ON THE EXISTENCE OF THE RESOLVENT KERNEL
FOR ELLIPTIC DIFFERENTIAL OPERATOR
IN A COMPACT RIEMANN SPACE

KOSAKU YOSIDA

§1. Introduction. We consider the differential operator
(1.1) (AN) =b7(x)~2L 1 ai(w) .+ c(x)f(x)
ox‘ox’ ox'

in an n-dimensional (nx2), orientiable, compact Riemann space R with the
metric ds® = gij(x)dx'dx’. Here b7(x) is a contravariant tensor such that the

quadratic form 57(x)&¢; is >0 for 5_253>0, and a'(x) changes, by the coordi-
‘:

nates transformation x —> %, as follows:
. =i
(1.2) @'(x%) =?}zak(x)+
ox

OF i),
ox’ox®
These transformation rules for the coefficients are connected with the fact that
the value of (Af)(x) is independent of the local coordinates (x',..., x™).
For the sake of simplicity, we assume that R is an infinitely differentiable
manifold and that gij(x), 87(x), a'(x), c¢(x) are infinitely differentiable functions
of the local coordinates (x',..., £”). We consider A as an additive operator
whose domain D(A) is the totality of real-valued infinitely differentiable func-
tions on R, with values in the Banach space C(R) of the totality of real-valued
continuous functions f(x) on R, metrized by the norm iLf”:I‘;lg.;{ I f(x)]. As in

a preceding note,” we may prove (§2) the folowing existence theorem :

Let us consider D(A) as a linear subspace of C(R) and let A be the
smallest closed extension of the operator A. Then, if

(1.3) m > max|c(x)],

the operator (I— m™*A) (I=the identity operator) admits a bounded linear in-
verse, the resolvent In = (/- m™A)™" defined on C(R).

Received September 25, 1951,

K. Yosida: Integrability of the backward diffusion equation in a compact Riemannian
space, Nagoya Math. Journal, Vol.3, 1-4 (1951). At this juncture, the author wishes to
correct the errata in the cited paper. (—#;~'A) on page 3, line 2 must be corrected
as (I—m~1A), D(A) and A on page 3, line 5 must be corrected as D(I,.) and In
respecteively.
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The purpose of the present note is to show that this resolvent may, for
sufficiently large m, be represented as an integral operator of the form

(1.4) I =\ pulz, )OIy, dy=Ngm@ . .. s,
g(x) =det(gii(x)),

with a measurable kernel pm(x, y). The result will be applied to the explicite
expression for the transition probability of the stochastic process defined by the
diffusion equation

of
(1.5) at—Af (¢20).

§2. The existence of the resolvent In. We will prepare lammas.

LemMa 1. Let m satisfy (1.3) and let ((I—m ™ A)f)(x) =g(x) for fED(A).
Then we have
(2.1) max g(x)=(1—-m Yel) max f(x) for max f(x)=0
’ = (1 —-m Ymin czx)) max f(x) ;or max fx)=0,
(2.1) min g(x) =(1 —m"lllclla)p min S(x) ’ for min f(x) —;0
) é(l-—m'l(mxin cdzx)) mjn f(x) }or mai)n f(x)=0.

Proof. Let f(x) reach its maximum and minimum at x = x, and x..
Then we have, by

b7 (x)— a-’—“—-1—0 (at x =%1), b7(x ) .20 (at x =x2),
ox'ox’ ax

the inequalities
Slx) — m_lc(xl)f(ﬁh) ég(i\h), f(xz) - m_IC(xz)f(xz) %g(xz).

LEMMA 2. The smallest closed extension A of A exists. It is defined as
follows: Af=e if there exists {fz}S D(A) such that the strong }‘im Je=1,
>0
strong lim Afr=e. Here strong lim means the lim defined by the norm of
>0
C(R).

Proof. By the integral theorem of Green, we have

(2.2) SR(Afk)(x)h(x)dx=S fe(x)(A'h)(x)dx, heD(A), where

(2.3) (A'h)(x) = (Vg ()67 (2)h(x))

vg(x)a 'a 4

1 i
—\Téafja (\/g(x)a (x)h(x))

+c(x)h(x) = (Ah)(x) +c(x)h(x).
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Thus, if strong lim f% =0, we would have

Ie>x

SRe(x)h(x)dx = }‘Lm SR(Afk)(x)h(x)dx = }‘l_zn SRfk(x)(A’h)(x)dx =0.

Hence we must have e(x) =0 for strong lim fr=0. Therefore }if is a one-
k->x©
valued functien of £, independent of the sequence {fr} which defines f.
LEMMA 3. The range {(I—-m 'A)f; f€D(A)} is strongly dense in C(R).

Proof. If otherwise, there would exists a measure #(E), countably additive
for Borel set E of R, such that

(2.4) the total variation of st on Ris =0,

(2.5) SP((I-—m'IA)f)(x)u(dx)=O for feD(A).

Since the operator (I—m™*A) is elliptic, there must exist” infinitely differ-
entiable function A(x) such that

(2.6) WE) = hodx,  ((T-m”ANR)(x) =0.

Let® k(x) be =1. =—1 or =0 according as k(x)>0, <0 or =0.
Then we have

0= Lk(x)((l— m AR (2)dx = Sr(l —m e h(x)|dx

—m'ISS (Alh)(x)dx-km"Zg (Ad)(x)dx,
i VP J oN;

where P(N) are connected domains in which k(x)>0 (<0) such that h(x)
vanishes on the boundaries 9P(ZoN). We have, by Green’s integral theorem,

SPEKAlh)(x)dx = ks,

ap;aMm
where # and dS denote outer normal and positive measure on 9P respectively.

Hence S (Ah)(x)=0. Similarly we have ‘ (An)(x)dx=0. Thus we must
Py ~Nj

Y

have i{x) =0 and hence n(E) = S h(x)dx =0, contrary to (2.4). Q.E.D.
JE

We have incidentally proved the following lemma, which plays an impor-
tant role in §4 below.

LemMa 4. For any he D(A), we have, for sufficiently large m,

2) L. Schwartz: Théorie des distributions, Paris (1950).
3) Cf. K. Yosida: Integration of Fokker-Planck’s equation with a boundary condition, Journal
of the Math. Soc. of Japan, Vol.3, No.1, 69-73 (1951).
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2.7) §[(T=m ) ) ldxa 5 | (h)las.
R R
By the above three lemmas 1, 2 and 3, we see that, for »2> |||, the resolvent
(2.8) In=(I-m™A)™
exists as a bounded linear operator on C(R). Moreover, by lemma 1, the operator
I, is positive :
(2.9) 2(x)20 on R implies f(x) = ((I-m™A)7'g)(x) 20 on R.

Hence, for fixed %€ R, (Ing) (%) is a bounded linear functional on C(R) and thus
(2.10) (1) (%) = | Pulzo, d)2(5),

where Pn(%o, E) is a non-negative set function, countably additive for Borel set
E. Pp(x, E) is also Borel measurable in x for fixed E.
We will show (§4) that, for sufficiently large m,

(2.11)  Pp(x, E) = LPm(x, y)dy, with a measurable density Pm(x, »)
satisfying certain regularity conditions (see (4.12) below).

To this purpose, we need a parametrix in the large, viz. almost Green’s func-
tion of the operator (I—m™'A’). This will be introduced in the next §.

§3. The parametrix in the large. We adopt a new metric
(3.1) ar’ = bij(x)dx' dx’ ,

where (bij(x)) is the inverse matrix of the matrix (67(x)). We also assume
that the local coordinates (%', ..., x®) are a normal coordinates in the vicinity
of the point P=(0,..., 0). Thus the adjoint poerator A’ of A is of the form
(b(x) =det (bij(x))) :

(3.2) (A'f)(x) = \/b(x) ax'axf —2 __ (VB(x) b7 (x)f (x))
1
- e ax (Vb(x) d'(x)f(x))
+c(x)f(x)

= UNE +e0 2 f +R(x)f(x), where

(4(x) =] 2L - :f {« }] (the Laplacian) ,

Let I'=7" be the square of the geodesic distance of the point @ = (%, ..., x")
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from the point P=(0,..., 0). We have the well-known identity

(3-3) T=Fyo=f‘“'=f'i’:q=b¢5(0)x°x”,
bao(x)xn = bao(O)x" )
E\ i
{ z.j}:tc':v:’ =0,

Let @(I") be a function of I'=TI%,. Then, from
o0 _ do or 0 _ 4% or of |, do T

ox®  dI ox*° 09x%9x"  dI® ox® ox® ' dI ox*ox'’

we obtain

Got 2L L 4 9 ur g B o) 2L 4 ko).

3.4) (40)(x) =2 L2 2

alr2
The coefficients in this equation may be simplified as follows.” From (3.3)

yoo 2T
ox*ox®

From (3.3) and the definition of the Laplacian in (3.2),

= 4[)“6[)@5(0)27’77,3:(0))6: = 4b¢6baoxob‘ ‘:(O)xT = 4r-

AT =2b%b3(0) — 26™'x” —ab‘f,” + 6%x° Lb‘f;’ =2n+x" ﬂ)—goi .
ox' ox ox

The last equality may be obtained by differentiating the 2nd identity of (3.3) with
respect x* and summing on the indices a and 3:
8,5 Obso _
b*x® —a—;;’- = — %+ 5%be(0) .

Therefore we have
3.5) (A'0)(x)= 4r-ﬁ-+[2 +x° aéogb +2 "bw(O)x]d--{—k(D
Thus, by taking
(3.6) On(Trg) = ——2’?’~1<>g rre, (m=2),
75", N=(n-2)2(0)"*/T(n/2), (n=3),
we have

3.7 (A'0m)(x) = ;L{L(x ologb o by (0)x° )r‘2+klogr}, (n=2),
T

2 ox°
:N.{(Z;”)(xf’ag’gbw b2 )7 + BT, (n23)

1) We follow T. Y. Thomas and E. W. Titt: On the elementary solution of the general
linear differential equation of the second order with analytic coefficients, Journal de
Math., tome 18, 217-248 (1939).
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Hence (3.6) is a parametrix in the large of the operator (I —m™'A') in the follow-
ing sense. By the integral theorem of Green (dx =vVb(x) dx'. .. dx"), we
obtain

Lk(x)((l— m™A) ) (x)dx ~ j‘Df(x)((I— m AN h(x)dx
= m'ISD(f(x)(A’h)(x) - 1(x)(AF)(%))dx

o gl oh _,of

=—m Sap{fau hel +L/h}ds,
where » is the inner transversal direction defined by

dx’

e — =dy (n denotes the inner normal),
vo(x) b7(x) cos (n, x*)

and dS is the hypersurface element on the boundary 9D which surrounds the
point P=(0,..., 0), and L is a function continuous for P=(0,...,0). If we
take @m(Ipe) for h(x) and the geodesic sphere of radius ¢ and P=(0,..., 0)
as centre for oD, we obtain, in the limit,

(3.8) lim— m'IS = the value at P of the function f.
Y0 9D

This we prove, in view of (3.6), by taking the local coordinates in such a way

that 4;;(0) = 6;/—the geodesic coordinates at P. In this way, we have

2.9) [ Kulk )(T=m ) N(9)dy =0 + | Lnx, )1 (5)ay,
where
(3.10)  Kunlx, y) = Omlry, ), 7x, y = the geodesic distance of x and ¥,

and

(3.11) Ln(x, ) = ((I-m A" K%, ) is infinitely differentiable for x %y
and is, in the vicinity of x =y, of the order
(73ly, (n=2),
Ll-n o (na3).

§ 4. The integral representation of the resolvent I,,. We have, from (3.9),

(4.1) (Ing)(x) +LL»;(x, NI (Ndy = SRKm(x, »av)dy for geC(R).

This may be written as
(4.1) Inzg'}‘ Lindng = Kng.

Hence we have
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Ing + Lo King — LinIing) = Kng, that is,
Ing — L Ing = (Km— LuKn)g, where

(4.2) (Lig) (%) = 53{ SRL”‘(x’ 2)Lm(z, y)dz}g(y)dy,
(Lnkng)(%) = [ { [ Ln(x, 20Kz, )dz}g(v)ay.

Thus we obtain

Ing — L (LR Ing + Kin — LmKmg) = Kmg — LmKmg, that is,
Ing — L';:)Img= (Kom = LinKom + L}:)Km - L;;?Km)g.

Repeating the process, we obtain the integral equation of the form
(4.3) Ing — LY Ing = (Km—LnKm+ . . .)g.
Because of (3.10) and (3.11), we may take %k so large that

(4.4) Mn(x, ) =L¥(x, ») is continuous in (¥, ¥) and
Nulx, v} = (Kn — LmKm+ . . .) (x, ») is continuous for %y and
has the same order of singularity, for x =y, as Kmn(x, %) .

We have thus proved that ([,2)(x) must satisfy the integral equation
(4.5) (Lng)(x) — SRMm( %, Y)(Ing)(y)dy = SRNm(x, »e(y)dy.

By the continuity of the kernel Mn(x, ¥), we may apply the classical theory of
Fredholm to (4.5). Thus there exist a continuous kernel @x(x, ¥) and % func-
tionals ¢:(g), ¢:(g), ..., cw(g) such that

(4.6) (Img)(x) = SPAVm(x, y’)g(y)d.v
; .
+ SRQm(x, 2)dz { SRN""(Z’ y)g(y)dy} + _}gc.‘(g)%(x) ,

where ¢(x), ¢2(x), ..., ¢w(x) form the linearly independent base of the solu-
tions of the homogenous equations

4.7) SRMm(x, Pe(y)dy = ¢(x) .

Because of the lemmas 1-3, (I,2)(x) may, for fixed x, be considered as a
bounded linear functional of g&C(R). Hence we have

(4.8) ci(g) = jkﬂi(dy)g(y) ,

where p; are regular measures, countably additive for Borel sets E. These
measures must, for sufficiently large 2, be absolutely continuous with respect
to the measure dy, and with bounded measurable densities :
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(4.9) 1l E) = Lv,‘(y)dy, essential supremum | zi(y)| < .
; Yy
This we see from the lemma 4, viz. from

(4.10) lim RI hs(x)|dx =0 if lim RI((I—- m ™ Ahs) (%) dx=0.

s>

Summing up, we have obtained the result: for sufficiently large m,
(4.11) (Ing)(%) = SRpm(x, »ey)dv, geC(R),

with a kernel pm(x, ¥) enjoying the conditions :

(4.12) Dmlx, y) is measurable in (x, y),

D%, ¥) is continuous in x for fixed y*x=x,

Pmx, y) is, for x =3y, of the same order as Kn(x, y), viz.
(O (log7x,y), m=2

(%, 3} = loGED, nas.

§5. An application to the stochastic processes. We will consider the special
case of a symmeiric operator A:

(5.1) A=A,

Since the singularity of the resolvent kernel pm(x, ») is given by (4.12), we see
that its k-th iterated kernel pi;’f)(x, y) is, for sufficiently large k, a bounded
measurable function of (x, ). Thus, by Hilbert-Schmidt’s expansion theorem,
the Fourier series of the kernel py'(x. y) are absolutely and uniformly con-
vergent on the product space RxR. By virtue of this fact, we may prove”
that the series

(5.2) 3 Gi(x)gi(y)

T (1 —m™'2;)k

are, for sufficiently large k, absolutely and uniformly convergent on Rx R. Here
{¢i(x)} is a complete system of normal orthogonal eigenfunctions of the dif-
ferential operator A: ¢i(x) belonging to the eigenvalue i;.

Proof. Let ¢(x) be any eigenfunction of the operator In:
(5.3) T-mTA)"g=pp.
We define, by the function ¢(x), a distribution in the sense of Laurent Schwartz : ©
(5.4) 00 = p(x)s(nax, reDA).
% The same result is proved in other ways by K. Kodaira (unpublished) and by S. Mina-
kshsundarum and A. Pleijel: = Some properties of the eigenfunctions of the Laplace-

operator on Riemannian manifolds, Canadian Journal of Math,, Vol. 1, 242-256 (1950).
6) Schwartz: ibid.
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By virtue of (5.3), @ satisfies the differential equation in the sense of the
distribution:

(5.5) I-mA)o=yp""0.

Since (I—m™'A) is elliptic, there exists” an infinitely differentiable function
¢(x) such that

(5.6) ((I-m ' A)e)(x) = p (%), @(x) =¢(x)
almost everywhere with respect to the measure dx.

Therefore we may assume ¢(x) to be an eigenfunction of the differential oper-
ator A, belonging to the eigenvalue m(1—x7'):

(5.7) (Ap) (%) =m(1~p H¢(x).

It is easy to see that, conversely, any eigenfunction of (5.7), belonging to the
eigenvalue 2, is also an eigenfunction of (J—m™'A)7, viz. of the kernel pm(x,
), belonging to the eigenvalue (1—m™'2)7.

Therefore, by the absolute and uniform convergence of the Fourier series
of the kernel pﬁ,‘f”(x, »), we see that the Fourier series (5.2) converge absolutely
and uniformly on RxR.

If we assume the negativity of the eigenvalues 2 of A, which is surely
satisfied for the operator (5.11), we have

(5.8) : (A ~mt;) " <exp (—it) for ¢>0.
Thus, by (5.2), the series

(5.9) fjl exp ()i 2)i(3) = P4, %, )

are, for t> 0, absolutely and uniformly convergent on RXR.
Let us assume further that

(5.10) SRdx =1

and

(5.11) (AN)(x) = L .2

.. .2
Jalx) or (\/g(x) b"(x)“—f—).

ox’

Then we may prove the probability condition
(5.12) P(t, %, ¥) 20, SRP(t, % »dy=1.

Proof. The last equality is proved by the orthonormality of {¢i(x)} and
the fact that we may take ¢i(x) =1.

7 Schwartz : ibid.
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The proof of P(¢, x, y) 20 We have, for
(5.13) 1 ) = P, % 90y, 10 = Reigi(n),
the diffusion equation

(¢, x)

(5.14) LA = Auf(t, %) (#>0), strong lim f(t, %) =/(x).

Hence we have, for
(5.15) ge(t, x) = exp (—et)f (2, %),

the differential equation

(5.16) aL(att’—i)— = A:8(1, x) —ege(t, x), £(0, x) =1(0, x) =f(x).

Let e be >0 and let g(f, x) reach its minimum at the point (#, x1). Then we
have

(5.17) g(t, %)= mjnf(x) when 4 =0
20 when #=o0o or when 0<f<wo.
The first two inequalities are evident. For, we have
2:(0, x1) = £(0, %1) = mjnf(x) and ge( 0, x) =0.
Let 0<#< . Then, from

28t %) _ o (A,g)(t, 250 and (5.16),

we obtain g:(#, %) 20. Thus we have (5.17) and hence, by letting ¢ { 0,
(5.18) f(t, ) = min (0, min f(x)).

Therefore, by the denseness of f(x) in C(R), we must have P(f, x, y) 0.
Q.E.D.

We have thus proved that, under the conditions (5. 10) and (5. 11), the series

P(t, x, y) give the explicite expression for the transition probability of the tem-

porally homogeneous Markoff process, defined by the diffusion equation (5.14).

In concluding the paper, the author wishes to express his hearty thanks to Dr. Tosio
Kato for his friendly criticism of the original manuscript.

Mathematical Insiitute,
Nagoya University

37‘(5&. K. Yosida: Brownian motion on the surface of the 3-sphere, Ann. of Math. Statistics,
Vol. 20, 292-296 (1949).
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