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NOTES ON FRATTINI SUBGROUPS OF GENERALIZED 
FREE PRODUCTS WITH CYCLIC AMALGAMATION 

BY 

R. B. J. T. ALLENBY, C. Y. TANG(1) AND S. Y. TANG 

1. The problem of the exact location of the Frattini subgroup 4>(G) of a 
generalized free product G = (A*B)M was first raised by Higman and 
Neumann [5]. Solutions to special cases of the problem can be found in [1], [2], 
[8], [9] and [10]. The purpose of this note is to extend the results of [2], [8], 
and to simplify the proof of Whittemore's theorem [10]. We also apply our 
result to give simple proofs of certain classes of knot groups that have trivial 
Frattini subgroups. The proof that every knot group has trivial Frattini sub
group hard and long (footnote 2, p. 56). 

2. Whittemore's theorem. In [10] Whittemore showed that if G = (A*B)H 

contains an element c such that HC\HC = 1 then <Ï>(G) = 1. Applying this result 
it was shown that the Frattini subgroup of a generalized free product of finitely 
many finitely generated free groups amalgamating a cyclic subgroup is trivial. 
From this it follows immediately that the surface groups and the non-degener
ated Fuchsian groups have trivial Frattini subgroups. However the proof of 
Whittemore's theorem is quite long and tedious to follow. Here we shall 
present a more understandable proof. 

THEOREM 2.1 ([10]). Let G = (A*J3)H. If G contains an element c such that 
HHHC={1} then 0 (G) = {1}. 

Proof. H n H c = { l } implies H contains no nontrivial normal subgroups of 
G. Thus if H has index 2 in both A and B we deduce H = {1}. It follows that G 
is the ordinary free product of A and B. That 4>(G) = {1} then follows from [5]. 
So WLOG we may assume \A: H\>2. 

Now <&(G)<G and so if 4>(G)<H then again <£>(G) = {1}. Thus we may also 
assume there exists ge<£>(G)\H. Suppose g has the normal form g = 
a1b1 • • • anbn where at e A\H, ty e B\H. Since \A: H\ > 3 there exists a e A\H 
such that a~1a1eA\H. Thus ga = (a~1a1)b1 • • • anbna is an element of <I>(G) 
having normal form with initial and final letters both in A\H. Consequently it 
is clear that any g in <&(G)\H has a conjugate (also in <Ï>(G)) having normal 
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form with initial and final letters both in A\H. WLOG we may assume g itself 
is of this form. 

Now set z = gxcy where we choose x = 1 or x e B\H according as the initial 
letter of (a normal form of) c is in B\H or A\H (clearly c cannot belong to H) 
and we choose y = 1 or y e B\H according as the final letter of c is in B\H or 
A\H. Choose ueA\H arbitrarily. We show that zé(Az, Bu). Suppose the 
contrary and let 

(2.1) z = bla\b\--albl 

where n is chosen as small as possible. (We admit the possibility that either or 
both of b0, bn may be 1). By the very forms of z and bo it is clear that z = b% is 
impossible. Thus n>\. In greater detail (2.1) is 

(2.2) z = y~1c~1(cy • w_1b0w * y~1c~1)x~1g~1x(cy • ax • y~1c~1) 

x_1gx(cy • u~1b1 - u - • • • ) • • • 

For i = 1, 2 , . . . , n we have cya fy
_1c_1 é H. For otherwise, we have yaty

_1 e HC 

(directly) and yaiy~1eH (from considering the normal form of cyoiy~1c~1). 
Hence y ^ y - 1 e H f ï H c and at = 1 follows. Consequently 5"_xafb" reduces to 
(bi-xbiY and we have a new "smaller" representation of z than that given in 
(2.1). Similar arguments apply to cyu~xbiuy~1c~1 if i = 1,. . . , n - 1. 

Thus the (normal form) length of the R.H.S. of (2.1) is at least 
/(y_ 1c_ 1x_ 1g"1x) + l(x~xgxcy) which is evidently greater than the length l(z) of 
z, an obvious contradiction. Thus zé(Ax, JBU), and zéQ(G) follows (since 
{A\ Bu, z)=G). Thus gé®(G) and 4>(G) = {1} follows. 

3. Cyclic amalgamation. In [2] it was shown that if A, B are locally solvable 
and H is infinite cyclic then <I>(G)<H, where G = (A*B)H . The proof is quite 
long and involves tedious case analysis. Here, by applying Theorem 2.1, we 
prove that any generalized free product with cyclic amalgamation has its 
Frattini subgroup contained in the amalgamated subgroup by a remarkably 
elementary and brief argument. 

THEOREM 3.1. Let G = (A*B)H where H is cyclic. Then <E>(G)<H. 

Proof. In view of Theorem 2.9 [8] we can assume H to be infinite cyclic. 
Suppose <$>(G)^H. It follows immediately from Theorem 2.1 [9] (see proof of 
Theorem 2.1 of [1]) that we may assume, without loss of generality the 
existence of a e A fl ^>(G) such that aé H. Choose b e B\H arbitrarily and set 
c = bab-1a~\ Clearly ce<ï>(G). Consider X = (AC\B). We shall show céX, 
hence cé<$>(G). This contradiction shows that <ï>(G)<h. 

If c G X we can write 

(3.1) c = b0- c~xc~xaxccbxc~^c~x • • • bn 

with at 6 A, bt e B and n minimal. 
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By Theorem 2.1, we can assume Ha DH^{l}^Hb OH. In particular there 
exist integers /, m, r, 5 such that, 

(3.2) a~1hla = hrn 

and 

(3.3) b~1hrb = hs 

where 
H a H H = <hm), HbnH = (hs). 

By the length argument, for (3.1) to hold, we must have c^a^eH. This 
implies that al9 a\, aïa, aïa b~xeH. Let at = hk. For abeH, we must have 

b-1a1b = b~1hkbeHnHb. 

Thus, by (3.3), we must have, 

(3.4) b-Wb = has, 

For some integer a. Since a\aeH, it follows that a~1hasaeHDHa. Therefore, 
by (3.2), there must exist an integer /3 such that, 

(3.5) as = pi. 

Hence, 
a-1hasa = a-1hma = hfirn. 

Next bh^b'^a^'eH. Therefore, by (3.3), we must have J i 3 m e H n H b . 
Hence there exists an integer 7 such that 

(3.6) j8m = 7s. 

Thus, again by (3.3), bh^rnb'1 = hyr. Finally ahyra~1 = ac
1GH implies hyr e 

H H Ha. Hence, as before, there must exist an integer 8 such that, 

(3.7) yr = 8m. 

It follows that c~xaxc = afi8ma_1 = h81. Now by (3.6) and (3.7) we have pmr = 
ysr = 8ms. Hence, 

(3.8) pr = 8s. 

On the other hand, by (3.5) and (3.8) we have asr = (3lr = 8sl. Therefore 
ar = 81. Thus bh^b'1 = har = h8\ whilst, by (3.4), bh^b'1 = hk. Hence 8l = ar = 
k. It follows that, 

c-
1a1c = c-ihkc = h8l = hk. 

This means c commutes with a l5 whence c~2a1c
2 = a1eH. Therefore we can 

write (3.1) as: 

(3.9) c = (b0a1b1)a
c2'-bn 
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Thus (3.9) contradicts the minimal choice of n. Hence c~xaxcéH. In the same 
way, we can argue c T ^ c é H and cb{c~xeH for all i. It follows that the R.H.S. 
of (3.1) in its reduced form has length greater than c. This says céX, whilst 
G = (X,c). Hençe cé<&(G) which in turn implies cuÉ<$>(G) contradicting the 
assumption a € A Pi O(G) such that CUE H. Thus aeH. Hence <Ï>(G) c H. This 
proves the theorem. 

4. A, B finitely generated and 4>-free. In [8] it was shown that if H is a 
finite cycle and if N is the maximal G-normal subgroup of H then <Ï>(G) = 
(<E>(A) H N, <É>(B) H N). We give an example to show that we cannot obtain such 
a result if H is an infinite cycle. 

EXAMPLE 4.1. Let 

A - <a, x, y ; [x, y] = 1, x a = xy2, ya - y) 

and B=(z). Then it follows easily that (y2) is the Frattini subgroup of A. 
Set H = <y) = <z2> and set G = (A*B)H. Then <P(G) = H. (Map G to 
G/(y2) = A/(y2)*B/<y2> with H/(y2) amalgamated and observe that 

4>(G/<y2» ç <y )/(y2) = <ï>(B/<y 2» s= <ï>(G/<y 2 », 

since (y)/(y2) is a finitely generated normal subgroup of G/(y2). Now take 
inverse images to get back into G.) Thus <<Ï>(A) H H, <Ï>(B) flH> = <y2) S 3>(G). 

In [8] the second author gave an example of a generalized free product 
G = (A*B)H where H is infinite cyclic, * (A) = {1} = 4>(B) and yet <Ï>(G) = H. 
In this example both A,B are infinitely generated. The Example 4.1 shows 
that O(G) behaves "badly" when A, B are finitely generated. Consequently it 
is rather nice that the following can be obtained. 

THEOREM 4.2. Let A, B be finitely generated and Q>-free and suppose H is an 
infinite cycle. Then G is Q>-free. 

Proof. By Theorem 3.1 <ï>(G)çH. Thus, if <I>(G)^{1}, we see that <É>(G) is 
infinite cyclic. 

Let X, Y denote the centralizers of $ (G) in A, B respectively. Clearly 
X=>H, Y ^ H and |A: X | < 2 , |B: Y|<;2. Thus X < A, Y < B . Let X', Y' be the 
derived groups of X, Y respectively. Since O(G) is central in X it follows that 
$ ( G ) f l X ' ç $ ( X ) . But X is finitely generated and <Ê>(G)nX'<lA (since 
3>(G) < A and X' ch X < A). Hence O(G) H X' ç O(A). But A is O-free. Hence 
<D(G)HX' = {1}; in particular H H X ' = {1}. Similarly for Y in B. 

We can thus map G onto G - (Â*B)H, where A = A/X', B=B/Y,H = H, 
under the homomorphism i/f, say. Since <I>(G)^c<i>(G)=:0(G) we see that 
*(G)5*{1}. Now X = X/X\ Y = Y / Y ' are finitely generated abelian groups 
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which we may assume, WLOG, to be aperiodic (for otherwise we can factor 
out their periodic subgroups T ( X ) , T( Y) which are normal in Â, B respectively 
and both of which miss H). Thus we can find bases xl9..., xm of X and 
y l 9 . . . , yn of Y such that 

H = (h) = (xsJ = (yt
n) 

for suitable integers s, t. 
Suppose <I>(G) = <hw>. Then, for each aeA, we have a~1hwa = h*w (and 

similarly for each beB). Let p be an odd prime distinct from those dividing 
s, t, w. 

No\v_ it iseasy to see that Xp C\H = (hp) = Yp D H and so we may map G 
onto G = (Â*B)H where 

A = Â/Xp, B = B/YP, H = H/Hp. 

Now Â is either a finite elementary abelian group EA (viz._X/Xp) of 
exponent p or an extension of^EA = X/XP by a 2-cycle. Further H = (h) is a 
normal (p-cyclic) subgroup of A. Indeed it follows from the remarks above that 
each element of Â (and likewise of B) conjugates the element hjnto itself or 
its inverse. Suppose for the moment that A is not abelian. Then Â - EA U aEA 

where a conjugates h to its inverse. Consider the set of elements a~xga • g 
where g e E^. Clearly each such element is in E A (since J5A< Â) and is indeed 
central in Â (for E A is abelian whilst 

a^ia^ga • g)a = a~2ga2 • a~xga = g • a~xga = a~xga • g, 

the latter two equalities coming from the fact that a2, g,a~xga all belong to £sA 

and hence commute). The set CA of alj_such ga • g is a (central) subgroup of A 
which misses H and we can pass to A/CA *B)H. Similar remarks apply to B. 

Hence the original G = (A*B)H has a homomorphic image G* = (A*x B*)H* 
in which A*, B* are each one of the following types of groups: (a) A finite 
elementary abelian p-group Ep; (]8) An extension of such a group by an 
element inverting all the elements of Ep. Further, because of the choice of 
p,<&(G*) = H* and, since ff* is a normal p-cycle, bases for the elementary 
abelian subgroups EA, EB can be obtained by extending from a basis for H*. In 
particular if EA=(x*,... ,x?) where H* = <x*) then A* splits over H*, a 
complement being (x*,..., xf_i) in case (a) and (a, * * , . . . , xf_±) in case (j3). 
Thus in every possible case A*,B* both split over H*. Hence G* splits over 
H* and Lemma 2.6 of [8] tells us 4>(G*)nH* = {l}—a contradiction, which 
completes the proof. 

At this point we should like to ask the question whether 0(G) = {1} for 
G = (A*B)H where H is infinite cyclic and $(A) = <I>(B) - {1} with A finitely 
generated and B infinitely generated. 

https://doi.org/10.4153/CMB-1980-007-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1980-007-0


56 R. B. J. T. ALLENBY, C. Y. TANG AND S. Y. TANG [March 

5. Applications to knot groups. Neuwirth [7] has asked what can be said 
about the Frattini subgroup of a knot group. Murasugi conjectures that it is 
always trivial. This conjecture has recently been proved.(2) However for certain 
knots the result follows much more easily as we now indicate. 

Since a torus knot group has a presentation of the form (a,b; am = bn) 
applying Theorem 3.1 by using c = bakb~1a~k we immediately have: 

THEOREM 5.1. The torus knot groups have trivial Frattini subgroups. 

THEOREM 5.2. Let G = (A*B)H where H is infinite cyclic and is a retract of A 
and ofB. Then 4>(G) = {1}. 

Proof. By Theorem 2.1, <ï>(G)çH. Now A = CH, B = DH, where C<A, 
CDH = {1} and D<B, DHH = {1}. Mapping G onto H under @, say, by 
sending C and D onto {1} and mapping H identically we see that 

3>(G)@ <= <Ï>(G@) - <Ï>(H) = {1}. 

Thus <ï>(G)çker@. It follows that 0 ( G ) ç H D k e r @ . But it is clear that 
ker © H H = {1}, whence $ (G) - {1}. 

As an immediate consequence we have the following: 

THEOREM 5.3 (Murasugi [6]). The knot group of any product of knots has 
trivial Frattini subgroup. 

Proof. The group of product of two knots is the generalized free product of 
the groups of the constituent knot groups amalgamated along retracts (see [3]), 
which are infinite cyclic. Hence, by Theorem 5.2 its Frattini subgroup is trivial. 

To show that the cable knot has trivial Frattini subgroup we first prove the 
following lemma. 

LEMMA 5.4. Let G = (A*B)H. Then G ' f lB = B ' ( A ' n H ) . 

Proof. Clearly B'(A'DH)^G'C\B, so we only have to prove the reverse 
inequality. First note that A1 = A'(BT\H)<A, B1 = B'(A'nH)<B and that 
A1nH = B1HH. Thus we can map G onto Gx = (AIA-^B/B^^^^u cannoni-
cally. Since A/At and B/B1 are abelian we can further map Gx onto the 
generalized direct product G2, say, of A/A^ and BIBA amalgamating H/HC\ 
A v Since G2 is abelian we see that ker (G —> G 2 ) ^ G\ But this kernel meets 
A, B in exactly Ax and Bx respectively. Hence G'(1A^AA and G' H B ç Bu as 
required. 

THEOREM 5.5. Cable knot groups have trivial Frattini subgroups. 

(2) Murasugi's conjecture has recently been proved by a quite involving topological and group 
theoretical argument. 
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Proof. Let G be the knot group of a cable knot. Then G can be put in the 
form G = (A*B)H where B is infinite cyclic, and B^H. By Theorem 2.1, 
0 ( G ) ç H . On the other hand, since GIG' is infinite cyclic, it follows that 
<ï>(G)çG', whence <t>(G)^HDG'. If <D(G)^1 then BG'IG' must be finite 
and hence trivial, that is, B ç G'. Now, by Lemma 5.5, this is impossible since 
B is infinite cyclic and H^B. This proves the theorem. 

6. Residually solvable groups. In [9] it was shown that if G = (A*B)H is 
residually finite such that A, B each satisfied a nontrivial identical relation 
which is not satisfied by the infinite dihedral group then <ï>(G)çH. In this 
section we establish a parallel result for residually solvable generalized free 
products. 

DEFINITION 6.1. {Si ; i e 1} is called a solvable filter for G if each St<G such 
that G/Si is solvable and HieiSj = 1. It is called a solvable H-filter if H is a 
subgroup of G and {St; iel} is a solvable filter of G such that f\ieISiH = H. 

DEFINITION 6.2. Let G = (A*B)H and {At;ueI}, {Bf ; i e 1} be solvable filters 
of A and B respectively, then they are called compatible solvable filters with 
respect to H if At DH = Bt HH for i eI. 

As it is in the case of residually finite groups, denoted by R^, it can easily be 
shown that G = (A*B)H e RS if A, B have compatible solvable H-filters, where 

RS denotes the class of residually solvable groups. 

LEMMA 6.3. Let G=:(A*B)HeRS. I /A , JB each satisfies an identical relation 
not satisfied by the infinite dihedral group then A, B have compatible H-filters. 

The proof of this lemma is similar to that of Theorem 2 of [4]. 

LEMMA 6.4. Let G = (A*B)HeRS and 8tG be the ith derived subgroup of G. 
Then {8tG ; / G J}, where J is the set of positive integers, is a solvable filter for G. 

Proof. GGRS implies there exists a solvable filter {St ; i G I}. Thus GISt is 
solvable and rii=jS£ = 1. Let GISt be solvable of length k. Then 8kG^St. 
Since n.erSi = 1 it follows that f l ^ i ^ G = 1. 

THEOREM 6.5. Let G = (A*B)H e RS such that A, B each satisfies a nontrivial 
identical relation not satisfied by the infinite dihedral group. Then <É>(G) ç H. 

Proof. If | A :H\ = \B:H\ = 2 then H< G. Therefore by [5] <D(G) c H. Thus we 
can assume | A : H | > 3 . Since A, B each satisfies an identical relation not 
satisfied by the infinite dihedral group and {8tG; i eJ} is a solvable filter for G, 
by Lemmas 6.3 and 6.4, {At;ieJ} and {Bt;ieJ} where A ^ A P l ^ G , Bt = 
B H 8tG, are compatible solvable H -filters for A and B respectively. Let 
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Ât = AI Ai and Bt = B/Bt. Since Af and Bf are compatible, we have AtnH = 
B{ H H = Ht. Hence we can form Gt = ( A ^ B ^ , where Ht = HAJA* = HBJB^ 
Moreover A^A.B^B and Ç\i&J AtH = f|ieJ BtH- H it follows that G* is a 
proper generalized free product. Since \A: H | > 3 , | Â : H £ | > 3 . Thus G£ is not 
an infinite dihedral group. Hence Gt is not solvable. 

Let Gt = GI8tG. Then Gf is solvable of length i. On the other hand G£ = 
(ASiG/SjG, BSiG/SiG). Now, 

A $ G , - , . A - A - Â 
Ô(G ^ A ô j G ' A i " '* 

In the same way BôiG/ôiG — Bi. Hence ther exists a natural homomorphism 
Pi.Gi-^Gi such that A I Â ^ A U

 a r e t n ^ natural isomorphisms between Ât 

and A^iG/^G respectively. Clearly, ker pir\Hi = l. Since Gt is solvable while 
Gt is not solvable, it follows that k e r p ^ l . Hence, by Theorem 2.1 [2], 
* (Ôi )gf l l for each i. 

Suppose <t>(G)£H. Then there exists aeA\H and aG<I>(G). (See proof 
of Theorem 2.1 [1]). Now {At; Is J} is an H-filter. Therefore there exists an i 
such that a^AtH. Let ifo be the natural homomorphism of G onto Gt. Then 
aifjiéHi. But aifee$(Gi)çHi—a contradiction. Hence <&(G)^H. This proves 
the theorem. 

It can be noted that the method of the proof of Theorem 6.5 is applicable to 
Theorem 3.5(i), (ii) [9] while the converse is not true. In fact the method of the 
proof of theorem of Theorem 6.5 can be applied to any G = (A*B)HeRP, 
where P is any property P, such that the P-filter {N{ ; i G 1} of G satisfies the 
property that G/Nt n N, is again P. Thus we can make a more general 
statement: 

THEOREM 6.6. Let G = (A*B)H e RP such that A, B each satisfies a nontrivial 
identical relation not satisfied by the infinite dihedral group. Then 0 (G) ç H. 
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