NEW PROOFS FOR TWO THEOREMS OF CAPELLI

Elizabeth Rowlinson

(received November 18, 1963)

The following two theorems are due to Capelli.

THEOREM 1. Let g(x) and h(x) be polynomials over a field R of characteristic 0; let f(x) = g(h(x)). Then f(x)is irreducible over R if and only if

(i) g(x) is irreducible over R

and

(ii) $h(x) - \beta$ is irreducible over $R(\beta)$, where β is a root of g(x).

THEOREM 2. Let f(x), g(x), h(x), $g_1(x)$, $h_1(x)$ be polynomials over a field R of characteristic 0 such that

(i)
$$f(x) = g(h(x)) = g_1(h_1(x))$$

and

(ii) the degrees of g(x), h(x), $g_1(x)$, $h_1(x)$ are m, n, n, m respectively, where (m, n) = 1.

Then f(x) is irreducible over R if and only if both g(x) and $g_{4}(x)$ are irreducible over R.

These theorems are proved in [1], pp. 288-291; the following proofs are somewhat simpler.

Canad. Math. Bull. vol. 7, no. 3, July 1964.

Proof of theorem 1. Let g(x) and h(x) have degrees m and n respectively. Then f(x) has degree mn. Let α be a root of $h(x) - \beta$; since $\beta = h(\alpha)$ we have $R(\alpha, \beta) = R(\alpha)$. Hence by [2] p. 103,

(1)
$$[R(\alpha): R] = [R(\alpha, \beta): R] = [R(\alpha, \beta): R(\beta)] [R(\beta): R] .$$

Also, α satisfies $f(\alpha) = g(h(\alpha)) = g(\beta) = 0$.

(a) Suppose that conditions (i) and (ii) are satisfied. Since g(x) is irreducible over R, $[R(\beta): R] = m$; since $h(x) - \beta$ is irreducible over $R(\beta)$, $[R(\alpha, \beta): R(\beta)] = n$. Thus, from (1), $[R(\alpha): R] = mn$. But f(x) is of degree mn and has the root α ; it is therefore the minimum polynomial of α , or a constant multiple of it, and so is irreducible over R.

(b) Suppose that f(x) is irreducible. Then g(x) is irreducible. For if it is reducible, we have $g(x) = g_1(x)g_2(x)$ (degree $g_i(x) > 0$, i = 1, 2) and so

 $f(x) = g(h(x)) = g_{4}(h(x)) g_{2}(h(x)) = f_{4}(x)f_{2}(x) \quad (\text{degree } f_{i}(x) > 0, i = 1, 2),$

which contradicts the supposition that f(x) is irreducible.

Since f(x) is irreducible, $[R(\alpha): R] = mn$; since g(x)is irreducible $[R(\beta): R] = m$. Thus from (1) $[R(\alpha, \beta): R(\beta)] = n$. $h(x) - \beta$ is therefore the minimum polynomial of α over $R(\beta)$, or a constant multiple of it, and so is irreducible over $R(\beta)$.

Proof of theorem 2. (a) Suppose that g(x) and $g_1(x)$ are both irreducible. Let α be a root of f(x); let $h(\alpha) = \beta$ and $h_1(\alpha) = \beta_1$. Then $g(\beta) = g_1(\beta_1) = 0$. Since g(x) and $g_1(x)$ are irreducible, $[R(\beta): R] = m$ and $[R(\beta_1): R] = n$. Let $[R(\alpha, \beta): R(\beta)] = a$; since α is a root of $h(x) - \beta$, we conclude that $a \mid n$. As we have again $\beta = h(\alpha)$, equation (1) holds. Thus $[R(\alpha): R] = am$. Similarly, if $[R(\alpha, \beta_1): R(\beta_1)] = a_1$, $[R(\alpha): R] = a_1 n$ and therefore $a_1 \mid m$. So $am = a_1 n$; since (m, n) = 1, it follows that $m \mid a_1$ and $n \mid a$. Therefore $m = a_1$, n = a, and $[R(\alpha, \beta): R(\beta)] = a = n$, so that $h(x) - \beta$

432

is the minimum polynomial of α over $R(\beta)$ or a constant multiple of it. $h(x) - \beta$ is therefore irreducible over $R(\beta)$, and by theorem 1 f(x) is irreducible.

(b) Suppose that f(x) is irreducible. By theorem 1, g(x) and $g_4(x)$ are both irreducible.

REFERENCES

- N. Tschebotarów and H. Schwerdtfeger, Grundzüge der Galois' schen Theorie, Noordhoff, Groningen (1950).
- B. L. Van der Waerden, Modern Algebra, Vol. I, Ungar (1953).

McGill University