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Abstract. Symplectic integrators are numerical integration methods for Hamiltonian systems, 
which conserves the symplectic 2-form exactly With use of symplectic integrators there is no 
secular increase in the error of the energy because of the existence of a conserved quantity closed 
to the original Hamiltonian. Higher order symplectic integrators are obtained by a composition of 
2nd order ones. 
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1. Introduction 

The exact solution of Hamiltonian equations of motion 

q = Hp, p=-Hq (1) 

has the following properties. The mapping from (q,p) at t = 0 to (q',pf) at t = r 

along the solution is 

(i) exactly symplectic, i.e., Σάρ A dq = Σάρ' A dq1 

and 

(ii) conserves the energy, i.e., H(q,p) — H(q,

1p'). 

If we use a traditional integration method ( such as the Euler method or the Runge-

Kutta method ) which does not respect the Hamiltonian nature, the above two 

properties are easily violated. For example, the one-dimensional harmonic oscillator 

with the Hamiltonian 

i î = ( l / 2 ) ( p 2 + 9

2 ) (2) 

has the exact solution 

(<l(T)\-.( C O S T s m r W g ( 0 ) \ 
\p(r)J~\-smr COST)\p(0)J> w 

which, of course, enjoy the above two properties. 

The most primitive integration method ( i.e., Euler method ) approximates (3) 

as 

(i)-(iOO-
This mapping (q,p) —• ( ί ' , ρ ' ) is not exactly symplectic, and at each step, the value 

of the energy is multiplied by (1 + r 2 ) , i.e., 

( p ' 2 + 9 ' 2 ) = ( l + r 2 ) ( p 2 + 9

2 ) , ( 5 ) 

which leads to the indefinite increase of the energy. The situation is, more or less, the 

same when one uses a higher order integrator, such as the 4th order Runge-Kutta 

method. 
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2. First Order Symplectic Integrator 

A small change in (4) makes the mapping exactly symplectic. Indeed, take 

( i ) - ( i . - ' - ) ( ; ) · 
This mapping is obviously symplectic (det = 1), and has the same local accuracy 

(1st order) as the Euler method. In general, for a Hamiltonian of the form 

Η = T (p) + V(q), (7) 

a first order symplectic integrator ( a symplectic mapping which approximates the 

exact solution up to the order of τ ) is given by 

This mapping (q, p) —• (<?', p') is symplectic because it is composed of two symplectic 

mappings, (q,p) —» (q',p) and (q',p) —• (q'iP')- ^ n e n n < i s easily that although the 

value of the energy is not conserved exactly with use of the symplectic integrator, 

the error has no secular increase and it is bounded of the order of r. 

For the one-dimensional harmonic oscillator case, this phenomenon is explained 

by the existence of a conserved quantity ( integral of motion ) of the mapping (6) , 

which has the expression 

1 τ 
2(Ρ 2 + ? 2 ) + 2 p q ~ c o n s t ' (9) 

If one starts with the initial condition (q,p) = (1, 0) with a fixed small value of r, 

the points obtained by iterating the mapping (6) must lie on an ellipse in the (q, p) 

plane, q2 4- p2 + rpq = 1, which differ from the trajectory of the exact solution 

q2 -f p2 = 1, only of the order of τ permanently. Thus the error of the energy 

caused by the local truncation error cannot grow. Indeed, we have a more general 

statement; 

Theorem 

The symplectic mapping (8) describes the exact time-r evolution of a Hamilto-

nian system H, which is close to the original Hamiltonian (7) and has the expression 

of a formal power series in r, 

H = H + TH1+ r2H2 + T 3 t f 3 + . . . . (10) 

where, 

Hi = - H p H q , H2 = — (HPPH
2 + HqqH

2), H3 = —HPpHqqHpHq, . . . (11) 

In particular, (8) conserves Η exactly. 

Therefore with use of the symplectic integrator, there is no secular accumulation 

in the error of the energy. 
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exp(c;7 \A) exp(dirB) (16) 

This mapping is symplectic because it is just a product of elementary symplectic 

mappings, and approximates the exact solution (14) up to the order o(rn). Fur-

thermore, (16) is explicitly computable although (14) is only formal. In fact (16) 

gives the succession of the mappings 

( i L . . / P i = P i - i - T * © f S S f i

 ( 1 7 ) 

for i = 1 to i = k, with (qo?Po) = z a n < ^ (Qjfc?Pfc) — z'- An n-th order symplectic 

integrator ( integration scheme ) is thus obtained. For example when η = 1, a trivial 

solution is ci = <fi = 1, (& = 1), and we have 

exrj[r(A + B)] - exr>(rA) e x p ( r ß ) + o ( r 2 ) . (18) 

which gives the first order integrator (8) . When η = 2, we find that c\ = C2 = 

1/2, di = l,d2 = 0, (A: = 2), thus 

exp[r(A + B)] = e x p ( ^ A ) exp(rJ3) e x p ( ^ A ) + o ( r 3 ) . (19) 

3. Higher Order Symplectic Integrators 

From a practical point of view, higher order symplectic schemes are important. 

Introducing the notation, ζ — (q, p), the Hamilton equation is written in the form 

z = {z,H(z)}, (12) 

where braces stand for the Poisson bracket, { F , G} = FQGP — FPGQ. If we introduce 

a differential operator Do by DQF := { F , G } , (12) is written as ζ — DHZ, so the 

formal solution, or the exact time evolution of z(i) from t — 0 to t = r is given by 

z(r) = [exp(rDH)]z(0). (13) 

For a Hamiltonian of the form (7) , DH = DT + DV and we have the formal solution 

Z(T) = exr>[r(A + B)]z(0). (14) 

where A : = Z)y, and 5 : = Oy . 

Suppose (c,-, d{), (i = 1, 2, . . . , Α;) is a set of real numbers which satisfy the equality 

k 

exp[r(A + B)] = J ^ e x p ( c , T 4 ) e x p ( d , r £ ) + o ( T n + 1 ) . (15) 

»=i 

for a given integer τι, which is called the order of the symplectic integrator. Now 

consider a mapping from ζ = z(0) to ζ' — ζ (τ) given by 
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Forest and Ruth( l990) obtained a 4th order integrator in a rather straightforward 

way with the result, 

1 1 - 2 1 / 3 

ci = c 4 = — - T Y R R , c 2 = c 3 = 2 ( 2 - 2 1 / 3 ) ' * ό ~ 2 ( 2 - 2 1 / 3 ) ' 

1 - 2 1 / 3 

d i = d * = 2 _ 2 i / 3 > ^ = 2 _ 2 i / 3 > d * = 0. (20) 

Yoshida(1990) found that this 4th order integrator is composed of the 2nd order 

ones. With use of the notation 

S 3 ( t ) := e x p ( | J 4 ) e x p ( r S ) e x p ( | ^ ) ) (21) 

the 4th order integrator £4 (τ) can be written as 

5 4 ( r ) = S2{X1T)S2(X0T)S2(X1T) (22) 

where 

_ 2 ! / 3 ι 
X ° = 2 = 2*73 ' *ι = ( 2 3 ) 

Furthermore, if a 2n-th order integrator S2n(r) is known which enjoyes the property, 

S2n(r)S2n{-r) = 1, (24) 

a (2n+2)-th order integrator is obtained by a composition 

£ 2 7 1 + 2 ( 7 - ) : = S2n(zir)S2n(z0r)S2n(zir)? (25) 

where 

_ 2 1 / ( 2 η + 1 ) γ 

z

°
 =

 2 _ 2
1

/(2»+i) ' ^
 =

 2 - 2
1

/(2n+i)* (
2 β

) 

Thus there exists an explicit symplectic integrator of any even order. For more 

details, see Yoshida(l990) . Recently, Forest et aL( l99 l ) remarked that this idea 

can be used also to desine an implicit integrator for arbitrary Hamiltonian systems. 

For the application of symplectic integrators, see Kinoshita et a l . ( l99 l ) , Channel 

and Scovel(1990), Candy and Rozmus( l99 l ) , and Pullin and Saifman(l99l) . 
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Discussion 

4 1 1 

J. Wisdom - Both your presentation and that of Kinoshita mention only Hamil-

tonians of the form Η = Τ (ρ) -f V(q). I would like to emphasize that the same 

coefficient achieve high order for Hamiltonians of the more general form H = 

# O ( P J <l) + i ï i (p ,q) provided that Ho and Hi are individually integrable, as I 

presented in my talk. 

H.Yoshida- Yes, of course. Indeed one section of our recent publication (Kinoshita, 

Yoshida and Nakai, Celest. Mech. Dyn. Astron. 50,59-71, 1991) is devoted to such 

case. 

J. Wisdom - The doubling method of solving the coefficient equations to high order 

is very impressive, but it may be that there are other solutions with fewer function 

evaluations that can achieve the same order. 

if. Yoshida - I Agree with you completely. What I have shown is just the existence 

of at least one integrator of any even order, by forgetting economy completely. But 

I have no idea how to search such solution systematically. 

J. Wisdom - It has not been mentioned, but of course the conservation of energy 

is purely formal. In reality there is accumulation of numerical error that must lead 

to, at least, square root of time error growth in energy and 3/2 power of time in 

the mean longitudes. 
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