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On the differential equations
for tide-well systems

A. Brown

The paper discusses the differential equation

dl/di + B ^ l Y l ^ s g n U ) = COST , n = 1, 2, 3 ,

from a fresh point of view, to supplement an earlier discussion

by Noye. In particular, for n = 1 the equation can be

transformed to the equation for a pendulum with viscous damping,

3/2
with fL = (1/2) corresponding to critical damping. At the

end of the paper, some related equations are considered.

1. Introduction

In a recent paper [3], Noye considered the differential equation

relating the height of water in a tide gauge to the sea level outside the

gauge. Ideally the two levels would be the same but in practice the

relationship between them is more complicated. To increase the level in

the gauge, water has to flow in and the rate at which it flows in depends

on the way in which the gauge is connected to the sea. Noye distinguishes

three cases, where the connection is:

I via a circular orifice near the bottom of the gauge,

II via a long horizontal pipe,

III via a vertical slit of constant width.
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176 A. Brown

We shall refer to these as tide-well systems I , I I and I I I . Noye gives the

differential equation relating height inside and outside the gauge for each

system and in particular discusses the case where the outside level

fluctuates sinusoidally. Following Noye's notation, we write hAt') as

the sea level at time t' and hit') as the level inside the gauge or

well. When hAt') = asinut1 , non-dimensional variables

T = ut1 and Y = (l/a)[hQ-hu)

can be introduced and the differential equation becomes [3, equation (1.5)]

(1.1) dY/dx + B'Vr^sgnU) = COST ,

where n = 1 for system I, n = 2 for system II and n = 3 for system

III. The coefficients 3i, $2 and 63 are (non-dimensional) positive

constants; their precise form is given by Noye in terms of the parameters

affecting the system. For the purposes of the present paper, it is

sufficient to replace $1, B2> 63 by a single positive constant, B .

Also, we shall write t = T - (TT/2) and assume as initial condition that

y = 0 when T = 0 . With these minor modifications, the equation to be

discussed is

(1.2) dY/dt + (l/8)|y|n/2sgn(i') = - sin* , n = 1, 2, 3 ,

with v = 0 when t = - IT/2 . In Noye's discussion, he is concerned with

steady state solutions of equation (l.l), so fixing the initial condition

does not invalidate a comparison with his results.

2. Equation for n = 1 : relation to viscous damping problem

For n = 1 , the equation for Y is non-linear. If we write the

equation in the form

dY/dt = F(t, Y) ,

then 3F/3Y is not defined for Y = 0 and indeed 13F/3Y| •+ °° as
v ->• 0 , either from above or from below. Thus the usual test for existence

and uniqueness of the solution (using the Lipschitz condition) does not

apply when Y = 0 . However, Drummond's test [7] can be used to show that

the solution is unique except where Y = 0 and sint = 0 .
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At the point (T = 0, t = - TT/2) , dY/dt = 1 and hence we can expect

Y to be positive throughout an interval - TT/2 < t < T\ , where T\ is

the first zero of Y to the right of t = - TT/2 . In this interval the

equation for Y is

(2.1) dY/dt + (l/B)/(y) = - sin* .

Now introduce

(2.2) V = {y(v)} •L/^dy (-ir/2 < t < Tx) .
J-TT/2

Note that this integral converges at the lower limit "because Y "\i t + (TT/2)

near t = - TT/2 . From equation (2 .2) ,

dt/dV = /(y) , d2t/dVz = (1/2HdT/dt) •

If we use D for differentiation with respect to V , equation (2.1)

becomes

(2.3) D2t + (l/23)Dt + ( l /2 )s in t = 0 .

This is the equation of motion for a pendulum with viscous damping, one of

the standard examples of a non-linear differential equation [Z,

pp. 180-182; 4, pp. 6l-66]. The behaviour of the solutions is usually-

represented in the phase plane, working from the first order equations

(2.U) Dt = u , Du = -(l/23)(u+Bsint) .

If we forget about the restriction on V and allow V to increase

indefinitely, the solutions of (2.1*) which start at u = 0, t = - TT/2 ,

will spiral in toward the origin when 3 is large (light damping), whereas

for 3 small enough the origin is a node and the solutions are tangential

to a straight line as they approach the origin. (A diagram showing

solution curves for a pendulum with light damping is given by Stoker [4,

p. 63].) More precisely, it can be shown that the origin is a focus for

3/2
6 > 3Q , where BQ = (1/2) , a result obtained by linearising equations

(2.U) for t small. For 6 5 3 . , the origin is a node and the approach

to the origin (as 7 -*•<») is along the line u = - mt , where

m = (lA3Ml-(l-8B2)1/2j . For 3 small, m = 3 + 0[&3) .
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3. Behaviour of solution of equation (1.2), for n = 1

For zero damping (8 = °°) , equation (1.2) gives Y = cost as the

appropriate solution and the N-th zero (for t > - TT/2 ) occurs when

t = (2tf-l)(ir/2) . As 6 decreases, we can expect the N-th zero to occur

earlier and the maximum value of \Y\ to become smaller. (We shall

assume later that \Y\ < 1 for 0 < g < °° . )

For n = X and 3 small, we have seen that the first zero of Y

occurs at t = 0 . For t > 0 , we can use the asymptotic expansion given

by Noye [3, §!»]. With t used instead of T , this expansion is

(3.1) Y = -32sin2t[l-ltg2cost-lt6't(2-7cos2t)+0(B6)] ,

for 0 £ t 5 rr , with

(3.2) Y = (-l)mY{t-m) , for nrn < t 2 (m+l)Tr .

With this expansion, we see that the W-th zero occurs at t = (ff-l)Tr for

8 small.

For n = 1 and 8 > 8o » we shall assume that the N-th. zero occurs

at t = T , where (N-l)-n < T < (2N-1)TT/2 . This means that Y is

negative for T^^ < t < T^ and positive for T^ < t < T2ff+1 . Hence

if we write

(3.3) YN = (-1)
NY , tH = t - Hv ,

then in the interval [T^, T ) we have Y^ > 0 and -IT < t^ < TT/2 .

Also, equation (1.2) gives

with YN = 0 when t^ = - (TT-T^J , where

(3.5) T* = TN - (JIM.)ir .

Equation (3.U) has the same form as (2.1) and we can again make use of

equations (2.1*) and their phase plane solution. To do this, let D^

denote differentiation with respect to V^ , where

I
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(3.6)

Then the same argument as before gives

(3.7) V# = UN ' ViV = " V ^

with uff = 0 when t = T* - IT . If we follow the phase plane solution of

these equations as V~ increases, we can continue the trajectory until

«„ again becomes zero. This occurs when £„ = 21.. - ffir = 2^ + 1 and this

fixes the starting point for the solution for u ^ and *« + 1 •

In effect, we keep solving the same pair of equations in the phase

plane, following the solution as long as u is positive and using the

terminal point of one solution to fix the starting point of the next. If

we begin-with u = 0 for £ = - TT/2 and use equations (2.U), this fixes

2"l and we note that

0 < Ti = T* < TT/2 .

Hence the solution for u\, t\ s t a r t s at U\ = 0, t\ = T\ - IT , that i s to

the lef t of the (u, t) solution, since -IT < T* - IT < -TT/2 . The

{u\, t\) solution cannot intersect the (u, t) solution because the only

singular points are where u (or Wj ) and s in t (or s in t i ) are

simultaneously zero. I t follows that T* < T\ . Also, we have T\ < TT/2 ,

because T^ + TT = 2*2 < 3T/2 . Combining the inequali t ies gives

0 < T\ < T*2 < IT/2 .

The solution for w2> *2 s t a r t s at Ui = 0, t 2
 = y2 - v •• where

-IT < T* - T\ < T\ - IT < - TT/2 .

I t follows that the (w2> ^2) solution l i e s between the two previous

solution curves and terminates at t 2
 = T3 > where T* < T\ < T\ .

Continuing in th i s way, i t can be seen that

(3.8) 0 < T*_ < T* < . . . < T£N+1 < T£N < ... < T£ < T* < TT/2 ,

for N = 1, 2, 3, ... . Hence T* approaches a limiting value T* , as

N •* » , and this implies that the (uff, tj) solution curve approaches a

https://doi.org/10.1017/S0004972700047031 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047031


180 A. Brown

limiting position. The graph of Y against t must also settle down to a

limiting form.

The above discussion applies for g > g0 , that is in the case where

the origin is a focus for the phase plane solution. For 6 2 g0 , we know

from the phase plane solution that Tx = 0 . From the asymptotic solution,

we can say that Tff = (tf-l)ir for g small and it seems likely that this

will apply whenever g 5 g0 • This would mean that the graph of Y

against t has its limiting form for t 2 0 , that is for T 2 ir/2 .

4. Behaviour of solution of equation (1.2) for n = 2 and n = 3

As noted by Noye, equation (1.2) is linear for n = 2 and an explicit

solution can be written down. When Y = 0 at t = - TT/2 , the solution is

(U.I) Y = {g/(l+62)}|(Bcost-sint) - exp[-{*+(TT/2)}/g]l .

For la rge values of t , Y behaves l ike the sinusoidal function

- (g/(l+£2) ' }sin(£-<j>) , where 0 < (f> < ir/2 and

(U.2) tan<j> = g .

More prec ise ly , i f S i s the ff-th posit ive zero of Y and i f

then i t can be seen that

(It.3) 0 < 5* < 5* < . . . < S*,N+1 < (j. < S*^ < . . . < S£ < S* < TT/2 ,

for N = 1, 2, 3 This is the analogue of equation (3.8) and we can

deduce that 5* -»• (j) as N •*•<*>.

For the interval -TT/2 < t < Sj , Y is positive and we can introduce

V as before (see equation (2.2)). The equation for Y is transformed to

(it.U) D2t + (l/2g)(Dt)2 + (l/2)sint = 0 ,

which is the equation of motion for a pendulum with damping proportional

to the square of the angular velocity [4, pp. 59-6l]. In this case the

origin is a focus for all positive values of g and there is not a

crit ical value for g , as there was for n = 1 . (This agrees with the
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conclusions drawn from equation (U.l).) In terms of u and t , equation

(U.U) can be replaced by

(U.5) Dt = u , Du = - (l/26)(w2+Bsint) ,

and the i n i t i a l condition becomes u = 0 , t = - IT/2 for 7 = 0 .

At any point (w, t) in the region 0 < u < 1 of the phase plane

we have 0 < u2 < u < 1 and hence, for a given value of 3 ,

(As mentioned in Section 3, we assume |y | < 1 for 3 > 0 , so the

r e s t r i c t i o n to the region 0 < u < 1 i s appropriate . ) Thus i f we have the

same i n i t i a l point {u = 0, t = - TT/2) and the same value of 3 , the

solution curve of equations (U.5) w i l l r i s e above that of equations (2.1*)

and wi l l re turn to zero for a larger value of t , tha t i s 5j > T\ .

A similar argument shows that <\> > T* , for a given value of 3 • The

solut ion of equations (U.5) which s t a r t s at u = 0 , t = T * - K w i l l come

back to zero to the r ight of the corresponding solution of equations (2.U)

and thus has a "span" greater than TT . To get a smaller span, we would

have to move the i n i t i a l point to the r i g h t . In p a r t i c u l a r , the i n i t i a l

point u = 0, t = <j>-TT , which gives a solut ion curve with span IT for

equations (U.5), must be t o the r ight of u = 0 , t = T*-Ti.

For n = 3 , equation (1.2) i s again non-linear and an expl ic i t

solut ion i s not avai lable . However, we can discuss the equation in terms

of a corresponding equation in the (u, t) phase plane in much the same

way as before. If we again take Y = 0, t = - TT/2 • as i n i t i a l point and i f

(/„ i s the iV-th zero of J for t > - TT/2 , then i t can be shown tha t

( U . 7 ) 0 < W* < W*< . . . < W* < W* < . . . < Wf < W* < T T / 2 ,

for N = 1 , 2, 3, . . . , where

Hence W* tends to a l i m i t , W* , as N •* <*> . Also, for a given value of

3 , Wy > Sj > 0 and W* > $ > T* .
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5. Numerical results

The most in teres t ing result tha t emerges from the transformation to

the phase plane is the discovery of a precise limiting value of (3 for

c r i t i c a l damping in the case of the tide-well with an orif ice (n = l ) .

The value obtained, that i s B = (1/2) = 0.351* , agrees well with

Shipley's resul ts for phase lag, as shown in Figure 3 of Noye's paper.

Some numerical calculations using equations (2.1+) also confirmed t h i s . The

tab le below shows the values of T\ obtained for 6 = 0.1*, 0 .5 , . . . , 1.0 .

3 0.1* 0.5 0.6 0.7 0.8 0.9 1.0

Tx 0.0025 O.Olt89 0.1230 0.2015 0.2751* 0.31*50 0.1*065 .

For 3 < Bo > the solution curve in the phase plane should approach the

or igin as V •+• °° , so the solution breaks down in th is case before T\ i s

a t ta ined. A solution with B = 0.3 gave:

u = O.OOOl+ll* for t = - O.OO1O55 ,

u = 0.000101 for t = - 0.000257 ,

u = 0.000025 for t = - 0.000063 .

Theoretically, the solution should approach the origin along the l ine

u = - 0.392kt and the numerical resul ts are in good agreement.

For 3 = 0.8 , the values for T\, T\, T\, T* and T5 were

calculated and came out as

0.275^08, 0.331*081, 0.333883, 0.333881*, 0.333881* ,

respect ively , with the solution repeating i t s e l f after tha t . Thus for

t h i s intermediate value of 3 , the solution se t t led down to a steady s ta te

osc i l l a t ion quickly and the limiting value of T* was obtained with

reasonable accuracy after three of four i t e ra t ions . In the steady s ta te

osc i l l a t i on , the maximum value of Y was 0.1+361* and the time interval

to r i s e from zero to the maximum was 1.77635 , compared with a time

in terva l of 1.36525 for the decrease from the maximum to zero. This

asymmetry indicates the difficulty of trying to represent Y by a sine

curve solution.
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6. Related equations

The transformation employed to change from equation (2.1) to equation

(2.3) can be used for some other first order equations also. An immediate

generalization is to replace -sini in equation (2.1) by another function

of t , say G'(t) ; then -sini is replaced by G'(t) in equation (2.3)

also. If we start from this more general form, that is,

(6.1) dY/dt + (l/e)/U) = G'(t) ,

other forms can be obtained essentially by change of variable. For

example, if we assume Y > 0 and replace Y by iP , the equation becomes

(6.2) dv/dt

with p = 2 and p = -2 giving the most interesting special cases.

For p = -2 , equation (6.2) becomes

(6.3) dv/dt = (l/2£)i>2 - (l/2)v3G'(t) .

This a special case of the more general form

(6.1+) dv/dt = va(t) + v2b(t) + v3c{t) ,

but we can show tha t , with suitable assumptions, equation (6.1*) can be

simplified t o the form (6.3). To do t h i s , l e t

A(t) = exp-j a(u)du\ , v = A(t)w .

Then for A{t) # 0 , equation (6.10 becomes

(6.5) dw/dt = w2b{t)A(t) + w3a{t){A(t)}2 .

For b{t) # 0 , let s(t) = 28b(u)A{u)du ; then
'to

(6 .6) dw/ds = (1/26)w2 + #(s)w 3 ,

where # ( s ) = e(t) {A{t)}/{2g,b(t)} . Equation (6 .6) i s now of the same

form as equat ion ( 6 . 3 ) , thus l i n k i n g (6.U) with ( 6 . 1 ) .

For p = 2 , equat ion (6 .2) becomes

(6 .7) dv/dt = (l/2v)G'(t) - (1/23) .
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For G'(t) * 0 , l e t 2 = G(i) and W = V + ( t / 2 6 ) . Then

d* " 2 y \d t 26/ " [2V &\dt '

and

(6.8) ds/dJ/ + MU) = 2W ,

where

M(z) = t/6 = (1/B)G"1(3) .

If we now set q = dW/dz and differentiate with respect to 2 , equation

(6.8) becomes

(6.9) dq/dz = q2M'{z) - 2q3 ,

an equation which can be used to link equations (6.It) and (6.1) via an

alternative assumption. Instead of assuming bit) # 0 , we can assume

o{t) / 0 and set

ft

Sl(t) = - (1/2) a(u){A{u)}2du .

This allows equation (6.5) to be replaced by

(6.10) dw/dsi =w2E(si) - 2u3 ,

where E(si) = -2b{t)/{c{t)A(t)} , and we now have an equation of the same

form as (6.9). Thus equation (6.h) can be transformed to the form (6.1)

and hence to the corresponding phase plane problem in many cases.
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