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Abstract

Using a machine-learning model, we examined drivers of antibiotic prescribing for antibiotic-inappropriate acute respiratory illnesses in a
large US claims data set. Antibiotics were prescribed in 11% of the 42million visits in our sample. Themodel identified outpatient setting type,
patient age mix, and state as top drivers of prescribing.
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Despite recent decreases, outpatient antibiotics are frequently
prescribed for acute respiratory illnesses (ARIs) for which they
are not indicated: influenza, bronchitis, bronchiolitis, asthma,
allergy, nonsuppurative otitis media, and viral upper respiratory
infection. In 2014–2015, there were >14 million unnecessary
antibiotic prescriptions annually for these conditions.1 Clinician
specialty,2 outpatient setting,3 and region4,5 have previously been
associated with inappropriate antibiotic prescribing. However,
these relationships are likely complex; machine-learning models
may elucidate nuanced relationships and stewardship targets.
Our primary objective was to examine relationships between
clinician-related factors and antibiotic prescribing for antibiotic-
inappropriate ARIs in a large convenience sample in the United
States. Our secondary objective was to pilot test machine-learning
methods for evaluating antibiotic prescribing.

Methods

Data source

We identified visits and antibiotic prescriptions for antibiotic-
inappropriate ARIs using the IQVIA Medical Claims Data (Dx)
data set and the IQVIA Longitudinal Prescription Data (LRx) data
set from October 1, 2018, to September 30, 2019. The IQVIA LRx
contains data from 92% of retail pharmacy transactions. The
IQVIA Dx data set includes >1.3 billion pre-adjudicated outpa-
tient medical claims per year. We linked visits with prescriptions

within a 3-day postvisit window using deidentified patient and
clinician codes.

We defined visits for antibiotic-inappropriate ARIs as those with
International Classification of Diseases, Tenth Revision, Clinical
Modification (ICD-10-CM) diagnosis codes for asthma, allergy,
bronchitis, bronchiolitis, influenza, viral upper respiratory infection,
and non-suppurative otitis media without diagnoses for which anti-
biotics are ormay be indicated (Supplementary Table 1), following a
previously established categorization.6 We included only visits to
primary care specialties to exclude complex cases requiring specialty
care.We included nurse practitioners (NPs) and physician assistants
(PAs); in these data, NPs and PAs are not categorized by specialty.
We excluded clinicians with <10 captured visits for stability. We
categorized clinician caseload by patient sex (>50% male, >50%
female, or balanced) and age group: >50% children 0–19 years,
>50% adults 20–64 years, >50% adults ≥65 years, or balanced.
We included all systemic antibiotics except urinary anti-infectives.

Machine-learning model development and analysis

We calculated the Prescriber Inappropriate Antibiotic Prescription
Index (PIAPI) as the proportion of a clinician’s visits for antibiotic-
inappropriate ARIs with associated antibiotic prescriptions overall
and by stratum. We used a predictive machine-learning model to
identify drivers of PIAPI from a set of input features: clinician age
and sex, training, state, outpatient setting, and caseload age, and
gender mix.

The data set was partitioned into training (80%) and holdout
(20%) sets. A gradient-boosting decision tree (GBDT) algo-
rithm7 used the training set to train a machine-learning model
to predict PIAPI using the input features through a generalized
linear model. The GBDT algorithm constructs an ensemble of
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decision trees that are combined to obtain a single predictive
model. Our machine-learning model consisted of 300 decision
trees. The first decision tree was built similarly to the conven-
tional decision tree approach; input features were split to mini-
mize the error between the prediction and the dependent
variable (ie, PIAPI). The GBDT algorithm sequentially built
additional trees, reducing the error obtained from the preceding
trees in each subsequent tree.

GBDT algorithms typically contain many more model
parameters than a simple decision tree (eg, the number of trees
in the ensemble is a model parameter). Our model parameters
were automatically configured using a Bayesian optimizer.8

We applied SHAP,9 a state-of-the-art interpretability frame-
work, to the trained model to specify feature impact on predicted
clinician PIAPI. The aggregate impact across all clinicians was
used to extract prescribing drivers. Final machine-learning
model performance was reported on the holdout set. The impor-
tance determined by our machine-learning model was validated
on the holdout data; the relative importance of the key drivers
identified by the model on the training data was replicated on
the holdout data.

This study was approved as non–human-subjects research by
the Centers for Disease Control and Prevention National Center
for Emerging and Zoonotic Infectious Diseases and did not require
institutional review board review.

Results

In our study population, there were 41.97 million visits for antibi-
otic-inappropriate ARIs from October 1, 2018, to September 30,
2019 (Table 1). The average PIAPI was 11%, meaning that clini-
cians prescribed antibiotics in 11% of visits (N= 4.41 million).
PIAPI values ranged from 0% to 99% and were highly skewed:
45% of clinicians prescribed antibiotics in ≤4% of antibiotic-
inappropriate ARI visits while only 2% of clinicians prescribed
antibiotics in ≥50% of visits (Supplementary Fig. 1).

The machine-learning model identified outpatient setting,
patient age mix, and state as the strongest predictors of PIAPI
(Table 1). Among settings, average PIAPI ranged from 5% in out-
patient hospital clinics to 21% in urgent care facilities. Clinicians
who saw predominantly children had a lower average PIAPI (7%)
than those who saw adults or balanced age mixes (11%–13%).
We detected wide variation by state (Table 1), with the highest
average PIAPIs in Mississippi (17%) and Alabama (18%).

The machine-learning model allowed us to examine nuanced
relationships between the factors included in this study. Among
urgent care clinicians who saw predominantly children, average
PIAPI was 12%. In contrast, the average PIAPI was>20% for those
who saw mostly adults or had balanced patient age mixes. Among
urgent-care clinicians, the average PIAPI was >14% across all
states, with the highest value in Alabama (36%). In outpatient
hospital clinics, 68% of clinicians had PIAPI values ≤4%. The
average PIAPI among clinicians in this setting was <9% across
states, except in South Dakota and Maine, where the average
PIAPI was 12%.

The machine-learning model identified complex relationships
between state, outpatient setting, and provider. In Alabama, aside
from state, the most highly ranked driver was outpatient setting.
In Alabama, the highest average PIAPI was in urgent care and
physician offices, and in these 2 settings PAs and NPs had the
highest average PIAPI among all specialties, 24% and 23%,
respectively. In California, the average PIAPI was 19% among

urgent care clinicians, while all other PIAPI values were relatively
low.

Although specialty was not identified as a major driver of PIAPI
overall, we observed wide variation in average PIAPI by specialty,
with the highest average PIAPI among NPs and PAs and the lowest
among pediatricians (Table 1). Notably, in urgent care and retail
health settings, where high proportions of clinicians were NPs
or PAs, the machine-learning model identified specialty as a major
predictor of PIAPI (after patient age mix and state).

Discussion

On average, clinicians prescribed antibiotics in 11% of antibiotic-
inappropriate ARI visits in our sample. However, PIAPI
distribution was highly skewed, suggesting prescribing practice
heterogeneity. Using a supervised machine-learning model,
we found that urgent care, states in the South region, and older
patient age mix were the strongest predictors of inappropriate
antibiotic prescribing.

Our major findings align with previous studies. We found that
the urgent care setting was the strongest driver of inappropriate
prescribing; average urgent care PIAPI was almost double overall
PIAPI, consistent with previous findings.3,10 Patient age mix also
strongly predicted PIAPI, mirroring previous findings that overall
and unnecessary outpatient antibiotic prescribing is lower among
children.1,5,6 We also detected high variation in average PIAPI by
state, with highest average PIAPIs in the South region and lowest in
the West region, similar to previously observed trends.4–6 Despite
wide variation in PIAPI, the machine-learning model did not
identify specialty as a major driver of inappropriate antibiotic
prescribing. This may be partially related to relationships between
specialty and setting type; clinician specialty was a major driver of
PIAPI in urgent care and retail health settings. Another potential
explanation may be the correlation between pediatrics specialty
and patients aged 0–19 years. Because the machine-learning model
assigned high importance to the patient age group, it may have
deflated the importance assigned to clinician specialty; it was designed
to not overstate the combined impact of correlated factors.

In addition to accounting for interaction, our machine-learning
approach allows us to evaluate feature importance across a range of
dynamically selected subcohorts. This contrasts with traditional
approaches, which assign static importance to modeling features
across subcohorts. Machine-learning approaches may offer
opportunities to identify and target antibiotic stewardship
interventions at both macro and micro levels. For example, in
Alabama, where one of the most highly ranked drivers was outpa-
tient setting and where we observed high average PIAPI values
among NPs and PAs, stewardship efforts could target mid-level
providers in physician office and urgent care settings. In contrast,
in California, stewardship efforts could focus on all providers in
urgent care settings, where the highest PIAPI values were observed.

Our study has several limitations. First, this study was based on
a convenience sample; findings may not be generalizable. Second,
we relied on diagnostic codes from claims and could not evaluate
their validity. Third, NPs and PAs practicing in non–primary-care
specialties may have been included as NP and PA specialty was
not available. Finally, we included all antibiotics except urinary
anti-infectives, not just agents commonly used for respiratory
infections, in this analysis, which may have resulted in overesti-
mates of prescribing.

In conclusion, in this study of 42 million antibiotic-
inappropriate ARI visits, our machine-learning model identified
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Table 1. Clinicians, Visits, and Average PIAPI by Clinician Characteristics

Characteristica
No. Clinicians,

No. (%) No. Visits in Millions (%) Average PIAPI Key Driver Rank

Total 307,983 (100) 41.97 (100) 11

Outpatient setting 1

Office 186,621 (61) 29.34 (70) 12

Emergency department 55,903 (18) 6.33 (15) 8

Outpatient hospital clinic 26,756 (9) 1.56 (4) 5

Urgent care facility 19,489 (6) 3.75 (9) 21

Retail health clinic 920 (0) 0.07 (0) 13

Otherb 8,973 (3) 0.56 (1) 2

Predominant patient age group 2

50þ% children (0–19 y) 69,955 (23) 14.38 (34) 7

50þ% adults (20–64 y) 149,203 (48) 18.55 (44) 12

50þ% older adults (≥65 y) 57,865 (19) 4.5 (11) 11

Balanced 30,960 (10) 4.54 (11) 13

Clinician state 3

Northeast

New York 20,687 (7) 3.71 (9) 9

Pennsylvania 12,762 (4) 1.56 (4) 9

New Jersey 8,205 (3) 1.35 (3) 12

New Hampshire 1,392 (0) 0.11 (0) 11

Rhode Island 1,220 (0) 0.19 (0) 9

Vermont 706 (0) 0.05 (0) 10

Midwest

Ohio 14,285 (5) 1.90 (5) 13

Michigan 11,594 (4) 1.45 (3) 10

Illinois 11,178 (4) 1.16 (3) 11

Indiana 6,444 (2) 0.65 (2) 15

Wisconsin 6,154 (2) 0.46 (1) 11

Minnesota 5,858 (2) 0.40 (1) 9

Missouri 5,310 (2) 0.47 (1) 12

Iowa 4,103 (1) 0.56 (1) 14

Kansas 2,878 (1) 0.27 (1) 12

Nebraska 2,103 (1) 0.26 (1) 13

South Dakota 1,110 (0) 0.13 (0) 14

North Dakota 939 (0) 0.07 (0) 10

South

Texas 21,798 (7) 3.89 (9) 11

Florida 19,183 (6) 2.97 (7) 13

Georgia 7,929 (3) 1.23 (3) 12

North Carolina 7,275 (2) 1.06 (3) 10

Tennessee 7,105 (2) 1.22 (3) 13

Virginia 6,770 (2) 1.00 (2) 10

Maryland 6,468 (2) 1.07 (3) 9

Kentucky 5,685 (2) 1.07 (3) 15

Louisiana 5,370 (2) 0.90 (2) 13

South Carolina 4,824 (2) 0.87 (2) 12

(Continued)
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Table 1. (Continued )

Characteristica
No. Clinicians,

No. (%) No. Visits in Millions (%) Average PIAPI Key Driver Rank

Oklahoma 3,851 (1) 0.53 (1) 12

Alabama 3,731 (1) 0.65 (2) 18

Mississippi 2,690 (1) 0.40 (1) 17

Arkansas 2,526 (1) 0.36 (1) 16

West Virginia 2,259 (1) 0.24 (1) 13

Delaware 1,168 (0) 0.18 (0) 8

Washington, DC 1,082 (0) 0.09 (0) 4

West

California 32,903 (11) 4.27 (10) 8

Washington 8,382 (3) 0.74 (2) 8

Arizona 7,024 (2) 1.01 (2) 10

Colorado 5,383 (2) 0.48 (1) 8

Oregon 4,197 (1) 0.41 (1) 9

Nevada 2,467 (1) 0.41 (1) 10

New Mexico 2,126 (1) 0.20 (0) 9

Idaho 1,725 (1) 0.17 (0) 12

Utah 1,542 (1) 0.22 (1) 10

Montana 1,227 (0) 0.09 (0) 13

Hawaii 1,133 (0) 0.10 (0) 10

Wyoming 554 (0) 0.05 (0) 14

Alaska 552 (0) 0.04 (0) 11

Predominant patient sex 4

50þ% Male 61,252 (20) 8.66 (21) 8

50þ% Female 60,973 (20) 4.33 (10) 9

Balanced 185,758 (60) 28.98 (69) 12

Clinician age 5

<35 y 24,703 (8) 2.50 (6) 7

35–49 y 97,734 (32) 13.42 (32) 8

50–64 y 87,533 (28) 15.01 (36) 11

≥65 years 30,266 (10) 4.69 (11) 13

Unknown 67,747 (22) 6.33 (15) 14

Clinician specialty 6

Family practice 79,888 (26) 11.52 (27) 12

Nurse practitioner 62,089 (20) 5.87 (14) 14

Internal medicine 56,495 (18) 6.48 (15) 10

Emergency medicine 39,995 (13) 5.24 (12) 7

Pediatrics 38,829 (13) 9.90 (24) 5

Physician assistants 30,635 (10) 2.97 (7) 16

Clinician sex 7

Male 142,141 (46) 22.45 (53) 11

Female 165,840 (54) 19.52 (47) 11

Note. PIAPI, Prescriber Inappropriate Antibiotic Prescription Index.
aVolumes and percents may not sum to total due to missing values and rounding.
bOther includes assisted living facility, birthing center, community mental health center, comprehensive rehabilitation facility, facility, custodial care facility, group home, home, homeless
shelter, hospice, Indian Health Service free-standing facility, Indian Health Service provider-based facility, inpatient psychiatric facility, intermediate care facility or individuals with intellectual
disabilities, military treatment facility, mobile unit, nonresidential substance abuse treatment facility, other place of service, place of employment work site, prison or correctional facility,
psychiatric facility–partial hospitalization, psychiatric residential treatment center, residential substance abuse treatment facility, school, temporary lodging, tribal 8 free-standing facility, tribal
638 provider-based facility, dialysis facility.
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outpatient setting, state, and patient age-mix as top predictors of
prescribing for antibiotic-inappropriate ARIs. However, feature
importance varied by strata. This project demonstrated that
machine-learning may be valuable in targeting antibiotic steward-
ship interventions.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2021.476
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