acknowledgement

I would like to thank Richard Bird for giving me valuable comments on an earlier

version of this paper. Thanks also to Andrew Appel for putting his benchmarks at

my disposal.

References

Adams, S. (1993) Efficient Sets – A Balancing Act. J. Functional Programming, 3(4), 553–561.

2 This benchmark was used in 1992 in a competition to find a good functional integer set
implementation in ML.

https://doi.org/10.1017/S0956796898003116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898003116

