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Summary
Optimisation of fertiliser use and site-specific nutrient management are increasingly becoming critical
because of the growing need to balance agricultural productivity with the growing demand for food
and environmental concerns. Trials to determine responses of crops to fertilisers have been widely
conducted in sub-Saharan Africa (SSA) with increasing emphasis on the development of economically
optimum rates (EORs). Computation of EORs depends on accurate estimation of both the optimum nutri-
ent rate and the agronomic maximum yield response; however, estimation of nutrient-response parameters
and EORs is beset by a number of problems. Therefore, the objectives of this paper were to (1) point out
common problems in the development and use of nutrient dose-response models and (2) provide corrective
measures to facilitate future trial design and data analysis. This review outlines the underlying assumptions,
strengths and limitations of the various response functions in order to facilitate informed choices by practi-
tioners. Using specific examples, it also shows that (1) the commonly used trial designs do not allow exami-
nation of interactions between two or more nutrients and (2) trial designs with ≤5 nutrient levels and wide
spacing between the levels result in large uncertainty in dose-response parameters. The key recommendations
emerging from the review are as follows: (1) factorial designs and response surface models should be used
more widely to address interactions between nutrients; (2) a minimum of six carefully spaced nutrient levels
should be used to correctly estimate dose-response parameters; and (3) when locating field trials, Reference
Soil Groups and cropping history should be carefully considered to produce site-specific EORs.
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Introduction
Optimisation of fertiliser use is increasingly becoming critical due to the growing need to balance
agricultural production with demand for nutritious food and global environmental concerns
(Giller 2020; Jones et al., 2013; Palm et al., 2017). This is particularly important in sub-
Saharan Africa (SSA), where fertiliser application rates have been historically low, nutrient deple-
tion rates are high, and deficiencies of macronutrients and micronutrients are now widespread
(Kihara et al., 2017, 2020). Fertiliser application rates often involve blanket recommendations
of nitrogen (N), phosphorus (P) and to a lesser extent of potassium (K) for a whole region
(Ichami et al., 2018; Snapp et al., 2003). This gradually exhausted soil nutrient reserves through
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nutrient mining, leading to imbalances and deficiencies of micronutrients and consequently poor
crop response to NPK fertiliser (Ichami et al., 2018; Kihara et al., 2017, 2020; Tamene et al., 2019).

Governments, international agricultural research institutions, and donors continue to invest in
fertiliser trials across SSA (Kaizzi et al., 2016; Snapp et al., 2003). Recent efforts in a number of
African countries have also led to the development of economically optimum nutrient rates
(EORs) and fertiliser optimisation tools (Kaizzi et al., 2016). All these efforts recognise that
site-specific nutrient management needs to be guided by robust nutrient dose-response models.
However, practitioners sometimes apply response functions that are not suitable for the data,
resulting in EORs that are at odds with existing N and P recommendations. For example, the
EOR was recently reported to be 6 kg N ha−1 against the recommended rate of 75 kg N ha−1

for a maize crop with an asymptotic yield of 3.7 t ha−1 in the Kenyan Rift Valley
(Supplementary Table S1). In the same area, EOR was estimated at 0 and 8 kg P ha−1 for a maize
crop with an asymptotic yield of 4.7 and 6.1 t ha−1, respectively (Supplementary Table S1).
Similarly, the EOR was reported to be 27 kg N ha−1 and 0 kg P ha−1 for a maize crop with an
asymptotic yield of 4.7 and 3.4 t ha−1, respectively, in the Central zone of Tanzania
(Supplementary Table S1). Close examination of these reports reveals that very low EOR values
are artefacts of errors in parameter estimation (Supplementary Table S1). Note that a 5 t ha−1

maize grain harvest requires the uptake of approximately 100 kg N ha−1, 24 kg P ha−1 and
85 kg K ha−1 (Nalivata et al., 2016). Against that background, all of the EORs in
Supplementary Table S1 may be too low to replace what is removed through crop harvest and
therefore speed up nutrient mining.

Derivation of EORs depends on accurate estimation of the optimum nutrient rate and the
maximum yield response, which often vary with the cultivar used, soil type and climate.
However, the following principles hold good in most situations (Soffe, 2011): (1) some yield
(Y0) is always obtained where no external nutrient has been applied, depending on the level of
indigenous nutrients in the soil; (2) there is a finite maximum agronomic yield (Ymax) which
is obtained from a certain level of nutrient input; and (3) Ymax is reached at a point where the
agronomic use efficiency of the nutrient is so low that further application would not result in yield
increase. Therefore, the EOR is found below the nutrient rate that gives Ymax depending on the
ratio of crop value to nutrient cost (Soffe, 2011). The EORs can also vary widely across a set of
response functions applied to the same dataset. The uncertainty associated with the estimation of
EORs is, however, often overlooked (Hernandez and Mulla, 2008; Morris et al., 2018). The
assumptions behind the different response functions and the disagreements among their predic-
tions have also received little attention (Cerrato and Blackmer, 1990).

Crop response can significantly vary from site to site or season to season within a site
(Albarenque et al., 2016; Xu et al., 2019), and striking examples are summarised in Figure 1.
Therefore, researchers face tremendous challenges in selecting a mathematical function suffi-
ciently general to avoid the need to develop separate models for each cropping season or soil type.
Most response functions require fitting nonlinear regression models whose solution space can be
discerned via trial and error (Archontoulis and Miguez, 2015). As such, it is often difficult to know
whether or not the estimated parameters represent the underlying reality (ibid.; Bachmaier and
Gandorfer, 2012). This is rarely appreciated by practitioners, and sometimes arbitrarily selected
models have been applied with over-confidence for development of EORs. Therefore, the objec-
tives of this paper were to (1) point out common problems in the development of dose-response
models and (2) provide corrective measures to facilitate future trial design and data analysis.

Methods
In 2016–2018, the author of this article facilitated a series of training workshops on the analysis of
data from trials for optimising fertiliser recommendations in a number of projects across south-
ern, eastern and western Africa. During these workshops, a number of critical problems were
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identified when analysing nutrient-response data. Motivated by this first-hand experience, the
author examined a number of legacy data on fertiliser response and undertook a critical review
of the literature on the subjects published between 2000 and 2020 across SSA. The data used
include maize yield response to N in Niger (from Maman et al., 2018), Malawi and Rwanda (from
Wortmann et al., 2018), Tanzania (from Senkoro et al., 2017) and Uganda (from Kaizzi et al.,
2012); wheat yield response to N in Tanzania and Rwanda (from Cyamweshi et al. 2018); barley
yield response to N (from Agegnehu et al., 2016) and P (from Abdulkadir et al. 2017) in Ethiopia;
and rice yield response to N, P and Zn in Nigeria (from Daudu et al., 2018) and Uganda (from
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Figure 1. Variability in maize grain yield with site and season in Uganda and (data from Kaizzi et al., 2012) and Tanzania
(data from Senkoro et al., 2017). The red lines in each figure represent yields that have not yet reached Ymax. The blue and
black lines represent yields that are declining or remaining constant after reaching their maximum, respectively.
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Kaizzi et al., 2014). In order to facilitate an informed choice, a brief overview of available response
functions is provided below, highlighting their underlying assumptions, strengths and weaknesses.
The performances of the different functions were also compared with re-analysis of published
datasets on maize, wheat, rice and barley yield responses to N and P from African countries.
The datasets were chosen because they represent the typical data used in developing nutrient
dose-response models in SSA. Wherever specific examples are cited in this article, they were
by no means intended to criticise the authors of the work but only to highlight the issues.

In addition, data on wheat yield response to N on two sites (Betzendorf and Wolfsdorf in
Germany) were extracted from Gandorfer and Rajsic (2008). These datasets were chosen because
they contain excellent data to the estimate parameters of most response functions (Figure 2) and
demonstrate some of the problems encountered in model fitting. The performances of the
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Figure 2. Wheat grain yield (Mg ha−1) response to increasing rates of applied N at the Wolfsdorf (a) and Betzendorf (b) sites,
(c) the estimated maximum agronomic yield (Ymax) and (d) the N rates that give the maximum yield (Xmax). The dotted
vertical grey lines represent the hypothesised boundaries of segments A, B and C. The vertical green lines represent
economically optimum rates (EORs) of 201 kg N ha−1 at Wolfsdorf and 109 kg N ha−1 at Betzendorf, calculated using
the quadratic model by Gandorfer and Rajsic (2008).
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different models were also compared in terms of the predicted maximum agronomic yield (Ymax)
and the nutrient rate (Xmax) that gives Ymax. Throughout this analysis, statistical inferences were
based on the 95% confidence limits (CLs). The width of the 95% CLs was used as a measure of
uncertainties around estimated values. Parameters were deemed unreliable when their CLs cover
both negative and positive values.

Common Problems and Corrective Measures
Choice of mathematical functions

The development of nutrient dose-response models involves choosing a mathematical function
that provides the most accurate prediction of crop response (e.g., yield Yi in t ha−1) using a range
of nutrient rates (Xi in kg ha−1). Typically, dose responses show the following patterns: (1) initially
Yi increases from Y0 (control yield) at an increasing rate with increase in Xi; (2) when an inflection
point is reached, Yi increases at a decreasing rate until Ymax is reached; and (3) after Ymax, Yi either
remains constant or decreases towards 0 if the nutrient rate is increased further. Decreases in Yi

after Ymax may occur due to toxicities, nutrient imbalances, salinity, lodging, increased suscepti-
bility to disease, or greater respiration (Agegnehu et al., 2012; Gill et al., 2004; Khan et al., 2014;
Kindred et al., 2014). For example, high N rates often cause lodging (Agegnehu et al., 2012),
whereas high rates of P induce zinc (Zn) deficiency, resulting in yield reduction in maize (Gill
et al., 2004). High potassium (K) rates, when applied as KCl, depress crop yields due to its high
salt index (Khan et al., 2014). The presence of excessive K in the soil can also result in magnesium
(Mg) and calcium (Ca) deficiencies. For example, use of high amounts of K fertilisers in sugarcane
induced Mg deficiency in South Africa (Rhodes et al., 2018). Accordingly, three segments may be
observed in the response domain, hereafter referred to as A, B and C (Figures 2a, 2b). Segment A
represents the region where a steep linear response occurs with incremental nutrient addition due
to the higher agronomic use efficiency (AUE) of applied nutrients (Soffe, 2003). AUE is normally
calculated as YN�YO

Nf
where YN is the grain yield (in kg ha−1) in the plot without nutrient limitation,

YO is the yield (in kg ha−1) in plots where the nutrient in question was omitted and Nf is the
nutrient input applied (in kg ha−1) (Ladha et al., 2005). Segment B represents the region where
the rate of response decreases and yield slowly reaches Ymax as AUE stagnates. Segment C repre-
sents the region where AUE decreases rapidly and yields either decline or remain the same with
further addition of nutrients. No single function can model these varying response patterns
adequately. Therefore, a variety of response functions have been developed by different workers.
The functions commonly used in SSA can be classified into four broad categories based on the
shape of the assumed curve: (1) linear, quadratic and square root functions; (2) response surface
functions; (3) asymptotic functions; and (4) plateau functions. Here, the underlying assumptions,
strengths and limitations of the various functions will be discussed to aid informed choice of func-
tions by practitioners.

Linear, quadratic and square root functions
The simple linear function is given as:

Y � b0 � b1X � ε (1)

where b0 is the intercept and b1 is the slope of the line, X is the nutrient rate, and ε is the random
error term. In studies in SSA, Cyamweshi et al. (2018), Daudu et al. (2018), Kaizzi et al. (2014),
Maman et al. (2018), Senkoro et al. (2018), Sereme et al. (2018) and Wortmann et al., (2018)
applied this function to derive nutrient-response models for various crops. The main advantage
of the linear function is that it is very easy to fit. Its main limitation is that it does not have Ymax

contrary to biological reality, and as such, EORs cannot be calculated. Another limitation of this
function is that a spurious linear fit can be found when the nutrient rate that achieves Ymax was not
included in the trial design. Therefore, this function should not be used at all in deriving EORs.
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The quadratic and square root functions are simple extensions of equation 1, the difference
being only in the last term in equation 2a. The quadratic function assumes a smooth linear
increase in response followed by a decrease in response with increasing nutrient rates.

Y � b0 � b1X � b2X
2 � ε (2a)

Equation 2a implies that there is a critical nutrient level (Xmax) that gives Ymax beyond which

yields decrease; Xmax is calculated as Xmax �
�b1
2b2

. A few authors (e.g., Agegnehu et al., 2015;

Kaizzi et al., 2014; Wortmann et al., 2018) have used equation 2a in SSA. The main strength
of the quadratic function is that it can realistically represent situations where inadequate, adequate
or excessive levels of nutrients have been used (Webb, 2009). The other advantage of the quadratic
function is that it provides an easy way to calculate the EOR (e.g., Bachmaier and Gandorfer, 2012;
Gandorfer and Rajsic, 2008; Webb, 2009). Its limitation is that it makes spurious predictions at the
extremes of the nutrient rates, and, as such, it may not be used for extrapolation beyond the
observed data. The extrapolation beyond the observed data depends on the crop and the nutrient.
For example, maize can support excessive N application rates while potatoes or wheat do not. It
has also been shown to consistently over-estimate both Xmax and the yield depression at high
nutrient rates (Cerrato and Blackmer, 1990).

Equation 2a can be reformulated as a square-root function as follows:

Y � b0 � b1X � b2
1=2 � ε (2b)

where b0, b1 and ε are defined as in equation 1 and b2 is the quadratic or square root coefficient

representing yield depression, and Xmax is calculated as Xmax �
b22

4b12
.

The square root function is a purely empirical function with no theoretical support. Its advan-
tage is the ease to fit it just like the quadratic function. Its disadvantage is that X and X1/2 are co-
linear. Therefore, b1 and b2 remain non-significant due to co-linearity.

Response surface functions
When two or more nutrients are considered simultaneously, the quadratic function can be
extended to response surface models. For example, where a factorial combination of N and P
has been tested, equation 2a can be extended as follows (Webb, 2009):

Y � b0 � b1N � b2P� b3N
2 � b4P

2 � b5NP (3)

where b0 is the intercept, b1 and b2 are the linear coefficients, b3 and b4 are the quadratic coef-
ficients, and b5 is the interaction coefficient. Similarly, where a factorial combination of three
nutrients (e.g., N, P and K) has been tested, equation 3a can be extended as follows:

Y � b0 � b1N � b2P� b3K � b4N2 � b5P2 � b6K2 � b7NP� b8NK � b9PK � b10NPK (4)

where b0 is the intercept, b1 to b3 are the linear coefficients, b4 to b6 are the quadratic coefficients,
and b7 to b10 are the interaction coefficients. A response surface function similar to equation 4 was
used by Akinnifesi et al. (2007) to determine N and P rates and total seasonal rainfall that opti-
mises maize yield response in Malawi. The advantage of these functions is that they can provide
insights into interactive effects between nutrients. Their limitation is that they require skills and
specialised software to fit and create the desired graphics.

Asymptotic family of functions
This family of functions includes the simple asymptotic and Mitscherlich functions, which assume
that dose responses follow Mitscherlich’s law of diminishing returns.
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The simple asymptotic function is used with the assumption that response to applied nutrients
diminishes with increasing application rates (Patterson, 1956). This has been the most frequently
used function in recent publications from SSA (e.g., Cyamweshi et al., 2018; Daudu et al., 2018;
Essel et al., 2020; Kaizzi et al., 2014, 2018; Maman et al., 2018; Senkoro et al., 2018; Wortmann
et al., 2018). This function has been erroneously reported as a ‘curvilinear to plateau’ in most of
these publications and as ‘asymptotic quadratic-plus-plateau’ in Essel et al. (2020), although it is
neither a plateau nor a quadratic response function. This function is given as:

Y � a � bcX (5)

where a is the asymptotic yield, b is the amplitude (yield increase due to nutrient application), and
c is the curvature coefficient (Patterson, 1956); a, b and c must all be positive. In the literature, a
large number of spurious values of a and b have been reported. For example, in the database used
in Tesfahunegn and Wortmann (2017), 1.9%, 6.1% and 25% of the b values for response to N, P
and K are≤ 0 (see the extreme values on the left-hand side of Supplementary Figure S1). Over
31% of c values for N and 65% of c values for P and K are significantly biased downward (c< 0.90).
Similarly, in Senkoro et al. (2017), 42% and 58% of the b values for response to P and K respec-
tively are≤ 0. Likewise, in Ndungu-Magiroi et al. (2017), 42% of the b values for response to K
are≤ 0. These are biased parameter estimates arising as artefacts of fitting the asymptotic function
to data for which it is not suited. A downward bias in c results in a significant downward bias in b
and the resultant EOR (see Supplementary Table S1).

The Mitscherlich function has been formulated variously by different workers (Ferreira et al.,
2017; Harmsen, 2000; Sorensen, 1983). The following is the notation commonly reported in the
literature:

Y � a 1 � exp �cX� �� �
(6a)

where a is the asymptotic yield and c is a parameter which controls the steepness of the relation-
ship between X and Y. This model predicts zero yield at zero nutrient input – that is, for X= 0,
Y0= 0 contrary to the first principle of response (Soffe, 2011) and empirical data (Figures 3 and 4).
It also tends to underestimate Ymax compared with the other formulations (Table 1).

A modification of this formulation as follows relaxes the constraint that Y= 0 for all X= 0 by
adding the parameter b to account for the indigenous nutrient available in the soil (Gomes, 1953):

Y � a 1 � exp �c X � b� �� �� �
(6b)

where a is the asymptotic yield, b represents the inherent soil nutrient (in kg ha−1), and c is defined
as in equation 6a. Thus, b is the estimated amount of the available amount of the nutrient in the
soil at the start of the experiment. Equation 6b is called the Mitscherlich-Baule function
(Harmsen, 2000).

Another modification of Mitscherlich function is given as follows (Sorensen, 1983):

Y � a 1 � b � exp �cX� �� �
(6c)

where a and c are defined as in 6a and b � 1 � Y0
a

� �
. When multiplied by 100, b represents the

percentage deficiency of the nutrient in question (Sorensen, 1983).
A third modification of the Mitscherlich function is given as follows (Dobermann et al., 1996).

Y � b� a 1 � exp �cX� �� �
(6d)

where a is the maximum yield increase due to applied nutrient (in t ha−1), b is the yield (in t ha−1)
under no nutrient input (i.e., Y0), and c is a constant related to the use efficiency of soil and fertil-
iser nutrients. Note that a in equation 6d is the same as b in equation 5.

When dose responses to factorial combinations of two nutrients (e.g., N and P) are modelled,
equation 6b can be modified as follows (Harmsen, 2000):
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Figure 3. Maize grain yield (Mg ha−1) response to application rates of N in Niger (from Maman et al., 2018); Tanzania (from
Senkoro et al., 2017); Uganda (from Kaizzi et al., 2012); Malawi, Zambia and Kenya (from Wortmann et al., 2018); and
Mozambique. The red lines in each figure represent yields that have not yet reached Ymax. The blue and black lines represent
yields that are declining or remaining constant after reaching their maximum, respectively.
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2018), and barley response (e–h) to application rates of N on Holetta and Robge sites (from Agegnehu et al., 2016), Welmera,
and on two soil types in Jimma (unpublished data) in Ethiopia, and response of rice to application rates of N in Nigeria
(from Daudu et al., 2018) and N in Uganda (from Kaizzi et al., 2014). The red lines in each figure represent yields that have
not yet reached their maximum (asymptote or plateau). The blue and black lines represent yields that are declining or
remaining constant after reaching their maximum, respectively.
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Y � a 1 � exp �cN bN � N� �� �� �
1 � exp �cP bP � P� �� �� �

(6e)

where a represent the asymptotic yield, bN and bP represent the indigenous soil available
N and P, and cN and cP quantify the increase in yield per unit of N and P applied. Van der
Velde et al. (2014) fitted this function to maize yield response to N and P across 741 locations
in Africa.

The main advantage of asymptotic functions is that they have a solid theoretical foundation
(Paine et al., 2012), and their parameters can be associated with biologically meaningful processes.
Second, they can be used for extrapolation outside the range of observed data (Archontoulis and
Miguez, 2015) because their predictions tend to be more robust than those of the linear and
quadratic functions. Their main limitation is that their parameters are estimated through an
approximate procedure that starts with best-guess initial values, adjusting parameters through
an iterative process. The algorithms often fail to converge with some data, depending on the
choice of initial values and the optimisation method (ibid.). Even when the algorithm converges,
it could fail to arrive at an optimal solution, and some parameters may still be biased (Tables 1
and 2; Supplementary Figure S2). As such all parameters are treated as approximate values.

Plateau functions
Plateau functions follow the von Liebig’s law of the minimum where dose response is assumed
to increase linearly until the nutrient reaches a critical dose and a ‘plateau’ is reached after
this point (Ferreira et al., 2017). This pattern may be described by either a linear-plateau or

Table 1. Differences in parameter estimates with different formulations of the asymptotic family of functions. Data on
wheat response to N at the Wolfsdorf site in Germany were used to illustrate the differences

Functions a (95% CL) b (95% CL) c (95% CL) R2 (pseudo) AIC

Simple asymptotic
Equation 5 9.2 (8.7; 9.7) 4.5 (4.1; 5.0) 0.990 (0.988; 0.993) 0.999 9.8
Mitscherlich
Equation 6a 8.2 (4.0; 12.5) NA 0.030 (−0.044; 0.105) −1.05 25.8
Equation 6b 9.2 (8.7; 9.7) 73.0 (58.5; 87.5) 0.010 (0.007; 0.012) 0.999 9.8
Equation 6c 9.2 (8.7; 9.7) 0.50 (0.47; 0.52) 0.010 (0.007; 0.012) 0.999 9.8
Equation 6d 4.5 (4.1; 5.0) 4.6 (4.5; 4.8) 0.010 (0.007; 0.012) 0.999 9.8

Values in red represent parameters estimated with large uncertainty (i.e., 95% CLs covering negative and positive values).
AIC = Akaike information criterion.

Table 2. Effect of trial design on the uncertainty around parameter estimates of the asymptotic function (equation 5)

Site Scenario (Xi)† DF‡
Asymptote (a)

(95% CL)
Amplitude (b)

(95% CL)
Curvature (c)
(95% CL) R2 (pseudo) AIC#

Wolfsdorf 1 (Xi= 6) 3 9.2 (8.7; 9.7) 4.5 (4.1; 5.0) 0.990 (0.988; 0.993) 0.999 9.8
2 (Xi= 5) 2 9.3 (8.0; 10.5) 4.6 (3.4; 5.8) 0.991 (0.986; 0.996) 0.999 NE
3 (Xi= 4) 1 9.6 (−0.2; 19.5) 5.0 (−4.6; 14.5) 0.992 (0.966; 1.018) 0.999 NE
4 (Xi= 4) 1 9.1 (8.8; 9.4) 4.4 (4.1; 4.7) 0.990 (0.988; 0.991) 1.000 NE

Betzendorf 1 (Xi= 6) 3 6.5 (5.7; 7.3) 1.9 (1.1; 2.8) 0.986 (0.971; 1.002) 0.966 22.4
2 (Xi= 5) 2 7.0 (5.0; 9.1) 2.5 (0.6; 4.4) 0.991 (0.978; 1.004) 0.991 NE
3 (Xi= 4) 1 7.7 (−17.3; 32.7) 3.1 (−21.3; 27.6) 0.994 (0.923; 1.064) 0.991 NE
4 (Xi= 4) 1 6.3 (4.4; 8.3) 1.7 (−0.7; 4.1) 0.981 (0.902; 1.060) 0.992 NE

†The Xi represents the sample size, which is N rates in this case.
‡DF = degrees of freedom.
#AIC = Akaike information criterion; NE = not estimable due to fewer degrees of freedom.Values in red represent parameters estimated with
large uncertainty (i.e., 95% CLs covering negative and positive values).
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quadratic-plateau function. The linear-plateau function implies a region of linear response
followed by a plateau (Anderson and Nelson, 1975) as follows:

Y � b0 � b1X � ε if X < Xmax

Ymax � ε if X ≥ Xmax

�
(7)

where b0, b1 and ε are defined as in equations 1 and 2, Ymax is the plateau yield, and Xmax is the
‘join point’ (i.e., the critical point after which increase in nutrient rates can no longer increase
yields). Zheng et al. (2018) applied this function to determine the optimal soil inorganic N avail-
ability to maize in Tanzania.

The quadratic-plateau model implies a region of quadratic response followed by a plateau
(Anderson and Nelson, 1975; Bullock and Bullock, 1994) when the curve reaches its maximum
point.

Y � b0 � b1X � b2X
2 � ε if X < Xmax

Ymax � ε if X ≥ Xmax

�
(8a)

where b0, b1, b2 and ε are defined as in equation 2a and Ymax and Xmax are defined as in equation 7.

The join point (Xmax) is related to b1 and b2 as Xt �
�b1
2b2

just like the critical nutrient level in

equation 2a. Similarly, Ymax is related to b0, b1 and b2 as Ymax � b0 � b21
4b2
. By substituting Ymax

in equation 8a, the quadratic-plateau function can also be reparametrised as follows:

Y � b0 � b1X � b2X2 if X < Xmax

b0 � b21
4b2

if X ≥ Xmax

(
(8b)

The main advantage of plateau functions is that they have a solid theoretical foundation
grounded in von Liebig’s law. Their main limitation is that they are more difficult to solve because
their parameters have to be estimated using nonlinear optimisation. Another limitation is that the
linear-plateau functions result in lower optima compared with the other functions (Alivelu et al.,
2003; Figure 2). The quadratic plateau function failed to converge in all datasets analysed in
Supplementary Table S2.

Parameter estimation and model evaluation

All model parameters including Ymax and Xmax are random variates, and as such, they are subject
to various sources of error. Ymax, Xmax can differ widely depending on the trial design and the
choice of the response function (Figures 2c, 2d). Failure of the algorithms to converge was
one of the common problems encountered during the training workshops. This has been reported
widely for the asymptotic function in Cyamweshi et al. (2018), Daudu et al. (2018), Kaizzi et al.
(2012), Maman et al. (2018), Senkoro et al. (2017), andWortmann et al. (2018). Non-convergence
was often caused by inadequate data, incorrect initial parameter values and choice of the mini-
misation algorithm (Archontoulis and Miguez, 2015).

Data are said to be inadequate if information is available only for a limited interval of the
response domain and/or the sample size is small (e.g., Xi≤ 5) relative to 3–4 parameters to be
estimated in most equations. This is particularly true for nonlinear functions (equations 5–8),
whose parameters are computed using asymptotic formulae. The software commonly used in
recent publications uses the Levenberg-Marquardt-Nash (LMN) algorithm. Unless the starting
values are very good, the LMN algorithm takes large, uncontrolled steps and fails to converge.
When the algorithm for the asymptotic function failed to converge, some researchers
(e.g., Cyamweshi et al., 2018; Daudu et al., 2018; Kaizzi et al., 2014; Maman et al., 2018;
Senkoro et al., 2018; Sereme et al., 2017; Wortmann et al., 2018) have fitted linear models.
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This is inappropriate because a linear model does not yield Ymax and Xmax; hence, no EOR can be
determined. A more appropriate option is to use another model suited to the data at hand from
the set of models given in equations 2–8.

Although rigorous evaluation is an important element of model development, the R2 was the
only metric used to judge the performance of dose-response functions in many publications from
SSA. Even when they have the same R2 values, models can widely differ in their estimates of Ymax,
Xmax, and EORs (Tables 1 and 2; Figure 2). The R2 is inappropriate for assessing the performance
of nonlinear models (Bachmaier and Gandorfer, 2012; Cerrato and Blackmer, 1990; Spiess and
Neumeyer, 2010) or for comparisons among linear, quadratic and nonlinear models. In nonlinear
regression, the residual variance and explained variance do not add up to total variance. As such,
the R2 does not necessarily fall between 0 and 1; it can take a negative value in nonlinear models
(see Table 1 and Supplementary Table S2). That is why the R2 is called ‘pseudo R2’. It can also
remain close to 1.0 even when the model is poor and thus unable to distinguish between bad and
good models (Tables 1 and 2). This property has also been demonstrated by Spiess and Neumeyer
(2010), who compared the R2, the bias-corrected Akaike information criterion (AIC) and Bayesian
information criterion (BIC) using a predetermined log-logistic model with known parameters
(i.e., the correct model) and nine other sigmoid models differing in their numbers of parameters.
After performing thousands of simulations, Spiess and Neumeyer (2010) demonstrated that the
R2 results in choice of the correct model only in 28–43% of the time.

The most important steps in evaluation of models involve the examination of the omnibus test,
the significance of model coefficients, and the goodness-of-fit statistics. If the omnibus test is not
significant, one or more of the parameters are likely to be nonsignificant, and the whole model
may be useless for prediction. The significance of model coefficients should be judged by their 95%
CLs. If the CLs cover negative and positive values, the estimate is unreliable (see parameters in red
in Tables 1 and 2). When selecting the best model from a cohort of models, the sample corrected
Akaike information criterion (AICc) is the most appropriate metric (Spiess and Neumeyer, 2010).
However, for trial designs with Xi≤ 5, the AICc cannot be estimated because the degrees of free-
dom are fewer (see Table 2; Supplementary Figure S2) relative to the parameters (p) to be esti-
mated and the denominator (N-p−1) in equation 9 becomes zero. As a result, the AICc is
undefined.

AICc � AIC� 2p p� 1
� �

N � p � 1
(9)

where N = sample size (Xi) and p = number of parameters.

Trial design issues

During the series of training workshops facilitated by the author and data from the literature,
dose-response models could not be fitted in many instances due to the limitations of the trial
design. The common problems are briefly summarised below.

Inadequate control of interactions between nutrients
Interactions between nutrients (Aulakh and Malhi, 2005; Rhodes et al., 2018; Rietra et al., 2017)
and co-limitation are common in nature (ibid.; Tamene et al., 2019; Weil, 2017). Interaction
among plant nutrients can yield antagonistic or synergistic outcomes that influence nutrient
use efficiency (Rietra et al., 2017). For example, significant interactions exist between applied
N, P, K, sulphur and Zn, and these interactions are often synergistic (Aulakh and Malhi,
2005). Ca, Mg and K show antagonistic interactions such that high levels of one or more of these
nutrients in the soil can result in decreased uptake of the other (Rhodes et al., 2018; Rietra et al.,
2017). Therefore, dose response of K can only be determined using factorial designs that have
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carefully balanced Ca, Mg and K taking into account their concentrations in the exchangeable
complex. In most studies reviewed, truly factorial trial designs were not applied; many studies
varied one macronutrient (mostly N or P) holding the other nutrient constant. Some studies held
only N and P rates constant when determining the dose response for K (e.g., Ndungu-Magiroi
et al., 2017; Senkoro et al., 2017). Due to nutrient interactions and the confounding effects of
indigenous soil supply, sometimes unusual patterns of response may be observed such as those
on the Selian site in Figures 1b, 4a, and 4b. The negative parameter values for K response and
decline in sole maize yield with increase in K rate on the low potential site in Kenya
(e.g., Figure 2 in Ndungu-Magiroi et al., 2017) are also indicative of such problems.

Inadequate definition of the response domain
The response domain is the Xi range in which the function is valid – that is, where segment A–C
can be observed (Figure 2a, 2b). However, in many trials, nutrient application was limited within
segment A–B – that is, the linear part of the response function (Figures 3–4). In some studies, high
nutrient rates were deliberately excluded from the trial designs as these rates were considered
uneconomical a priori. For example, the maximum N rate for maize was 75 kg N ha−1 in the
FURP trials in Kenya (KARI, 1994). This represents a severe case of truncation of the response
domain. In the most recent fertiliser optimisation trials for maize, wheat, barley and rice across
SSA (Cyamweshi et al., 2018; Maman et al., 2018; Wortmann et al., 2018), the maximum N rate
was set at 120 kg N ha−1 although these cereals positively respond to up to 200 kg N ha−1

(Figures 3 and 4). This means that N rates were limited to segment A and Ymax was not achieved
on many sites (represented by red lines in Figures 3 and 4). If the trial design does not cover
segments A–C, model parameters cannot be determined correctly (see below).

On inherently fertile sites such as Dareda and Selian in Tanzania (e.g., Figures 1b, 3b), Musanze
(Figures 3d, 4c) and Gahunga (Figure 4d) in Rwanda, and Eldoret in Kenya (Figure 3g), initial
yield increases due to external nutrient inputs may not be rapid because the high level of indige-
nous soil nutrients has already raised the curve beyond the inflection point. On such sites, nutrient
rates need to be increased further to reach Ymax and allow accurate estimation of the EOR.

Inadequate number and spacing of nutrient levels
The number and spacing of Xi in the trial design can affect the quality of the final model to predict
responses accurately. In most trials, four or five equally spaced nutrient levels were used
(Figures 1, 3–4). When Xi< 6, the algorithm may fail to converge, model parameters may be
biased or can have large uncertainty due to the inadequate degrees of freedom. When the design
involves wide spacing of nutrient levels, especially in segment A (e.g., 0 and 50 kg N ha−1 in
Figure 1a), it may not be possible to capture the inflection points between segments A and B
and hence large uncertainty (very wide confidence limits) in parameter estimations and predic-
tions may occur (see the Abongomola and Kwera sites Supplementary Figure 2).

To demonstrate this point, the wheat yield data from Wolfsdorf and Betzendorf were
re-analysed assuming five scenarios. Scenario 1 represents the complete data where the
response domain covers segments A–C. Scenario 2 was created by excluding the highest rate
(200 kg N ha−1), and Scenario 3 by excluding the two high rates (160 and 200 kg N a−1) to repre-
sent a design where only segments A–B were covered. This is similar to most designs in
recent publications (Figures 3 and 4). In addition, Scenario 4 was created by removing 40 and
160 kg N ha−1 to represent a trial design with wider spacing between levels similar to the one
in Figure 1a. I fitted the commonly used asymptotic function (equation 5) to analyse these data
and a dataset from Uganda collected using the same design as Figure 1a (Supplementary
Figure S2).
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These analyses revealed striking differences in parameter estimates between scenarios
(Table 2). With removal of the higher N rates, a and bwere biased upwards, with increasing uncer-
tainty (wider 95% CLs) of the parameter from Scenario 1 to Scenario 3 (Table 2). Scenario 4 on the
other hand led to downward bias of a and b (Table 2). The small sample size (Xi= 4) and inade-
quate spacings of the Xi (e.g., in the data from Uganda) were responsible for the poor parameter
estimates and large uncertainties in predictions of yield (Supplementary Figure S2a). These results
highlight the fact that trial designs with truncation of Xi and wide spacing can produce biased
estimates of model parameters of the asymptotic functions and subsequent EORs. Therefore,
I recommend a minimum of six carefully spaced nutrient levels with closer spacing in segments
A–B (where responses are expected to change rapidly), and wider spacing in segments C (where
responses change slowly). Although one may not know the limits of segments A, B and C a priori,
it is possible to define these segments based on earlier reports or data (e.g., Figures 1, 3 and 4).

Inadequate consideration of soil type in trial design
Soil type, which varies widely across SSA (Jones et al., 2013), plays a key role in crop yield response
(Elias et al., 2019; Kihara et al., 2017; Sileshi et al., 2010), nutrient use efficiency (Sileshi et al.,
2019), and the profitability of fertiliser use (Kihara et al., 2020). Figure 1 highlights differences
in response that may be associated with soil type. For example, response to applied N is still
increasing at Kapchorwa and Dareda located on Nitisols and Phaeozems, respectively, soils which
are ranked excellent for maize. On the other hand, yields have levelled off at Bulindi located on
Ferralsols, Kawanda, Ngetta and Tororo located on Plinthosols, which are ranked as marginal for
maize cultivation (see page 45 in the harmonised soil atlas of Africa; Jones et al., 2013). In the
literature reviewed, most of the nutrient dose-response models were developed without sufficient
information on the soil type and the inherent soil nutrient supply. The size of Y0 and Ymax depends
on the indigenous nutrient available in the soil, which in turn depends on the soil type. For exam-
ple, Andosols, Cambisols, Chernozems, Fluvisols, Luvisols, Nitisols, Phaeozems, and Vertisols are
considered ‘excellent’ soils for maize production (Jones et al., 2013), achieving high values of Y0 in
SSA. On the other hand, Ferralsols, Acrisols, Alisols, Arenosols, Leptosols, Lixisols and
Plinthosols, which are considered ‘marginal’ or ‘poor’ (Jones et al., 2013) often achieve very
low values of Y0. It must also be noted a huge variation in the content of total and available
N, P and K within a soil reference group. For example, the availability of P may vary across
and within the same soil group (Batjes, 2011). In addition, the availability of mineral N in the
soil during the crop cycle may depend on the cropping history or the land use. For example, with
repeated cultivation yield declines more rapidly on Acrisols and Ferralsols than on Cambisols;
the rate of decline depending on soil cover (Sileshi et al., 2010). Therefore, interpreting fertiliser
treatments without taking into account sites which have different soil types, cropping history and
properties may generate conclusive results (Elias et al., 2019). In future, nutrient-response trials
should be designed taking into account the predominant soil types, agroecology, land use and
cropping history in an area. It is strongly recommended that Reference Soil Groups (IUSS
Working Group WRB, 2014) and cropping history be carefully considered when establishing
nutrient-response trials.

Knowledge of the gap between the nutrients provided by the inherent soil supply and the crop
demand is also crucial when establishing fertiliser trials. If the site is inherently fertile, the response
to nutrient inputs will be small. Thus, at low nutrient input levels, responses may be too small and
the EOR may not be correctly determined. For example, the control yields were already very high
(>3 t ha−1) on the Selian site in Tanzania, which was located on Chernozems – one of the most
productive soil in SSA (Figure 1b). Thus, the maximum rate of 120 kg N ha−1 applied to maize was
probably too low to determine Ymax as the inherent soil nutrient supply was probably sufficient
to sustain yields >3 t ha−1. On such sites, unless the trial design included higher nutrient rates
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(e.g., ≥200 kg N ha−1), it may not be possible to establish the underlying crop response curve
(Figure 1b; Supplementary Table S2).

Conclusions
The review and analyses have demonstrated that the choice of inappropriate response functions
and inadequate trial designs can create uncertainty around model parameters and EORs. If the
objective is to determine response to a single nutrient, the modified Mitscherlich function should
be used in preference to the other functions as it provides additional information on the propor-
tional deficiency of the nutrient in question and the expected yield in the no-input control. In any
case, the choice of any given functions should be justified using the AICc criterion. In the past,
fertiliser trials have focused on the response of one nutrient by holding the other nutrient
constant. The use of factorial designs is recommended to address interactions between two or
more nutrients. When dose responses to factorial combinations of two nutrients are modelled,
the recommended functions are equations 3 and 6e. Where response to three or more nutrients
is to be modelled, the recommended function is equation 4. It is also recommended that a mini-
mum of six carefully spaced nutrient levels be used for proper estimation of EORs. In addition,
Reference Soil Groups and cropping history should be carefully considered when locating field
trials.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S0014479721000193
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