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q - U L T R A S P H E R I C A L P O L Y N O M I A L S 

BY 
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ABSTRACT. In his Ph.D. thesis Allaway found all polynomials 
{An(x)}^=0 that can be represented as 

w(cos 0)An(cos 6)= £ akbn+k sin(n + 2k + 1)0, 
k=0 

O < 0 < T T , n = 0 , l , . . . , 

and a0bn^ 0. We solve the essentially equivalent problem of finding 
all symmetric polynomials {An(x)}^=0 with akbn+k = 
| ! œ A n (x) [J n + 2 k (x)da(x) when {An(x)}^=0 are orthogonal with re­
spect to da(x). The polynomials are the continuous q -ultra-
spherical polynomials and some of their limiting cases. 

1. Introduction. The ultraspherical polynomials {C*(x)}^=0 can be denned 
by the recurrence relation 

(1.1) nC^x) = 2x(n + À - lJCJUfr) - (n + 2À - 2)C*_2(x), 

n > 2 , Cà(x) - 1, Cî(x) - 2\x. Szegô [9], [10, (4.9.22)] showed that for all n > 0 

. ( s i n ^ - ^ W m + D n ! ^ m y ( l -À) k (n + k)! . _ u 0 l r _ u 1 . . 
( L 2 ) 2—r(n + 2A) C " ( C O S 0 ) =

 k ? 0 k!(A + l ) n + k ^ » + 2k + »<>> 

where the shifted factorial (a)n is defined by 

(1.3) ( a ) n = ^ ^ = a(a + l ) - - - ( a + n - l ) . 
T(a) 

The well known orthogonality of C£(x) follows formally from (1.2), since 

1 C£(cos 0)(sin 6)2X d0 r 
Jo 

sin(m + l)0 2x 

sin 0 

dn 2^ «k^n+k sin(n + 2k + l)0 sin(m + l)0 d0 
k=o Jo 

:0, 
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where m<n, and where sin(m + l)0/sin 0 is a polynomial of degree m in 
x = cos 6. Thus, 

f l c*(x)Pm(x)(i-x2)x-1/2dx = o, [, 
for all polynomials pm(x) of degree m<n. When À > 1/2, this argument is 
easily justified by uniform convergence, and it can be justified with some work 
when 0 < A < l / 2 . When —1/2<À<0 orthogonality continues to hold but the 
series (1.2) diverges. The series (1.2) suggests the following question. Find all 
sets of polynomials {AM(x)}~=0 that can be represented in the form 

(15) w(x)An(x) = X akbn+kUn+2k(x), 

where Un(x) is defined by 

(1.6) Un(x) = sin(n 4- l)0/sin 0, x = cos 0. 

The integral (1.4) suggests a related question. Find all sets of polynomials 
{An(x)}^=0 that are orthogonal and 

[', A-(1.7) An(x)Un+2k(x)w(x) dx = akbn+k, 

when fc, n = 0, 1, 2, . . . , . 
From the formal argument above {An(x)}^=0 is orthogonal with respect to 

w(x), so we will assume that in (1.7). The first of these questions was solved by 
Allaway [2]. The same methods are used to solve both problems, and a slightly 
wider class of polynomials arises in the solution of the second problem, so we 
will solve it here. 

When Allaway solved the first problem the most general such polynomials 
were not well known, so he did not mention them. These polynomials were 
introduced by L. J. Rogers [8]. Their recurrence relation is 

(l-qnCn(x;p\q) = 2x(l-~(3qn~l)Cn^(x;p\q) 

(1.8) - ( l - l 3 V " 2 ) Q - 2 U ; | 3 | q ) (n>2) , 

C 0 ( x ; j 3 | q ) = l , C^x; 0 \ q) = 2 ( l - 0 ) x / ( l -q). 

When p=qk and q—»1, they converge to the ultraspherical polynomials 
{c^(x)KU. 

A more general identity than (1.5) was found in [4]. It is 

(1.9) w(3(x)Cn(x; |3 | q) = X a(k, n)Cn+2k(x; y | q)wy(x), 
k=0 

where 

Pk(y/P;q)k(q
n+l;qhk(y

2cin+2k;ciUPcl
n+k+u, q ) . 

aik, n)-
(q;q)k(yqn+k;qUa2qn;q)Jy,q). 

xO:qUl- 7 q" + 2 f c ) . 
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This can also be written as 

a ( f c n) = (72 ; qUP; qUPq; q)~Pk{yl&\ q)k(|32; q)n 

(y,q)oo(yq;q)oo(P2l q)olq\ q)k(q; q)n 

x ( 7 ; q ) n + k ( q ; q ) n + 2 k ( 7 q ; q ) n + 2 k 

n + 2k 

Here | q ] < l , 

(1.10) (a;qh=f\a-aqk), 
k=0 

and 

n - l 

(1.11) (a ;q) n=(a;q) o c / (aq n ;q) o c= f l ( l ~ a q k ) . 
k=0 

In (1.9) take 7 = q to obtain 

2vo. \ (o . \ M2, ^ Cn(x;i8 |q) 
W p Q c X q ^ J j g ^ q ) ^ (q;q)w 

V(l-x2)(0;qU0q;qU/32;q)n 
(1.12) 

^ |3 (q/P;q)k(q;q)n+kTJ , , 
— L* / \ / o \ Un+2k\X)-

k=o ( q ; q ) k O q ; q ) n + k 

This has the form (1.5) with 

a k =j8 k (q /0 ;q)J (q ;q) k 

bn=(q;q)J((3q;q)n. 

These are the values of ak and bn that need to be found in both (1.5) and (1.7). 
Since ||8| < 1 is necessary for convergence in (1.12) (when \q\ < 1, which we will 
assume most of the time), it is better to consider the second problem. However 
the same problem occurs here, since |3k grows geometrically when ||8|> 1, and 
it cannot grow this fast if it is given by (1.7). Thus we extend the representation 
slightly to 

d.7') J" An(x)Un +2k 
(x)da(x) = akbn+k, 

where {An(x)}^=0 is orthogonal with respect to da(x). 

2. The characterization problem and some necessary and sufficient 
conditions. We will add one last restriction to the problem. The series (1.5) is 
even or odd depending on the parity of n. We assume the same about An(x). 

PROBLEM 1. Find all sets of orthogonal polynomials {An(x)}^=0 with 

(2.1) I An (x)Ak (x) da (x) = 8Knhn, 

(2.2) A n ( -x ) = (-l)nAn(x), 
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(2.3) An(x)Un + 2 k(x)da(x) = akfan+k, 
J—oc 

k, n = 0 , 1 , . . . . 
If {An(x)}^=0 is a set of polynomials orthogonal on the real line with respect 

to a complex measure then it satisfies for n = 2, 3 , . . . 

(2.4) An (x) = (l^x + cn) An_x(x) - AnAn_2(x), 

A0(x) = l, A 1 ( X ) = 2|UL1X + C1. If A n ( -x ) = (- l ) nAn(x) , then c n = 0 , n = 
1 , 2 , . . . . The coefficients ju,n and An satisfy jixnAn+1 ^ 0, n = 1, 2 , . . . . See [7, 
Chapter 1, Theorem 4.4]. 

For definiteness take a0=l. Since 

L7n(x) = 2nxn + lower terms 
and 

n 

jLLj+ lower t e r m s , 
i = i 

we have 

k„ = [An(x)]2da(x) = b „ n ^ -
J-oo i = 1 

The recurrence relation (2.4) gives 

^ n = l^n^n+ lKi-J &n + l> M = 1 , 2 , . . . , 

SO 

n + 1 

(2.5) frn = h o nYj> n = 1 ,2 , . . . , 

where 
7j = V ^ J = 2, 3, 

Use the recurrence relation (2.4) and 

2xL/n = t/n+1(x) + [ / ^ ( x ) , n = 1, 2 , . . . 
(2.6) 

LT0(x) = l, LTx(x) = 2JC, 

in (2.3) to obtain 

7 __ ^k-l^n+k Ki + 1 U _ U 
ak^n + k — "+" ^ k ^ n + k - l ^ k - l ^ n + k - l ' 

M-n + 1 M'n + l 

o r 

bn + k ^k ~ H ^ + k l l 1 ^ - ^ - ! * 
L ftn+1J LM'n + l J 

Then use (2.5) and replace n by n —1. The result is 

(2.7) Yn+kl>k ~ dk-Jun] = ynak - ak-l9 n, k > 1, 

with YJ = 0. This is consistent with (2.4), since \{ = 0 implies A^x) is as given. 
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Let n = 1 in (2.7) to obtain 

(2.8) ak = ( W_!. 

Since kn+1nn^0, yn does not vanish, so if an = 0, then ak = 0 for k > n. Let m 
be the smallest integer with am = 0 if such exists, and be infinite if ak ^ 0, 
k = 0 , l , . . . . 

Set ak = ak/ak-i, k = 1, 2 , . . . , m. Then 

k 

%=n ». 
i = l 

and equation (2.7) becomes 

(2.9) 7n+k[«k-fAn1] = 7 n a k - l n > l ; l ^ k < m . 

To solve Problem 1 we solve (2.9). 
3. The solution of a finite difference equation. When n = 1 in (2.9), we 

recover 

(3.1) ak = VÎ1-ykli l^k<m. 

Use (3.1) with k replaced by fc + 1 and (2.9) when n = 2 to obtain 

(3.2) ak+1(l-y2ak)+(^-l)ak + (—-—) = 0, l<k<m- l . 

From (3.2) we see that ak is uniquely determined in terms of JUL1? JM2
 ar*d 72 if 

«i72 ̂  1» i = 1, 2, . . . , k — 1. If ai72 = 1, then y2 = JUL2- Thus there are two cases 
to consider, 72 ̂  \L2

 a n d 72 = |^2. 

CASE I. y2i
z 1*2- In this case 

(3.3) ak+1 = (a + bak)/(l - cak) 

with a = fx^1 - fx2\ b = 1 — yd 1*1, and c = Y2. The solution of (3.3) is a standard 
exercise in continued fractions, but we are a bit better off than that since we 
know what the answer should be. Since ak is given by 

pk(q//3;q)k 
ak=—7 x > 

(q\q)k 

we want 
ak = ak/ak^ = (p-qk)l(l-qk). 

This is a little too much, since the constants /utl5 JUL2 and Y2 are independent, so 
ock must depend on three parameters. We can take for n > l , 

(3-4) ^MH^)-

https://doi.org/10.4153/CMB-1984-050-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-050-x


334 W. AL-SALAM, W. R. ALLAWAY AND R. ASKEY [September 

To determine how |3, p and q are defined in terms of JUL1? t±2 and y2 substitute 
for an as given by (3.4) in (3.3). The details are tedious and will be omitted. 
The right choices are 

(3.5) ^ p / d + jS) 

(3.6) ,x2 = p( l - /3q) / ( l - j3 2 q) 

(3.7) 72 = p ( l - q ) / U - 0 q ) . 

It is easy to show that (3.4) satisfies (3.2) with this choice of (JLU JLL2 and y2. For 
n > l , formula (3.1) gives 

(3.8) T n - p d - ^ v a - ^ ^ 1 ) 

and (2.9) gives 

(3.9) jmn = p ( l - | 3 q n - 1 ) / ( l - p V " 1 ) 

(3.10) À ^ p ^ l - q " - 1 ) / ! ! - ^ 1 ) . 

The Jacobian of the transformation (3.5)-(3.7) is 

- p 2 ( l - | 3 ) 2 ( l - q ) 
(1 + P ) 2 ( l - P 2 q ) 2 ( l - I 3 q ) -

Thus there are potential problems when |3 = l o r q = l. Ifj8 = l and q ^ 1, then 
72 = JLL2, which is the second case. If j3^ 1, q = 1, then 72 = 0. We assume this 
did not happen when we assumed {An(x)}~=0 *s a n orthogonal polynomial set. 
The remaining case is when |3 —> 1 and q —> 1 simultaneously. In this case we 
can take 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

0 = = c,x and obtain 

« k = 

7k = 

M * r 

* k = 

= (fc-A)/pfc 

= p( fc - l ) / ( fc+A- l ) 

= p(fc + A - l ) / ( k + 2 A -

= p2(fc-l)/(fc + 2 A - l ) . 

1) 

Thus the cases that arise when 7 2 / p , 2 are the continuous q-ultraspherical 
polynomials and the ultraspherical polynomials. 

We have not mentioned the integer m except as a condition for how long 
these formulas hold. When /3=qm , am = 0, so am = 0, and then ak=0 for 
k > m. This case is a limit of the case |3 = q \ when A -^ m, so a second method 
of treating the case m finite is to change the parameter slightly so m is infinite, 
and at the end take an appropriate limit. 

CASE II. 72 = JLI2. This can be handled directly, and it was in [2]. However, it 
is easier to change 72 so that 72 ^ fx2 and then take an appropriate limit. When 
72 = ^2, (3.6) and (3.7) give q ( l - | 3 ) 2 = 0. There is no problem in taking q = 0 
in all the above formulas. 
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The other case jS = 1 is more subtle. It seems to imply an = p ~ \ n = 1, 2 , . . . , 
and also yn = jucn = 1. However, if qn = 1 a limit needs to be taken in (3.4). One 
way this can be done is to set 

(3.15) q = s exp(27ri/k), 0 = sKk. 

Then 

so 

skk-snexp(2irin/k) 

s_>i p(l - sn exp(27rin/fc)) ' 

(3.16) « m k = ; a n = p 1 , n ^ m k , n > 0 , 
pm 

(3.17) 7mk+i=7—TTv'Yn=P> n^mfc + l , n > l , 
(ra+A) 

(3.18) ^mk+i=-,—-——;fxn-p, n^mfc + 1, n > l , 
(ra+2A) 

2 
0 Wl 

(3.19) A m k + 1 = - ^ — - ; A n = p 2 , n£mk + l,n>l. 
(m+2A) 

It is easy to show that any other kth root of unity leads to the same 
polynomials. 

4. Further comments. These polynomials are orthogonal when An+1jan^0, 
n = 1, 2 , . . . . In general there are many measures for which 

(4.1) f An(x)Am(x)da(x) = 0, m+n, 
J—oc 

and it is not clear how to find any of them. There is one very important class of 
polynomials where there is a positive measure da(x), and in this case the 
measure has been found. Positivity of some measure is equivalent to 

(4.2) An/iutn_1fxn>0, n ^ 2 , 

or when An(x) is replaced by inAn(ix) by 

(4 .3 ) An / /uLn_ l iLin<0, n>2. 

As far as we know all the special cases where the measure is positive have been 
worked out, but we may be wrong. The cases when q is real were treated in [3], 
[4], [5] and [6]. The complex cases of q were not treated in any of these papers. 
The polynomials in Case II and their orthogonality relation will be given in [1]. 
When one starts with the polynomials in Case I with yn, jnn, and An given by 
(3.8)-(3.10), it is possible to renormalize them in another way so that a 
different set of polynomials arise when q approaches a root of unity. This 
second set of sieved ultraspherical polynomials will also be treated in [1]. 
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