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REAL INTERPOLATION OF SOBOLEV SPACES ON 
SUBDOMAINS OF R" 

R. A. ADAMS AND J. J. F. FOURNIER 

1. I n t r o d u c t i o n . The real interpolation method is a very convenient tool 
in the s tudy of imbedding relationships among Sobolev spaces and some of their 
fractional order generalizations, (Besov spaces, Nikolskii spaces etc.) Central 
to the application of these methods is the a priori de terminat ion t h a t a given 
Sobolev space Wk'p(Sl) belongs to an appropr ia te class of spaces intermediate 
between two other "ex t r eme" spaces. Of special interest are interpolations 
involving only one of the parameters k and p\ for interpolat ion on order of 
smoothness, k, we want to know tha t Wk,p{Q) is "sui tably in te rmedia te" (see 
Section 3 for precise definition) between, say, LP(Q) and Wm'p{Çl) where 0 < 
k < m, while for interpolation on order of summabil i ty , p, we want to know 
tha t Wk'p(tt) is "sui tably in te rmedia te" between, say, WktP1(ti) and WkiP2(Q) 
where pi < p < pi. 

Let us denote by || • ||p = || • \\v^ the norm in Lp(ti), and by || • H*,;, = 
|| • ||,fctPin the norm in Wk>p(Q): 

IHI*., = { z \\Dau\\/ 

(See Adams [1] for details.) Involved in the ma t t e r of interpolation on order 
of smoothness is the following approximation quest ion: does there exist a 
constant C, and for every function u in Wk'p(£l) and every number € > 0 a 
function ut in Wm'p(£l), such tha t 

\\u - ue\\p S C ek\\u\\ktP, a n d | |we | |m ,p ^ C ek-m\\u\\k>p? 

If 12 = R77 the answer is fairly evidently "yes" . In Section 2 below we provide 
an affirmative answer for a class of domains satisfying a "smooth cone property . ' ' 

Involved in the mat te r of interpolation on order of summabi l i ty is the 
following "lifting" question: given k does there exist a linear operator R defined 
on l ï j a i ^ Lioc

l(£l) into L^ÇSl) such t ha t R is bounded on I I ^ i ^ Lp(il) into 
Wk'p(tt) for 1 < p < oo, and such t ha t Rv = u if u belongs to WktP(Q) and 
v = {Dau} |ai^-? Again it is not difficult to construct such a lifting R for & = 
Rw, and in Section 6 we construct one for 12 with the smooth cone proper ty . 
Unfortunately, this operator does not map I I («i^ Ll(Q) into Wk,1(Çl). How
ever, if 12 is a homogeneous space with respect to its intrinsic metric (see Section 
2 for details) we can conclude t ha t Rv belongs to Wk,1(Q) provided tha t v 
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SOBOLEV SPACES 191 

belongs to I l | a | ^ Ll(tt)} and, in addition, va belongs to the Hardy space Hl(Q) 
whenever |a| = k. 

Section 2 of this paper is devoted to a description of the smooth cone 
property and related regularity conditions on domains 12 C Rn, and to precise 
formulations of the approximation and lifting theorems. Section 3 presents 
a brief discussion of the real interpolation method and proceeds to application 
of the method in the theory of Sobolev, Besov, and Sobolev-Lorentz spaces 
defined over domains with the smooth cone property. Section 4 is concerned 
with applications of the interpolation theory yielding sharp imbeddings of 
these spaces into spaces of continuous functions satisfying fractional Lipschitz 
conditions (Holder conditions) with respect to the intrinsic metric of the do
main. The approximation and lifting theorems are proved in Sections 5 and 6 
respectively. Some specific examples of domains with various properties are 
discussed in Section 7. 

The present paper should be compared with the paper [14] by Peetre, and 
the series of papers [11; 12; 13] by Muramatu . We follow Peetre in using 
interpolation to derive imbedding theorems for Sobolev spaces from imbedding 
theorems for certain Besov spaces; in doing this we do not need the various 
intrinsic characterizations of Besov spaces. Like Muramatu , we consider 
Sobolev spaces on subdomains of R72; most of his work, however, is concerned 
with properties of Besov spaces on such domains, whereas our main goal is 
to obtain sharp imbedding theorems for Sobolev spaces. We feel tha t the 
methods we use in this paper are natural and direct; moreover we are able to 
deal with a wider class of domains than Muramatu or Peetre. 

Note tha t throughout the paper C is used to denote various constants which 
change from line to line. 

2. T h e s m o o t h c o n e property. Throughout this work 12 shall denote a 
domain, tha t is, an open, not necessarily connected set in real Euclidean 
w-space, Rw. We shall denote by a?00 (12) the class of all infinitely smooth vector 
fields $ o n 12 with values in Kn such tha t , for each multi-index a, sup^n \Da$(x)\ 
is finite. Given e > 0 and x in 12 we consider the finite "cone" 

C e (x ;$ ) = U Bn(x + ri*(x)), 

where Bv(y) is the open ball of radius 77 centred at y. (If |3>(x)| > 1 then 
Ce(x; $ ) is conical; if | $ ( x ) | ^ 1 it is just the ball Be(x + e$ (x ) ) . ) Evident ly 
C€(x\ $ ) C Be(1+{^{l)(x), where | | $ | | = sup z €n|$(*0 | . 

We shall say tha t 12 has the smooth cone property if there exists $ in ^°°(12) 
and e > 0 such tha t Ce(x; $ ) C 12 for every x in 12. We shall always assume tha t 
6 = 1 since we can arrange this by dilating 12. 

I t is useful to compare the smooth cone property with certain other cone 
properties to be found in the l i terature on Sobolev spaces. I t is evidently 
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stronger than the ordinary cone property which asserts that each x in 12 should 
be the vertex of a finite cone Cx of fixed dimensions contained in 12. For the 
smooth cone property the cones Cx must vary smoothly from point to point. 
Muramatu [13, p. 328] uses a smooth cone condition in his approach to Sobolev 
and Besov spaces over domains 12, but his version requires that the generating 
field $ belong to â§œ(Rn) rather than just â?œ(12). This condition forces 12 to 
lie on only one side of its boundary. In contrast, a domain with the smooth 
cone property can lie on both sides of its boundary. We shall give an example 
of such a domain in Section 7. For all of our results below we could weaken the 
assumption on <£ so as to require the continuity and boundedness of derivatives 
Da$(x) for |a| S m (i.e. $ G 3§m(Q)) for suitably chosen m. 

We remark here that there is a measure theoretic (nongeometric) version of 
the cone property which is slightly wreaker than the ordinary cone property 
but is still sufficient to establish certain imbedding and interpolation results 
for Sobolev spaces. (See [2].) This weak cone property requires the existence of 
a positive number ô such that for every x in 12 the "cone" T(x) = {y G B\(x): 
segment [x, y] C 12} has measure not less than <5. 

Because a domain with the smooth cone property may lie on both sides of 
an (n — 1)-dimensional part of its boundary, the Euclidean metric in R" is not 
appropriate for determining the closeness of points in 12. We use the intrinsic 
metric p: if x and y are in 12 then p(x, y) is the infimum of the lengths of piece-
wise smooth arcs in 12 joining x to y. (Of course p(x, y) = + co if x and y do not 
lie in the same connected component of 12.) An essential part of our proof of 
the lifting theorem is based on certain properties of the Hardy space Hl(Q). 
(See Coifman and Weiss [7].) These properties are in turn obtained under the 
assumption that 12 is a space of homogeneous type with respect to the intrinsic 
metric. This homogeneity condition asserts that for every positive real number 
r and every point x in 12, 

(2.1) M(S2f(*)) ^ Cn(Sr(x)) 

where /x is Lebesgue measure, Sr(x) is the intrinsic ball {y Ç 12 : p(x, y) < r}, 
and C is a constant independent of r and x. If 12 has the ordinary cone property, 
then (2.1) holds for small r\ so any such domain that is bounded relative to its 
intrinsic metric is of homogeneous type. A domain that is bounded relative to 
the Euclidean metric need not be bounded relative to its intrinsic metric, be
cause it need not be connected, but any such domain with the cone property is 
of homogeneous type, because it is a union of finitely many intrinsically 
bounded components. Exterior domains (i.e., those with bounded complements) 
having the cone property are also of homogeneous type. Finally, if 12 is any 
domain with the cone property and Q is a bounded subset of 12 then there is 
a bounded domain 12x with the cone property (and hence of homogeneous type) 
such that Ç C 12i C 12. (Specifically, 12i = {JX^Q CX) ; this observation will play 
an important role in the proof of the lifting theorem. 

We now give precise formulations of the approximation and lifting theorems. 
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\U€\j,p ^ ) r'
lk-f 

T H E O R E M 1. (Approximation Theorem) Let Q be a domain in Kv having the 
smooth cone property. Let 1 :g p < oo and let k and m be integers with 0 < k < m. 
There exists a constant C depending on the numbers n, p, k, and m, and on the 
vector field <£ providing the smooth cone property, such that for each e with 0 < e ^ 1 
and each u in Wk,p(Q) there exists ue in Wm,p(Q) satisfying 

\\u - ut\\p ^ C ek\\u\\ktV, 

and 

\\u<\\m,v ^ C ek~m\\u\\ktP. 

Remark. In our proof of the approximation theorem for domains with the 
smooth cone property we will actually establish slightly stronger estimates 
for u€1 namely 

\\u - ue\\P ^ C ek\u\ktP1 

and 

ÏC\\u\\klP ifO û j Û k - 1 
{Cek~j \u\k,p if k Sj û m, 

where \u\jtP = \u\jtPtn denotes the seminorm {J2\a\=j\\Dau\\/}l/p. The weaker 
inequalities, as stated in the theorem, are what we need for our applications, 
and in Section 7 we shall see an example of a domain not having the smooth 
cone property, but for which these inequalities still obtain. 

T H E O R E M 2. (Lifting Theorem) Let Q be a domain in Kn having the smooth 
cone property, and let k be a positive integer. There exists a linear operator Rfrom 
r i |« |^ / . L ioc 1 ^) into Ljoe1 (12) such that R({Dau} \a\^k) = u for every u in C°°(Î2), 
and such that for each real p with 1 < p < GO , R is bounded from FI|a|^A- LP(Q) 
into Wk'p(ti). If, in addition, 12 is of homogeneous type with respect to its intrinsic 
metric, then R is also bounded from (J\\a\<k Ll(Q)) X ( I I | a | = Â . H1^)) into 
WkA(ti). 

Remark. If D is the map u •—•» {Dau\ \a\^k the lifting theorem implies t ha t 
RD is the identi ty map on Wk'p(tt) for 1 < p < oo . 

3. Real in terpo la t ion of Sobolev spaces . We begin by recalling the ele
ments of the real interpolation method of Lions and Peetre. (A good reference 
for the fundamentals of this method is Butzer and Berens [4].) 

Given a pair of Banach spaces BQ and B\ with respective norms || • ||0 and 
|| • | | i , each continuously imbedded in the same topological vector space, the 
real interpolation methods associate with each pair of numbers 6 and q satis
fying 0 < 6 < 1 and 1 ^ q ^ oo , a Banach space (Bo, Bi)e,q intermediate 
between BQ and B\ such tha t if C0 and d form another such pair, and T is a 
linear operator mapping Bt boundedly into Ct with norm Mu (i = 0, 1), then 
T maps (BQ, B\)QIQ boundedly into (Co, Ci)e,q with norm at most Mol~~eMie. 
There are several methods for defining (B0, Bi)otQ, all leading to the same 
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spaces with equivalent norms. Two of these (the K method and the J method) 

involve the following function norms: for u Ç B0 + B\ and / £ R + , 

K(t, it) = inf {||w0||o + ^||wi||i : u = UQ + uu ^o £ BQi u} G BJ ; 

and for u £ B0 H Bx and t £ R+, 

J(t, u) = max (||w||o, £ |M| i ) . 

The intermediate space (B0, Bi)e,Q consists of those u £ B0 + Bi for which 
the norm 

1 sup t~eK(t, u) if q = oo 

(t K(t,u))q — > if g < oo U 
is finite, or, equivalently, those u £ B0 + Bi representable in the form (Banach 

space valued integral) 

fOT alt 
(3.2) u= u{t)-l~ 

J o £ 
with w(0 g BQ C\ Bi for all / > 0, for which the norm 

I sup / V(£, u(i)) if g = GO 

{{X 
(3.3) \\u\\9,* = inf W f<» . d ^ i / * 

w ' ( rV(f ,M(0)) 'y} if<?<oo 

is finite, the infimum being taken over all representat ions of u in the form (3.2). 
Then (i30, B\)e,q is a Banach space with respect to either of the equivalent 
norms (3.1) and (3.3). Moreover, (Bo, Bi)e,qi C (B0, Bi)e,q2 if 1 è q_\ ^ q<i ̂  
oo . (We consistently use the symbol C to denote continuous injection, t ha t is, 
imbedding.) 

A Banach space B is said to belong to the class f (6;B0, Bx) if (BQ,Bi)e,\ C B; 
t ha t is, if 

(3.4) \\u\\B ^ Ct~eJ(t, u) for all i in R+ and u in BQ r\ Bx. 

B belongs to the class j f (0; BQ, Bx) if £ C (BQy Bi)e,œ; t h a t is, if 

(3.5) K(t, u) S Cle\\u\\B for all t in R+ and w in B. 

Let JT(0 ; J30> £ I ) = < / ( 0 ; BQ, Bx)C\X(d\ B0, B{). T h u s B belongs to 
JT(0 ; £ 0 , 5 0 if and only if both (3.4) and (3.5) are satisfied. JT(0 ; £ 0 , £ I ) can 
also be defined when 0 — 0 or 1 (see [4, p. 175]; all we need to know here is 
t h a t £ 0 G ^ ( 0 ; £ o , Bx) and Bx eJf?(l;BQ, Bx). 

A key result in real interpolation theory is the reiteration theorem (Lions and 
Peetre [9]): if 0 g 0O < 0i â 1, and if Ct eJ^(dt; BQj £ i ) , (t = 0, 1), then 

(Co, C\)e,q — (BQ, Bi)(i_0)eo+eei,q 

holds (with equivalence of norms) for 0 < 0 < 1 and 1 ^ q g oo. 
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We now consider the interpolation of Sobolev spaces with respect to order 
of smoothness. Let 12 be a domain in Rn and let 1 ^ p < co, and 0 < k < m. 
A var iant of the Ehrling-Nirenberg-Gagliardo inequality asserts tha t there is 
a constant C such tha t for all u in Wm'p(ti), 

\\u\\ktP S C\\u\\t}-<*'m^\u\\n^ 

provided 12 has a t least the weak cone property. (See [2, Theorem 2].) We 
invite the reader to verify tha t the above inequality implies tha t Wk,p(£l) £ 
J (k/m ; LP (12), Wm >p (12) ). We now show tha t Wk'p (12) belongs toJf(k/m ; IP (12), 
Wm'p(U)) if and only if the conclusion of the approximation theorem holds. 
If t ^ 1 and u G Wk'p(Q) then K(t, u) ^ \\u\\p + / | |0 | |m , p = \\u\\p. Hence 
rk/mK(t, u) ^ \\u\\k>p for such t and u. If t~k/mK(t, u) ^ C\\u\\ktP for a l l* g 1 
as well, then we can choose u0 in 1/(12) and Ui in Wm'p(Q) with w = UQ + Wi and 
||«o||p + t\\ui\\m,p ^ 2i£(/, w). Thus 

\\u - mil = ||«o||P g 2 C ^ | M | , , „ | |«i| |miJI g 2Ct<*w-1\\u\\ktP. 

With t = em we see tha t Wi = we is a solution to the approximation problem. 
Conversely, if the approximation problem can be solved when e = t1/m g 1, 
by ue say, then 

l-k/mK(t, u) g i-k/m(\\u - ue\\p + t\\ue\\m,p) g C H I * , , 

for all w in Wk'v(Q). We have thus established the following corollary of the 
approximation theorem. 

T H E O R E M 3. If Q, is a domain in Kn with the smooth cone property, and if 
lSp<ooandO<k< m, then Wk >p (12) G Jlf(k/m\ Lp(12), Wm'p(tt)). 

Now we wish to consider briefly the family of Besov spaces, Bs,p,q(Çl). These 
spaces are usually defined intrinsically (see [16, p. 150] or [11, p. 516]), and it 
is then shown tha t , for reasonable domains 12, 

(3.6) B'-'-<(Q) = (L'(fi), W»*(0)) . /».«. 

where m is the smallest integer exceeding s. Since we do not need the intrinsic 
characterizations of these spaces, we define them by formula (3.6). If 12 has 
the smooth cone property, then Theorem 3 and the reiteration theorem show 
tha t (3.6) holds (up to equivalence of norms) for any integer m > s, and if 
Si > s} then 

B9>*'*(Q) = (Lp(V),Bsi'p'«(Q))s/SUQ. 

More generally, in this case we have for any integers k and m with 0 g k < 
s < m, 

£s 'p 'e(12) = (W*'P(Q), Wm'p(tt))x>q, 

where 5 = (1 — \)k + Am, and in fact if 0 < si < s < s2 then for any numbers 
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ç, qi and q2 in the interval [1, oo], 

where s = (1 — \)si + \s2. We shall denote by || • \\B(S,P,Q) the norm in 
Bs>p'Q(tt). We remark that Theorem 3 implies, for integer m, that 5m 'Pi l(u) C 
Wm>v(Sl) C £w,p'œ(12). In fact, it is known that if 12 is sufficiently regular, th*n 

Bm*•»$) C Wm<p(ti) C Bm'v'2(Sl) for 1 < p ^ 2, and 

5W^2(12) C JTW'P(12) C 5m'p-p(fl) for 2 ^ £ < oo. 

(See [16, p. 155]. It is also asserted in [3, p. 301] that the first pair of inclusions 
also holds for p = 1.) The indices in these inclusions are best possible, even 
when 12 = Kn. We do not need these inclusions in the sequel. 

The following standard imbedding theorem obtains for the Besov spaces, 
and requires only the weak cone property. Here C5(12) denotes the space 
Lœ(12) H C(G) with the norm || • ||œ, and Z/>e(12) is, for 1 < r < oo the Lorentz 
space consisting of those measurable functions u on 12 for which the equi-
measurable decreasing rearrangement u* of \u\ satisfies (see [17, Section 5.3]); 

I °° (t1/pu*(t))Q -l
7 < oo if 1 ^ q < oo 

J o t 

ess sup tVvu*(t) < oo if g = oo. 
/>o 

Note that Z>p(12) = Z/(12). 

THEOREM 4. Let 12 be a domain in R72 having the weak cone property. 
(a) If sp < n then B* *'«{$) C Z/'g(12) for r = np(n - sp)~\ 1 g g ^ oo . 
(b) If sp = n thenBs*'l(Q) C C£(12)/ 
(c) 7/ s£ > n then J3S^(12) C CB(ti) for 1 g g ^ oo. 

Proof. We require, and so prove, only (b). Under the smooth cone condition, 
(a) follows from (b) and the fact that Lr'q(12) = (LPl(12), LP2(12))Xfff whenever 
1 ^ £i < r < p2 S oo and 1/r = (1 - X)/£i + X/£2. 

Let m be the smallest integer exceeding n/p. Let ?/ belong to Bn/p'p,1(Çl) = 
(Lp(12), Wm 'p(fi))w/^,i. For each 2 in R+ there exists u(t) in W™'p(12) such that 
u = Jo3 ̂ (0 ^A a nd 

rrn/mp j(t,u(t))^s c\\u\unlp,p,lh 
J o £ 

where /(£, w(0) = m ^x {||^(0IU ^lk(OIU.pl- Since mp > n and 12 has the 
weak cone property there exists (see [2, Theorem 3]) a constant C independent 
of v in Wm<p(Sl) such that 

https://doi.org/10.4153/CJM-1978-018-8 Published online by Cambridge University Press

OIU.pl-
https://doi.org/10.4153/CJM-1978-018-8


SOBOLEV SPACES 197 

Thus 

ll«ll» ^ I ll«(0IU7 
•/ o t 

^ c Jj|«(0||,1-("M') ||«WIU//mP7 

g c rr,"n'j(t,u(t))T 
J o / 

^ 2C |M|B(»/P IPII). 

Hence S»/™'1^) C L°°(fi). Now C(13) H 5»/™'i(G) is readily seen to be dense 
in Bn/PtPil(Q) and a uniform convergence argument implies this latter space 
must imbed into CB(i1). 

Remark. It will be apparent from Theorem 7 below that if kp < n and 
p > 1 then Wk'p(Q) C Lr'p(Q) for r = n^>(n - kp)-1, provided 12 has the weak 
cone property. This slightly improves the result Wk,p(Jl) C Lr(Q) (which, 
however, also holds for p = 1) given in [2] for such domains. It is a weakness 
of the technique of interpolation on order of smoothness alone, that neither 
of these imbeddings can be obtained directly from Theorems 3 and 4 by inter
polation, even for domains with the smooth cone property. The best we can 
do a priori is Wk'p(Q) C LT'œ(Çl). The best Lorentz target space for imbeddings 
of Wk,1(tl) is still in question. We postpone to the next section the problem of 
refining conclusion (c) of Theorem 4 to yield fractional order Lipschitz im
beddings. 

We now turn our attention to the interpolation of Sobolev spaces with respect 
to order of summability. We require the following lemma. 

LEMMA 1. Let 12 be a space of homogeneous type. Let 1 < p < r ^ oo and 
1 è q ^ oo. Then (H1^), 1/(12))^ = LP'*(Q) where 1/p = 1 - 6 + 6/r. In 
particular, (H1^), L 0 3 ^ ) ) ^ ^ ) , , = L™(fi). 

Proof. We prove the case where r = oo ; the general case follows by reitera
tion. Lets = 1 - (1/p). Since H1^) C L1^) we have that (H1^), Lœ(tt))e,0 

C i>*(12). In particular (Hl(Q), Lœ(12))M C LP(Q), and we will be able to 
conclude that LP(Q) eJt?(d; iT(12), L°°(12)) if we can show that Lp(tt) C 

Arguments in the proof of Theorem D of [7] yield a constant C such that for 
any r > 0, any u in Z/(12) can be expressed as a sum u = vr + wr where 
vr e Hl(tt) and wT G Lœ(12) satisfy 

ÏÏVrÏÏHHW ^ Cr^WuW,, and ||wr||œ g C r\\u\\p. 

For i > 0 let r = t~1/p = t9~\ Then 

K(t,u) S \\VTWHHW + ' I W L g 2Cte\\u\\p. 

Thus L* (12) C (H1(Q)1L
œ(Q))e,l 
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Now pick s such tha t 1 < s < p and let X = 1 - (s/p). Since LS(Q) € 
j f (1 - (l/s); iT(12), Lœ(12)) we have by reiteration t ha t L™(fi) = (1/(12), 

Z,°°(Û))xiff = (tf1 (12), 1^(12))^ . 

Remark. Using the dual i ty between i ï 1 ^ ) and the space BMOip) of func
tions of bounded mean oscillation on 12, we could obtain, under the same 
hypotheses, t ha t 

LP'*($) = (Ll(V),BMO(V))e,q = (Hl(tt)} BMO(V))e,Q. 

(See Riviere and Sagher [15] for the case where 12 = Rn.) 

T H E O R E M 5. Let 12 be a domain in Kn having the smooth cone property. If 1 < 

pi < p < pi < °o , then 

(3.7) (W**i(n) , i r ^ W k , = W*'p(fi), i / £ = (l - 0 ) /£ i + ^ 2 . 

/ / , in addition, 12 is a space of homogeneous type then also 

(3.8) (W*'1^), Wk'**($))6,j, = Wk"(Q), l/p= 1-6 + 6/p2-

Proof. T h e operator D : u *-+{Dau\ \a\^k maps Wk,Pi(ti) boundedly into 
n i a | ^ LP*(Î2), (*" = 1, 2) , and therefore it maps (Wk'vi(tl), Wk'P2(n))9,p 
boundedly into ( I I k | ^ , I / 1 (12), I I i a , ^ Lp*($))dtV = I I M < ; * LP(Q) for l//> -
(1 - 6)/p! + 6/p2. T h u s (Wk'Pl(Q), Wk'p*(Q))e,P C 1 ^ ( 1 2 ) . Conversely, the 
lifting operator R, (see Theorem 2) , maps I I j a j ^ . LPi(Q.) boundedly into 

Wk'pi(Q), SO 

Wk*(Q) = RD(Wk'p(tt)) = R(Ula^kL
p(U)) 

(3.9) C ^ ( ( n i a | g , L^(12), n , a , ^ L**(Q))e,p) 

C (Wk'pi(tt), Wk'**(Sl))e.p. 

This completes the proof of the first assertion, (3.7). 
The proof of (3.8) is identical to t ha t of (3.7), except t ha t in (3.9) above 

I I , a l ^ L*i(S2) is replaced by ( I I i a | < , L 1 ^ ) ) X ( H , ^ Hl(£l)). T h e first 
inclusion in (3.9) then requires Lemma 1 and the second requires the second 
assertion of the lifting theorem. T h e homogeneity of 12 is required for both of 
these steps. 

Remark. T h e analogue of Theorem 5 involving the complex interpolation 
method (see Calderôn [5]) also holds, with the same proof. We do not need 
this fact in the sequel. 

A useful generalization of Theorem 5 obtains for Sobolev spaces modelled 
on Lorentz instead of Lebesgue spaces. W e term these lat ter Sobolev-Lorentz 
spaces and denote them by Wk'p,q(Çl) : 

Wk*'*($) = \u Ç L™(G) : Dau G L™(Q) for |a| S k\. 
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These are Banach spaces with respect to an appropriate norm, say 

I) £ l|0aw||i™(Q)f if 1 ^ g < œ 
IL; I I _ l M«té* / 
I \u\ \W(k,p,q) ~ \ 

(max | \Dau 11 LPfoo( nj if g = oo. 

Evidently W* •*•*(&) = 1^(12). 

THEOREM 6. Let Q be a domain in Kn having the smooth cone property. If 
1 < £ i < £ < £2 < o o , 1 ^ gi ^ o o , l ^ ?2 ^ o o , l ^ g ^ o o and 1/p = 
(1 - 0)/pi + 6/p2then 

In particular 

(W*'p*'ai(Q), W*'pf'*(Q))e.p = Wk'p(tt), 
and 

(Wk'Pl(Q), Wk-P*(to))e,g = Wk'p'a(Q). 

Proof. The operator D maps Wk'pi-Qi(Q) boundedly into H , ^ L p ^(f i ) , 
(i = 1, 2), and by interpolation ( W ^ ^ Û ) , Wk'Pi'9*(Q))e,g into E [ | a | ^ 
L™(S2). Thus (Wk'P1'Ql(Q), Wk'p*'q*(tt))e,q C Wk'p'Q(Q). Now Di? is bounded 
from II|a|^Lp»-(Q) to l l | a | ^L p *( f i ) , (t = 1, 2), and hence from TL]a^k LP-Q(Q) 
to r i | a ^ , L™(Û). Therefore R is bounded from II i a |<^ L™(fi) to W*'™(S2) 
and RD is the identity map on Wk*'*($). Thus 1^*^(12) C R(Jl\a\zk Lp,ff(S2)). 
Since i? maps H M < ^ Lp^i{Q) boundedly into Wk'pi'Q*(Q), (i = 1, 2), it is also 
bounded from n i a i ^ Lp'q(Q) into (Wk'Pl'Ql(Q), Wk'p*'q*(Q))o,g. Thus Wk"'*($) 
C (Wk'P1'Ql(Q), Wk'P2'Q*(Q))8,g as required. 

Analagous to the results obtained for Besov spaces in Theorem 4 above, 
we have the following imbedding theorem for Sobolev-Lorentz spaces. Observe 
that, in this theorem also, we assume only that 12 has the weak cone property. 

THEOREM 7. Lei Q be a domain in Kn having the weak cone property. 
(a) If p > 1 and kp < n then Wk'p'q(Q) C Lr'9(Q) for r = np{n - mp)~l 

and 1 ^ q S °° . 
(b) Ifkp = nthenWk'p'l(tt) C CB(Q). 
(c) Ifkp > nthenWk'p'Q(tt) C CB(Q)for 1 ^ q g 00. 

Prooj. We prove only (b) ; the other parts can be established by suitably 
generalizing arguments given in [2]. (In any event, they follow directly from 
(b) by interpolation if 12 has the smooth cone property.) 

The result (b) is known for p = 1. (See [2, Theorem 1].) For p > 1 we have, 
(by [2, Lemma 2]), that for all u in C°°(fl) and x in 12, 

(3.10) |«(s) | ^ C\ Z la*|£aM|(*) + Z o>**\Dau\(x)) 
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where 1B is the characteristic function of the uni t ball in Rn, and uk(x) is the 

Riesz potential |%l*_n. In (3.10) all Dau are considered to be extended to Rn , 

vanishing identically outside 12. I t suffices, therefore, to show tha t for any v 

i n Z > 1 ( R ' 0 a n d x i n R / \ 

(3.11) f \v(y)\\x - y\k~ndy S C f ° V V ( 0 y , 

where v* is the (scalar) equimeasurable decreasing rear rangement of \v\. In 
turn, it is sufficient to verify (3.11) for x = 0 and v radially symmetr ic and 
decreasing. In this case, the radius r of the ball on which v exceeds X and the 
length t of the interval on which v* exceeds X are related by Crn = t. T h u s 

f \v(y)\\y\k-ndy = C P\{r) r^dt = C P V ^ * ( 0 y 

and (3.11) follows. 

4. In tr ins i c L ipsch i t z spaces . Let 0 < X ^ 1. Denote by Lipx(O) the 

space of all functions u in CB(12) with finite norm 

(4.1) I M U x = I M L + sup ^—\i -r^--
x,yea \x — y\ 

Lipx(12) is a Banach space under the norm (4.1). I t is wrell known (see, for 
example, [1, p. 98]) t ha t if 12 is sufficiently regular, and if kp > n, then Wk,p(Q) 
imbeds into Lipx(12) for certain values of X. If 12 lies on both sides of some 
(n — 1)-dimensional par t of its boundary , however, then no such imbedding 
can occur, because there will exist elements of Wk'p(ti) t h a t are not essentially 
uniformly continuous, while every element of Lipx(12) must be uniformly 
continuous. T o avoid this problem we replace the Euclidean distance \x — y\ 
by the intrinsic distance p(x, y). 

Let o)(tj u) be the modulus of cont inui ty of it £ C(S2), taken with respect to 
the intrinsic metric on 12: 

œ(t,u) = sup \u{x) — u(y)\. 
x,y£V 

p(x,y)^t 

For 0 < X S 1 and 1 fg q ^ oo the intrinsic Lipschitz space ILipXi(7(12) con
sists of those functions ti in CB(il) for which t'xœ(t, u) belongs to L ? (0 , oo ) 
with respect to the measure dt/t. The norm in ILipx>(?(12) for 1 ^ q < oo is 

U 7 , ) 1/ff 

We also denote by ILipx(12) the space ILipx>00(12) with norm 

| \u\ |(x) = 11^| U + sup rxu(t, u). 
*>0 
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In order to identify ILip\)(Z(12) as an interpolation space, we require the 
following approximation result analagous to Theorem 1. Let CBk(Q) denote 
the space Wk'œ(Q) H C*(12) with norm || • \\ktO0. 

LEMMA 2. Let 12 be a domain in Rn having the smooth cone property. There 
exist constants C and C such that for each u in CB (12) and each e > 0 there exists 
uein CBl(Q) satisfying 

\\u - ue\\œ ^ co(Ce, u) 

||^||llOT^c'(^^+||^|u). 

Proof. Let Q £ C0
œ(£i(0)) be such that Q(y) à 0 and JBl(0 ) Q(y) dy = 1. 

Let <£> be the vector field determining the smooth cone property for 12. For u 
in CB(Q) let 

ut(x) = I Q(y) u(x + e($(x) + y)) dy 
J fli(0) 

Clearly IKIL ^ ||w||œ and 

\\u - ue\\œ ^ sup I Q(y)\u(x) - u(x + e($(x) + y))\dy 
x J fli(0) 

£ W ( ( 1 + | |* | | )€ ,«) . 

Finally, 

+ - f (M(Z) - u(x)){D}Q)(Z-^^ - $(*))r"<fe 

g c ( | M U + «iildlJi*lll^) 

which completes the proof. 

THEOREM 8. Le£ 12 &<? a domain in Kn having the smooth cone property. If 0 < 
0 < 1 awd 1 ^ g ^ oo //zew 

(4.2) (CB(Q), CBi(Sl))9,q = ILipM(12). 

Proof. Let u belong to CB(ti), and let t > 0. We may choose u0 £ CB(Q) 
and Wi G CBl(Q) such that u = u0 + wi and ||wo|L + ^Ilwi||i,œ = 2i£(/, w). 
Let x and ^ belong to 12 and satisfy p(x, y) ^ /. Let 0 be a piecewise smooth arc 
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in fi with 0(0) = x, 0(1) = y, and f^cf*'(r)\dr S 2/. Then 

J 0 
\ui(y) - ui(x)\ ^ I I T - M I ( * ( T ) ) U T 

rf 

g r | V M i ( 0 ( r ) ) | | * ' ( T ) | d T g G | | « i | 

Hence 

|w(y) - u(x)\ g 1^0(^)1 + ko(*)I + |wi(y) - wi(x)| 

g 2 I H U + O| |«i | | i l 0 0 g CK(t,u), 

t ha t is, 

(4.3) w(/,w) g CK(t,u). 

On the other hand, i£(£, w) ^ ! N L + ^| |0| | i j 0 0 = 1 1 ^ [ | œ . Suppose now tha t 
0 < / < 1, and let e = t/C. Wri te u = (u — ut) + ue, where ue is the function 
given by Lemma 2. Then 

K(t, u) ^ \\u - W e | |œ + / | |« € | | i , œ è C(œ(t, u) + t\\u\\J. 

Thus , for all t > 0 we have t ha t 

(4.4) K(t,u) ^ C (u(t,u) + min { 1 , ^ | | W | | J . 

I t follows immediately from inequalities (4.3) and (4.4) t ha t t~dK(t, u) belongs 
to the space 1/(0, GO ) with respect to the measure dt/t if and only if t~eu(t, u) 
belongs to the same space. Hence (4.2) holds. 

We now come to our main theorem concerning imbeddings of Sobolev spaces 
into intrinsic Lipschitz spaces. In the case where 12 = Rn this result is due to 
Morrey [10]. 

T H E O R E M 9. Let il be a domain in R* having the smooth cone property. Let 
1 < p < oo , let (k — l)p < n < kp, and let X = k — (n/p). Then 

(4.5) Wk"(Q) C ILipx ,p02). 

Proof. We first show tha t , under these hypotheses, Wk'p(tl) C ILipx(fi). 
T o do this we interpolate with respect to smoothness. Let 5 = n/p; then 
B8*'1^) C CB(Q) by Theorem 4. Now every element of BS+1'P'1(Q) has the 
proper ty t ha t its first-order partial derivatives belong to Bs'p,1(il)) therefore 
^ s+1^-1(12) C CB1^). Next observe tha t k = (1 - \)s + \(s + 1). Therefore 

Wk'p(Q) CBk'p'œ(tl) C (^ s - p ' 1 (^ )^ s + 1 ' p ' 1 (^ ) )x ,oo 

C (CB(V), CBl(Q))Kœ = ILipXl00(fi) = ILipx(î2). 

T o prove (4.5) we now interpolate with respect to summabil i ty . Choose 
indices pi and p2 with pi < p < p2 such t ha t the hypotheses of the theorem 
still hold if p is replaced by pi or p2. Let \ t = k — (n/p/) for i = 1 or 2. 
Choose 6 so t ha t \/p = (1 - 6)/pl + d/p2. Then , by Theorem 5, Wk'p(Q) C 
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(ILipxi(Œ), ILipx2(fi))0,p. By Theorem 8 and the reiteration theorem, this 
lat ter space is jus t ILipx iP(ft). 

W e remark tha t , under the hypotheses of the theorem, the inclusion Wk,p(iï) 
C ILipM)7.(ft) holds if and only if \x < X, or /x = X and r ^ p. It is clear tha t 
such inclusions hold for these values of /JL and r, because ILipx,p(ft) G ILipM>7.(ft). 
To see tha t the imbeddings fail if /x > X, or if /x = X and r < p, consider func
tions of the form x i—> \x — x0 | s(log |x — x0 |) ' for fixed x0 in ft. I t is also easy 
to see t ha t the hypotheses of Theorem 9 imply tha t Wk+m"v{Q) imbeds into the 
space of all functions in CBm(Q) all of whose derivatives of order m belong to 
ILipXj9(ft). 

Now suppose tha t ft has the smooth cone property, t ha t 1 < p < GO , and 
tha t (k - \)p = n. Then W*'P(Q) C ILipM>r(ft) for all r and all /z < 1 ; indeed 
Bk,p,œ(Q,) C ILipM>r(fi) for such /x and r. To get a sharp imbedding in this case, 
we have to consider second differences. Call a pair of points x and z in Kn 

admissible if the segment joining x to x -{- 2z lies entirely in ft. Given a function 
u on ft, and a number / > 0, let co*(7, w) be the supremum, over all admissible 
pairs x and z, with |z| ^ /, of \u(x) — 2u(x + z) + u(x + 2s) | . Then for 0 < 
X < 2, and 1 ^ g ^ oo , let ILipxiÇ*(ft) be the space of functions u on ft for 
which /-xco*(/, u) belongs to L5(0, GO ) with respect to the measure dt/t. Then, 
under the above hypotheses, Wk,v(Q) C ILipi i P*(ft); wre omit the proof of 
this fact. 

The situation is much simpler when p = 1. If ft merely has the weak cone 
property, then Wn+m'l{Q) C CBm(ti), for all nonnegative integers m. (See [2, 
Theorem 1].) 

The hypotheses of Theorem 9 also imply tha t for all q 

Wk*'«(U) C ILipx , ,(ft). 

Finally, if ft has the smooth cone property, if 1 ^ p < GO , if (s — \)p < n < 
sp, and \i \ = s — (n/p), then 

£ s ^ ( f t ) C ILipx,,(ft). 

We omit the proofs of these imbeddings. 
T h e weakest geometric property of a domain ft t ha t is known to imply tha t 

Wk'v(Q) C Lipx(ft), for suitable indices k, p, and X, is the strong local Lipschitz 
property [1, p. 66]. The significance of this property will be discussed in Section 
7. We mention here, however, t ha t if ft has this property, then the various 
intrinsic Lipschitz spaces ILipxrÇ(ft) coincide (up to equivalence of norms) 
with their counterpar ts Lipxi(?(ft) t ha t arise when the Euclidean distance is 
used instead of the intrinsic distance. 

5. Proof of t h e a p p r o x i m a t i o n t h e o r e m (Theorem 1). Let $ be a smooth 
vector field determining the smooth cone property for ft. Let Q be a nonnega
tive, infinitely differentiable function on R" having support in the unit ball 
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Bi(0) and satisfying J Bl(0) Q(y) dy = 1. Given u in Cœ(12) and e satisfying 
0 < e ^ 1, we may, noting that for x in Œ the segment from x to x + e($(x) + 
v) belongs to 0 for any 3/ in £ i (0) , write Taylor's formula for u(x) in the form 

«(* )= Z ^ - , l a l 

/ X Q(y)Dau(x + E(*(x) + j>))($(x) + y)aiy 
(0) 

+ (-i)V £ \ f Q(y)(Hx)+y)ady 

•/ 0 

We let ^e(x) be the first sum above and so obtain 

u(x) — uf(x) 

= (-DV s ^ (Vfc 
|a|=A;a! •'O 

• ' f l l ( O ) 

= (-D*Z j i f f /cM-*(«)) 
X (2 -x) a £» a «(2)(^)""^ 

where 

(5.1) #„(/;*,«) = - ^ ^ r ' 1 ( 2 ( ^ : - - *(*)) («-*)", |a| = *. 

Since Q((z — x)/7 — $(x)) vanishes for |z — x\ è / |$(x) | we have 

(sup I y / \Ka(t; x, z)\dz ^ Ce* 
(5,} ^ P * r 

fsup I ~ I \Ka(t',x,z)\dx ^ Cek 

\ z J 0 t «/ n 

It follows from these two estimates that 

I k - ^ « H P ^ C e*|tt|,fcfp, 1 ^ p ^ co . 

In order to estimate its derivatives, it is useful to write ue in the form 

u€(pc) = e~n J Q\—e— ~ *(*)) Pk.i(u;x, z)dz 
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where Pj(u; x, z) is the Taylor polynomial of degree j of u(x) in powers of 
x — z: 

Pj(u\x,z) = ^2 Tt(u;x,z) 

T](u\x,z) = ^ —.Dau(z)(x — z)a. 

Straightforward calculation shows that 

dXi n ' J (0 if7 = 0 

_i_ P /%,.„, «A _ )Pj-i(DiU;x,z) if j > 0 
dx/j" ' ' ] " 10 ifj = 0 

—- P Au\ x, z) = TAD {il; x, z) for 7 ^ 0. 
dzt 

Since 

x8(H-_.w)._ie(t^..w) 

we may readily compute 

DiM((.x) = e~n J Qy1^ ~ *(*)) P*-2(I>,«;*,2)da 

+ ^ " / " 2 ( ^ 7 ^ _ $ ( x ) ) ^ - i ( P ' M : *- ^ 

r = l J Q \ € / 

More generally, it can be verified by induction that Daue(x) can be written as 
a sum of finitely many terms of one or both of the following types: 

(5.3) Cn f Q\~~ - *(*)) P*-I-M(D"u;x, z)dz 

= E f UaS(e;x,z)Da+su(z)dz 

r'"M+hl^y(i; $;x) J* ( ^ ^ ( ^ - ^ - *(*)) Tlc.M(Dyu;x,z)dz 

I S | = * - | T I «̂  Si 
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where |/3| ^ \y\ ^ min [k, \a\], 7ra/37(e; $ ; x) is a polynomial of degree a t most 

\a\ in the variables e|xlZ}X(£(x) for | \ | ^ |a|, and 

uaô(e) x, z) = - - Qy—— - $(x) ) (x - z)\ 
e 

e-n~\a\ + \y\ / _ % \ 

F ^ e j x , 2) = £j 7r^7(e; 3>; x) (D^Q)^—^— - $ (x) j (x - \5 
2) . 

If \a\ ^ & no terms of type (5.3) are present in the expression for Daue(x). 
Since Q((z — x)/e — $ ( x ) ) = 0 if \z — x\ ^ e|<£>(x)| we have the bounds 

sup I \Uaô(e;x, z)\dz g Ce101 

sup I I Uaô(e; x, z)\dx g Ce101, 

and, since |5| = £ — I7I in (5.4), 

sup I |Fa/37ô(e;x, z)\dz S C ek~lal ||7ra/3a(e; $ ; . ) | L 

/ , sup | J 4 w ( e ; x , s ) | d x g C r | a l 11 W e ; * ; . ) I L -
z J n 

Hence, for 1 ^ £> ^ 00 , all terms of type (5.3) in Daue(x) are bounded in 
Lv{9) by C\\u\\k-i,v, and all terms of type (5.4) are bounded in LP(Q,) by 
Ce^-1"1 |w|/;,p (where this la t ter constant C involves a sum of constants 
lk«/37(e; 3>; • ) | | œ for |/3| ^ | 7 | g min {fe, \a\}), t h a t is 

lc |M|*, p i f O g j g f e - 1 

This conclusion follows for j ^ m and any w in Wm'p(Çl), (1 ^ p < GO), since 
Cœ(ft) is dense in Wm'p(Q). 

6. Proof of t h e l i f t ing t h e o r e m ( T h e o r e m 2) . We make use of the 
mollifier Q and the notat ions introduced a t the beginning of Section 5. Given 

v = {va} \a]ûk in n 
\a\sk ^ î o c 1 ^ ) let Rv be defined by 

^(x) - £ -—r— QCvK(* + $(x) + ;y)($(x) + y)ady 

+ (-1)" E "i f Q(y)(Hx) +y)ady 

X I ^~V(x + t($(x) + 3/)) .̂ 
•/ 0 

I t can be verified t h a t Rv Ç L j o c 1 ^ ) , bu t we do not need this fact. By Taylor ' s 
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theorem, Rv = u if v = {Dau} \a\^k and u Ç C°°(0). We rewrite Rv(x) in the 
form 

Rv{x) = X) I Ka(x, z)va(z)dz + 2 I T ! Ka(t;x,z)va(z)dz 

where 

i^a(x, 2) = ,— Q(z — x — <£(x))(s — x)a, \a\ < k 

and Ka(t\ x, z) is given by (5.1) above if \a\ = k. In view of the estimates 

sup I \Ka(x, z)\dz < oo 

sup I \Ka(x, z)\dx < co 

and the corresponding estimates (5.2) for Ka(t\ x, z), we have that 

We require similar estimates for \\D^Rv\\p for |/3| ^ & and 1 < p < oo. 
Suppose, for the moment, that each va belongs to C,co(l]). Computation of 

DPRv(x) yields a shower of terms, the "worst" of which are of the following 
type (for |/3| = k): 

(6.1) ^ f <2(30W*) + 30a<ty f1 (D%a)(x + /($(x) + y))**"1**/ 
Oil J Bi(0) J 0 

= "1 f T f <2(30(*(*) + yTDy%a{x + *(*(*) + y))dy 

(6.2) = f ^ f Krtit; x, z)va(z)dz 

where, for \a\ = \@\ = k, 

Kae(t;x,z) = ^ 1
r

) - r B P / ( ( 2 ( 3 ' ) ( * ( x ) +y ) " ) , z = x + /($(x) + y). 

Since ^(y, x) = DyP(Q(y) ($(x) + y)a) and VyF(y, x) are uniformly bounded, 
the kernels Kap have the following properties: 

(6.3) Ka8(t;x,z) =0 if |x - z\ ^ /(l + 11$| |), 

(6.4) I Kaff(t; x, z)dz = 0 for all x and/, 

(6.5) \Ka0(t;x,z)\ S Ct~n for all x, z, t, 

(6.6) \VzKa0(t;x,z)\ S C t~n-1 for all x, z, L 

Since pa is smooth the integral (6.1) is absolutely convergent; so the change 
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of order of integration is justified. The integration by parts is also justified 
for each nonzero /, so that (6.2) should be interpreted in the principal value 
sense: 

(6.7) I -- I Kap(t'}x, z)va(z)dz = lim SNva{x) = Sva(x), 
J 0 t J Q ' N_^œ 

where 

SNv(x) = I - I Kap(t\x,z)v(z)dz. 
J 2 _ / v t J 0 

We shall show that S is a bounded operator on Lp(tt) for 1 < p < oo . 
For j = 1, 2, . . . let 

/

' 2 - i + l 7, Ç 

— I Kap(t',x,z)v(z)dz. 
2 - i t J Q, 

By (6.3) and (6.5), 7^ is bounded on Lp(fi) for 1 ^ >̂ ^ oo , with bound in
dependent of j . Now the adjoint of T i is given by 

/

• 2 - y + i 7, /* 

— I Kali(t',z,x)v(z)dz 
2-y t J & 

Denote the norm of any operator T on L2(!2) by | | r | | . We shall use a lemma of 
Cotlar (see Fefferman [8, pp. 102-103]) to derive estimates for ||5;v|| from 
estimates on ||7\-7^*|| and | |7\*7^|| . Now TiT-*v(x) = fu Hij(xJ y) v(y) dy, 
where 

Htj(x, y) = I -- I G(t, s;x, y)-^ 

G(t,s;x,y)= I Kap(t; x, z)Kap(s\ y, z)dz. 
J 12 

By (6.3) the line segment from x to z lies in 12 provided Ka${t\ x, z) ^ 0. Hence 
using (6.3) — (6.6) we obtain, for / ^ s, 

\G(t,s;x,y)\ = I Ka&(t\ x, z)[Ka0(s; y, z) - Kap(s\ y, x)]dz\ 

è Cs'71-1 I |i£a/3(/;x, s)| |x - z \dz g CT71-1/. 
^ 12 

Moreover, by (6.3) again, G(t, s;x, y) = 0 unless |x — 3>| ^ 2s (1 + ||<ï>||); so 

sup I |G(/, s;x,y)\dy S C- , 

7/ J n S 
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If s ^ / we can obtain similar estimates with s/t in place of t/s. I t follows t ha t 

sup f \H(j(x,y)\dyè C2~^]\ 
x J n 

sup I \His(x,y)\dx S C 2 " , < - i l , 

and | | r t r ; * | | ^ C 2 - l ' ~ ; | . We require a similar est imate for T*Tj but cannot 
obtain it in the same way, since, in general, J*n Ka${t\ x, z) dx 7^ 0. Recalling 
t ha t 

Ka,(t;x,z) = ^ ^ r w D / ( ( 2 ( ^ - - * ( * ) ) ( * - * )" ) , 

M = |/5| = *, 

we let 

Rat*(t;x,z) = f l r n ^ ( e ( ~ 7 ~ " *(*))(*-*)")• 

Let 7^ be the operator associated with the kernel Ka$ in the same way tha t T3 

was associated with Ka$. Now |7£a/3(£; #> 2) — Ka$(t\ x, z)\ ^ C /~n+1, so 
| | 7 ^ - f , | | g C 2~\ and | |7\*r ,- - Tt*Tj\\ ^ C 2~' . Suppose tha t i g 7; the 
fact t ha t 

/ . 
Ka$(t\ x, s)dx = 0 for all t and s 

implies, as above, tha t | |7^*f,| | S C2l~\ whence |]7\*7\-| | ^ C 2 * - ' . If i > j , 
then the estimates | |T f *7^ - f t*T^ |̂ | ^ 2 ~ \ and | |7 \*r ; - | | ^ C2 J '~ i imply tha t 
| | 7 7 T , | | ^ C 2 ' ~ \ Thus 117^*11 g C 2 - i ' - ' i , and | | r , * r , | | ^ C 2 ~ l ^ l , in 
any case. By Cotlar 's lemma, there is a constant C so tha t \\SN\\ ^ C for all N. 

Suppose, for the moment , t ha t Œ is a space of homogeneous type with respect 
to its intrinsic metric. We show tha t 

(6.8) HS^IIi rg C\\v\\HHQh 

with constant independent of N, for all v in the Hardy space H1^}). Now SN is 
an integral operator with kernel 

KN(x} z) = I Ka(i(t', x, z) - - . 

Since 12 is of homogeneous type it suffices (see Coif man and Weiss [7, formula 
(2.14)]) to prove tha t 

(6.9) I \KN(x, y) - KN(x, z) \dx S C 
J P(x,z)>Cp(x,y) 

for some constant C independent of N. (Recall tha t p is the intrinsic metric 
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on 12). Let C > 4(1 + | | $ | | ) . Fix y and z in 12 and let e = p(y, z). If p(x, z) > 
Ce then p(x, y) > (C — l ) e . If Ka0(t; x, y) ^ 0 then p(x, 3;) = \x — y\. 
Similarly, if Ka${t\ x, z) ^ 0 then p(x, z) = \x — z\. T h u s the left hand side of 
(6.9) is less than the sum of the integrals 

/ 
\KN(x, y) — KN(x, z)\dx and 

x-z\>Ce 

I \KN(x,y) - KN(x,z)\dx. 
x-y\>(C-l)e 

If suffices to es t imate either of these integrals. T h e first is dominated by 

(6.10) I dx I \Kafi(t;x,y) - Ka0(t; x, z)\~ . 
J |.r—zl">f7f J 0 I 

Both terms in the integrand of (6.10) vanish if \x — y\ > t(\ + || 3>||) and 
\x — z\ > / ( I + || $ | | ) , both of which conditions are satisfied if either \x — z\ > 
1 + | | $ | | + e, or l< min {\x - y\, \x - z\] / (1 + | | $ | | ) . Note also tha t 
\x - y\ è \x - z\ - \y - z\ ^ \x - z\/2. By (6.6) | i ^ ( / ; x, y) - Kafi(t\ x} z)\ 
^ Ct~n~lp(y, z) = Ct-n-le. T h u s (6.10) is dominated by 

Ce ( dx f °° r n ~ 2 ^ g Ce f I* - z\-n~ldx = C. 
J \x-z\>Ct J C\x-z\ J \x-z\>Ce 

Hence (6.9) holds and SN is bounded on i7x(12) into Lx(12) independent ly of N. 
T h e same is t rue of SN*. By interpolation (see [7, Theorem D]) SN and 5Ar* are 
bounded (independently of N) on Lp(il) for 1 < p ^ 2, and then by dual i ty 
for 2 ^ p < 00. We now show t h a t these la t ter assertions hold even if the 
homogeneity assumption on 12 is dropped. T h u s we may assume tha t 12 is 
unbounded. 

Let {ypv : v G Zn) be a C°° part i t ion of uni ty for Rw subordinate to the cover 
of R" by balls Bn(v) of radius n with centres v in the integer lattice Zn. For each 
v in Zn let 12 „ = U ^ Q n #(") Cr where #(i>) = ^«+1+11*11 iy) a n d Cx is the cone 
C\{x\ <£>) = U i x ^ i Br,(x + ?7<ï>(x)). Clearly 12„ C 12. T h e domain 12„ is bounded 
and has the ordinary cone proper ty , and so is a space of homogeneous type 
with homogeneity constant (C in (2.1)) t h a t can be chosen independent of v. 
Since SN and SN* are bounded on L2(12), their restrictions to each 12„ are simi
larly bounded on L2(12„). In addit ion they are bounded from Hl(ilv) to Ll(ilv), 
independently on N and v. T o prove this assertion for SN, for instance, it 
suffices (see [7, Section 2]) to show tha t H-S^Hi û C for all (1, 00 )-atoms u on 
the space 12̂ ; and such est imates follow easily from inequali ty (6.9), the fact 
t ha t the operators SN are uniformly bounded on L2(12>,), and the boundedness 
of the domains 12̂ . I t then follows by interpolation and dual i ty t ha t the 
operators SN and SN* are uniformly bounded on Lp(12„) for any fixed index p 
in the interval (1, 00). Applied to functions with suppor t in Bn(v) these 
operators yield functions with support in 12„, which can then be extended to 
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vanish identically on 12 ^ 12,,. If v = {va}\a\^k belongs to I l | a | ^ . 1/(12) then 
\pvv = {^„z/a} belongs to I T | a | ^ . Lp(Bn(v)) and SN(\pvva) belongs to Lp(12) and 
has support in 12,. There is an integer M such tha t any x in 12 belongs to a t 
most M of the domains 12„. Hence 

iw - -l l p . n 
v,nv 

= S M P £ I |S*( IM«)I I2 .O, è C\\va\\*,a. 

We return to formula (6.7). If va belongs to C°°(12) P\ LV(Q) then by Fa tou ' s 
lemma 

\\Sva\\p ^ lim inf \\SNva\\p ^ C1W|p. 
2V->oo 

I t follows tha t if such holds for all a then Rv belongs to Wk,v(Q,) and 

(6.11) \\Rv\\ktP£ C Z \K\\P. 
\<x\ûk 

Since Cœ(tt) H Lp(12) is dense in Z/(12), inequality (6.11) holds for all v in 
Iliai^fc 1/(12), and the first assertion of the theorem is proved. 

In order to obtain the boundedness of R from (Il | a |< / C Lx(12)) X ( I I | a | = f c 

H1^)) into Wk,l{9), where 12 is a space of homogeneous type, wTe first note 
from (6.1) and (6.7) tha t SN converges to 5 strongly on L2 (12), and therefore the 
expression for D0Rv is valid for v in I l | a | ^ A : L2(12). Since H1^) P\ L2(12) is 
dense in H1^), and since the operators SN are uniformly bounded on Hl(tt) 
into L1^!), so is 5 and the proof is complete. 

Remark. We could avoid the use of the Hl theory in the proof of the par t of 
the lifting theorem where 1 < p < oo by replacing inequality (6.8) by weak-
type (1,1) estimates for the operators SN, uniform in N. I t is shown in Coif man 
and Weiss [6], t ha t such estimates also follow from (6.9). 

7. G e o m e t r i c a n d ana ly t i c propert ies of d o m a i n s . Given a map 
ty : 12 —-> 1}' between domains in R", and a function u on 12', let ty*u be the 
function on 12 defined by (^*u)(x) = u(^(x)) for all x in 12. I t can be verified 
(see [1, p. 63]) tha t if ^ belongs to a?00(12), then, for all indices k and p, the 
map >£* is a bounded linear operator from Wk'v(Sl') to Wk'p(&). We will call 12 
and 12' isomorphic if there is a bijection ^ : 12 —> 12' such tha t ^ t ^?œ(12) and 
tf-1 e ^ c o (12 / ) ; in this case the map ^ * : Wk'p(Q') - » W*'p(ti) is an isomor
phism between these Banach spaces. 

We call a property of domains intrinsic if it is preserved by isomorphisms. 
The cone property and the smooth cone property are examples of intrinsic 
geometric properties. Let us say tha t 12 has the approximation property if the 
conclusion of Theorem 1 holds for all indices k, m, and p; it is easy to see t ha t 
the approximation property is also intrinsic. A domain 12 is said to have the 
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extension property if there is a linear operator E : L ioc 1 ^ ) -^ Li0C
1(Kn) such 

that , for functions u G L ^ 1 ^ ) , the restriction of Ew to 12 coincides ax. with w, 
and such tha t , for all positive integers k, and all indices p, the restriction of E 
to Wk'v(Sl) is a bounded operator from Wk'p(Q) to t P ' p ( R w ) . The weakest 
geometric proper ty of a domain tha t is known (see Stein [16, p. 180]) to imply 
the extension proper ty is the strong local Lipschitz proper ty [1, p. 66]). 

Let 12x be the domain in R2 obtained from R2 by deleting the negative 
Xi-axis and the closed ball of uni t radius centred a t the origin; let 122 be the 
intersection of 121 with the upper half-plane, x2 > 0. I t is easy to see t ha t 12i and 
122 are isomorphic, and tha t both of them have the smooth cone property, and 
hence the approximation property. In addit ion, 122 has the strong local Lipschitz 
property, and hence the extension property, and it satisfies M u r a m a t u ' s cone 
condition. In contrast , 121 has none of the la t ter three properties, so these 
properties are not intrinsic, and the smooth cone proper ty does not imply any 
of them. Clearly M u r a m a t u ' s cone condition implies the smooth cone proper ty ; 
it also implies the strong local Lipschitz proper ty , and hence the extension 
property. Conversely, if a domain has the smooth cone proper ty and the exten
sion property, then it satisfies Murama tu ' s cone condition. 

Next consider the domain 12 obtained from R2 by deleting the non-positive 
tfi-axis. This domain has the cone property, bu t not the smooth cone proper ty . 
Nevertheless, it has the approximation proper ty ; we now outline a proof of this 
fact. For each number 5 in the interval (0, 1), let 12ô be the domain obtained 
from 12 by deleting the closed ball of radius 8 centred a t the origin. T h e domains 
125 all have the smooth cone proper ty ; indeed we can specify a smooth vector 
field $ on 12, depending only on the polar angle 6, such tha t , for each <5, the 
restriction of <£> to 125 determines the smooth cone proper ty for 125, and such tha t 
for all integers j , 

(7.1) max sup \Da$(x)\ ^ C 8~j. 

Let K = 3 + | | $ | | . Fix integers k and m, with 0 < k < m, and an index p. 
Let u belong to Wk'p(ti), and let 0 < 8 < 1. The first s tep in the proof is to 
obtain a function v& in Wk'v{Q) such tha t 

(i) Vs coincides with a polynomial of degree k — 1 in the ball BKs(0), 
(ii) ||^lk-fp è C\\u\\ktP, and 

( i i i ) \\Vi - u\\p ^ Cdk\\u\\kiP. 

To obtain the function v5, we first find a polynomial P of degree k — 1 such tha t 

\\P\U,p,B2Kôw è C\\ii\\k,p, and 

H^-«ll*.s2*a<o) ^ Cô*\\ti\\ktP; 

then we let vô = gs • (u — P) + P , where g& is an appropr ia te , smooth radial 
function tha t vanishes on BKs(0) and is equal to uni ty outside B2K5(0). Next 
we temporari ly regard v& as a function on 125, and consider the proof of the 
approximation theorem, for this domain, with e = 8. T h e est imates (7.1) above 
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imply tha t the polynomials 7ra^7(ô; $ ; x) appearing in formula (5.4) are 
uniformly bounded on 12ô by a constant independent of <5. The approximation 
procedure therefore yields a function tts in Wm'p(tis) such tha t 

\\UÔ — VS\\P,QB S C ôk\\u\\k>PtQ, a n d 

\\ih\\m,P,sid ^ Côk-m\\u\\k,p,i}. 

Recall tha t Vs coincides with a polynomial of degree k — 1 in the ball BK5(0); 
a glance at the proof of the approximation theorem shows tha t U& also coincides 
with this polynomial in 125 O B2O(0). We extend us so tha t it coincides with 
this polynomial in 12 Pi #25 (0). Then 

| |« — US\\PM ^ C 5*||z/1U-,̂ .12, and 

\\Uô\\m,vM ̂  CÔW-A:| M|*fPf$2. 

Since the domain 12 has the approximation property and the weak cone 
property, we could use the first par t of the proof of Theorem 9 to show that , 
under the hypotheses on k and p of tha t theorem, Wk,p(iï) C ILipx(12). This 
imbedding holds, however, for all domains 12 with the (ordinary) cone property. 
We omit the proof of this fact, except to mention tha t it depends on Gagliardo's 
observation (see | 1 , p. 68]) tha t a domain with the cone property can be 
expressed as the union of a locally bounded collection of subdomains each with 
the strong local Lipschitz property. 

One strategy for proving theorems about Sobolev spaces is to first prove 
these for R'\ and then to argue tha t they hold for all domains with the exten
sion property. For instance, all domains with the extension property have the 
approximation property, because Kn has this property. Since the approximation 
property is intrinsic, it is possessed by all domains tha t are merely isomorphic 
to some domain with tha t property. This is an al ternate proof tha t the domain 
121 considered above has the approximation property. 

I t is not clear whether the strategy described above can be used to prove 
the lifting theorem for subdomains of Kfl, because it is not clear whether the 
extension property implies the conclusions of this theorem. (Also, we do not 
know whether the extension property implies the smooth cone property.) 
Fur thermore , we do not know whether every domain with the smooth cone 
property is isomorphic to some domain with the extension property, nor even 
whether the conclusions of the lifting theorem are intrinsic. The first conclusion 
of Theorem 5 does hold, however, for all domains with the extension property. 
Finally, the conclusions of Theorem 9 hold, even with Lip\)(7(12) in place of 
ILipxi(?(12), for all such domains. 
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