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Extreme Version of Projectivity for Normed
Modules Over Sequence Algebras

A. Ya. Helemskii

Abstract. We define and study the so-called extreme version of the notion of a projective normed
module. The relevant definition takes into account the exact value of the norm of the module in
question, in contrast with the standard known definition that is formulated in terms of norm topology.

After the discussion of the case where our normed algebra A is just C, we concentrate on the case
of the next degree of complication, where A is a sequence algebra satisfying some natural conditions.
The main results give a full characterization of extremely projective objects within the subcategory of
the category of non-degenerate normed A-modules, consisting of the so-called homogeneous mod-
ules. We consider two cases, ‘non-complete’ and ‘complete’, and the respective answers turn out to be
essentially different.

In particular, all Banach non-degenerate homogeneous modules consisting of sequences are ex-
tremely projective within the category of Banach non-degenerate homogeneous modules. However,
neither of them, provided it is infinite-dimensional, is extremely projective within the category of all
normed non-degenerate homogeneous modules. On the other hand, submodules of these modules
consisting of finite sequences are extremely projective within the latter category.

1 Introduction: Formulation of the Main Results and Comments

The concept of a projective module is one of the most important ones in algebra. In
particular, it plays the role of one of the three pillars of the whole building of homo-
logical algebra; the other two are the notions of injective module and a flat module.
The first functional-analytic versions of the three mentioned notions appeared about
forty years ago [5], [6], [7]. They were introduced in connection with the rise of in-
terest, in functional analysis, to such topics as derivations of Banach algebras, radical
extensions and amenability. The relevant definitions were given in the framework
of a certain kind of relative homology, adapted to the context of functional analysis.
They were formulated in terms of the norm topology of modules in question rather
than the norm itself.

Quite recently, the birth of new areas of analysis, notably of quantum functional
analysis (= operator space theory), has motivated the introduction and study of the
so-called extreme versions of these notions (cf. [8], [14], [10]). The specific feature
of the new versions is that they take into account the exact value of the norm.

Let A be a complex algebra, and X,Y, P left A-modules. When A is fixed, the
term ‘morphism’ will always mean a morphism of A-modules. Let τ : Y → X be a
surjective morphism, andϕ : P→ X an arbitrary morphism. A morphismψ : P→ Y
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is called a lifting of ϕ across τ , if the diagram

Y

τ��
P

ψ
88qqqqqqqqq ϕ
// X

is commutative.
Now we suppose that A is a normed algebra, not necessary unital. Denote by

A-mod the category of all left-normed A-modules and their bounded morphisms.
Throughout this paper, all normed algebras and modules are supposed to be contrac-
tive; this means that for A and X ∈ A-mod we have the multiplicative inequalities
‖ab‖ ≤ ‖a‖ ‖b‖ and ‖a · x‖ ≤ ‖a‖ ‖x‖ for all a, b ∈ A, x ∈ X.

In what follows, a left A-module X is called essential (sometimes called ‘non-
degenerate’) if the closure of the linear span of the set {a · x : a ∈ A, x ∈ X} is
the whole X. A bounded morphism σ of A-modules is called a near-retraction if it is
contractive (that is ‖σ‖ ≤ 1) and for every ε > 0 it has a right inverse morphism
with norm < 1 + ε. A normed A-module X is called near-retract of an A-module Y
if there exists a near-retraction from Y onto X.

As usual, the category of all normed spaces and bounded operators is denoted by
Nor, and its full subcategory consisting of Banach spaces by Ban.

Recall that an operator, in particular, a module morphism, is called coisometric
(also ‘quotient map’), if it maps the open unit ball of the domain space onto the
open unit ball of the range space. Equivalently, τ : Y → X is coisometric if it is
contractive and for every x ∈ X and ε > 0 there exists y ∈ Y such that τ (y) = x and
‖y‖ < ‖x‖ + ε.

Finally, our definition takes into account a certain full subcategory in A-mod, so
far arbitrary chosen. We denote it by K.

Definition 1 A module P ∈ A-mod is called extremely projective with respect to K,
if for every coisometric morphism τ : Y → X of modules in K, every bounded A-
module morphism ϕ : P → X, and every ε > 0 there exists a lifting ψ : P → Y of ϕ
across τ such that ‖ψ‖ < ‖ϕ‖ + ε.

In other words, P is extremely projective with respect to K, if, for every τ as above,
the operator hA(P, τ ) : hA(P,Y )→ hA(P,X) : ψ 7→ τψ is also a coisometry.

Remark In the categorical language, P is extremely projective with respect to K,
if the covariant morphism functor hA(P, · ) : K → Nor preserves extreme epimor-
phisms in relevant categories (cf. [2]). Hence the word ‘extreme’.

Sometimes we shall come across another, somewhat weaker property than extreme
projectivity. Namely, a module P ∈ A-mod is called topologically projective with
respect to K if for every τ : Y → X and ϕ : P → X as before, there exists a (just)
bounded lifting of ϕ across τ .

We would like to emphasize that we assume our modules to be Banach (= com-
plete) only if it is explicitly stated. (Indeed, we shall see that some of the results and

https://doi.org/10.4153/CJM-2012-006-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2012-006-2


Extreme Version of Projectivity for Normed Modules Over Sequence Algebras 561

constructions in this paper deal with essentially non-complete modules).
First, let us look at the simplest case of (just) normed spaces, that is A := C. In

this situation, if a normed space P is extremely projective with respect to (the whole)
Nor, we just say that P is extremely projective in Nor.

For an arbitrary non-empty set Λ, we denote by l01(Λ) the space of all finitely sup-
ported functions on Λ, equipped with the l1-norm. (Thus l01(Λ) is a dense subspace
in l1(Λ).) We also set l01(∅) := l1(∅) := 0.

The following proposition shows the importance of the spaces l01(Λ).

Proposition 0 A normed space is extremely projective in Nor if and only if it is a
near-retract in Nor (= C-mod) of l01(Λ) for some index set Λ.

If we are given a Banach space, we say that it is extremely projective in Ban, if it is
extremely projective with respect to Ban. These spaces have a much more transparent
description (cf. [4]):

The Grothendieck Theorem A Banach space is extremely projective in Ban if and
only if it is isometrically isomorphic to l1(Λ) for some index set Λ.

(This theorem has a substantial operator space (= ‘non-commutative’) version; see
[1, Thm. 3.14].)

With obvious modifications, one can define topologically projective spaces in Nor
and topologically projective spaces in Ban.

The discussion of extremely projective spaces in Nor and in Ban, including the
proof of the formulated proposition, will be presented in Section 3. In particular, we
shall see that the same space can be extremely projective in Ban but not extremely, or
even topologically, projective in Nor (Proposition 3.5).

From just spaces let us turn again to modules.
The interest in extreme versions of basic homological notions was stimulated by

the fundamental Arveson–Wittstock Theorem in quantum functional analysis. First,
extremely flat and extremely injective modules appeared (in [8] and [14]), however
only for the special case of some highly non-commutative operator algebras and for
the class of the so-called semi-Ruan modules in the capacity of the distinguished
category K. The results of the above cited papers led to some extension theorems
of Hahn–Banach type for modules and to a conceptually new proof of the Arveson–
Wittstock Extension Theorem in its non-coordinate presentation. This was done
in [8] for the initial case of that theorem, dealing with operator spaces, and in [14]
for the more sophisticated case of operator modules.

In the present paper we concentrate on projectivity and consider another class of
“popular” algebras, which is opposite, in a sense, to those in [8], [14]. We mean com-
mutative normed algebras, in fact algebras consisting of sequences (cf. [10]). These
algebras apparently represent the next degree of complication after C. Nevertheless
we will show that even in this case, after the proper choice of K, there is something
to be said.

Denote by pn the sequence (0, . . . , 0, 1, 0, 0 . . . ) with 1 as its n-th term, and by c00

the linear space of finite sequences, that is span{pn; n = 1, 2, . . . }.
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Definition 2 Let A be a normed algebra, consisting of some complex-valued se-
quences and equipped with the coordinate-wise operations. We say that A is a se-
quence algebra, if it contains, as a dense subalgebra, c00, and ‖pn‖ = 1; n ∈ N.

We see that the class of sequence algebras includes c0, all lp; 1 ≤ p < ∞ (but
not l∞), Fourier algebras of discrete countable groups (after rearranging the respec-
tive domains as sequences), and many other algebras.

The main results of this paper are Theorems 1.1 and 1.2 below. They give, within
a certain substantial class of normed modules over a sequence algebra, a full charac-
terization of extremely projective modules with respect to that class. Theorem 1.1 es-
sentially deals with, generally speaking, non-complete modules. (The interest in the
‘non-Banach’ case is derived from the papers [8], [14] on the extreme flatness.) How-
ever, from this theorem its Banach counterpart easily follows. This is Theorem 1.2,
which in one important point sounds essentially different.

We proceed to define, after some preparatory observations, the distinguished class
of modules playing the role of K (see above).

Let A be a sequence algebra and X a normed A-module. Often, when there is
no danger of confusion, for x ∈ X we shall write xn instead of pn · x and call the
latter the n-th coordinate of x. Of course, we have pn · xn = xn. Further, we set
Xn := {pn · x; x ∈ X} for every n ∈ N. We see that Xn is a subspace of X and,
moreover, a submodule with the outer multiplication

(1.1) a · x = anx; a = (a1, . . . , an, . . . ) ∈ A, x ∈ Xn.

It will be called the n-th coordinate subspace (or submodule) of X.

Definition 3 An A-module X is called homogeneous if, for every x, y ∈ X, the
inequalities ‖xn‖ ≤ ‖yn‖; n ∈ N imply that ‖x‖ ≤ ‖y‖.

We see that for elements x, y in a homogeneous module the equalities ‖xn‖ =
‖yn‖; n = 1, 2, . . . imply that ‖x‖ = ‖y‖. Thus in a homogeneous module the norm
of an element is completely determined by the norms of its coordinates.

For many typical sequence algebras the class of homogeneous modules is fairly
wide. In particular, it is easy to show that all essential normed modules over c0,
consisting of complex-valued sequences, are homogeneous. In addition, lp-sums,
1 ≤ p ≤ ∞, of arbitrary families of normed spaces are obviously homogeneous
A-modules. (In both examples we mean the coordinate-wise outer multiplication.)

On the other hand, a homogeneous normed A-module X is obviously faithful,
that is for every x ∈ X the equality a · x = 0 for all a ∈ A implies x = 0.

In the following two theorems A is an arbitrary sequence algebra. We denote by
H the full subcategory in A-mod, consisting of all essential homogeneous modules,
and by H the full subcategory in H, consisting of Banach modules.

We call an element x of a given normed A-module X finite if xn = 0 for all suffi-
ciently large n. We denote by X00 the submodule of X, consisting of finite elements.
If X is faithful, in particular, homogeneous, then for every x ∈ X00 we obviously have
x =

∑
n xn, and X00 is exactly the algebraic direct sum of coordinate submodules

Xn; n ∈ N.
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We say that X is of finite type, (or has finite type), if X = X00.

Theorem 1.1 A module X ∈ H is extremely projective with respect to H if and only
if it satisfies the following two conditions:
(i) For every n ∈ N, the n-th coordinate subspace Xn is extremely projective in Nor,

or equivalently (see Proposition 0 above), Xn is a near-retract of l01(Λn) for some
index set Λn.

(ii) X is of finite type.

Moreover, if X is at least topologically projective, (ii) is again valid.

The Banach counterpart of the formulated theorem is the following.

Theorem 1.2 A module X ∈ H is extremely projective with respect to H if and only
if for every n ∈ N the n-th coordinate subspace Xn is extremely projective as a Banach
space, or equivalently (see above), Xn is isometrically isomorphic to l1(Λn) for some index
set Λn.

Thus, speaking informally, in both theorems the answer depends not on the norm
on the whole module but only on the norms of its coordinate subspaces. In particular,
all Banach homogeneous modules consisting of sequences are extremely projective
with respect to H, but neither of them is extremely projective with respect to H,
when it is infinite-dimensional. On the other hand, submodules of these modules
consisting of finite sequences are extremely projective with respect to H.

2 Preparatory Observations

First, we consider the general case of an arbitrary normed algebra A and an arbitrary
distinguished full subcategory K in A-mod.

Proposition 2.1 Let Q be a normed A-module, and P its near-retract. Assume that Q
is extremely projective with respect to K. Then the same is true for P.

Proof Suppose we are given τ , ϕ and ε as in Definition 1. Fix any δ > 0 such that
‖ϕ‖δ + δ + δ2 < ε. Then for ϕ0 := ϕσ, there exists its lifting ψ0 : Q → Y with
‖ψ0‖ < ‖ϕ0‖+ δ, and also bounded morphisms σ : Q→ P, ρ : P→ Q with σρ = 1P

and ‖ρ‖ < 1 + δ. We see that ψ := ψ0ρ is a lifting we need.

Denote by K the full subcategory of A-mod whose objects are Banach A-modules
that are completions of modules from K.

Proposition 2.2 Suppose that for every module in K its completion also belongs to K.
Then, for every P ∈ A-mod, which is extremely projective with respect to K, its comple-
tion P is extremely projective with respect to K.

Proof Suppose we are given a coisometric morphism τ : Y → X; X,Y ∈ K, a
bounded morphism ϕ : P → X and ε > 0. Consider the restriction ϕ0 of ϕ to P.
Then there exists a lifting ψ0 : P → Y of ϕ0 with ‖ψ0‖ < ‖ϕ0‖ + ε. Since Y is com-
plete, ψ0 has the continuous extension ψ : P → Y , which is obviously a lifting of ϕ.
Therefore the previous estimate of ‖ψ0‖ gives the desired estimate of ‖ψ‖.
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In the remaining part of this section we concentrate on the case when A is a se-
quence algebra. This material will be used in Section 3.

Note that an arbitrary morphism ϕ : Y → X in A-mod gives rise, in an obvi-
ous way, to the sequence of its birestrictions between the respective coordinate sub-
modules (cf. Introduction). These morphisms will be denoted by ϕn : Yn → Xn,
n = 1, 2, . . . , and called coordinate submorphisms of ϕ.

Proposition 2.3 If τ : Y → X is a coisometric morphism in A-mod, then for every n,
τn : Yn → Xn is also a coisometry.

Proof Take x ∈ Xn and ε > 0. Then there exists ỹ ∈ Y with τ ( ỹ) = x and ‖ ỹ‖ <
‖x‖ + ε. Hence for y := pn · ỹ we have τ (y) = x and ‖y‖ ≤ ‖ ỹ‖.

Fix, for a moment, n ∈ N and denote by Kn the full subcategory in Nor whose
objects are n-th coordinate subspaces of modules from K.

Proposition 2.4 Suppose K contains, for every module in K, the n-th coordinate
submodule of the latter. Assume that a normed A-module P is extremely projective with
respect to K. Then Pn is extremely projective in Nor with respect to Kn.

Proof Take F, E ∈ Kn, a coisometric operator τ : F → E, a bounded operator
ϕ : Pn → E and ε > 0. Our E and F are underlying spaces of n-th coordinate sub-
modules, say X and Y , of some modules in K. Hence X,Y ∈ K, and (1.1) implies
that τ , as a map between these modules, is a module morphism.

Consider the map ϕ̃ : P → X : x 7→ ϕ(xn). It follows again from (1.1) that it
is a morphism of A-modules. Also we obviously have ‖ϕ̃‖ = ‖ϕ‖. Therefore, the

assumption on P provides a lifting ψ̃ : P→ Y of ϕ̃ such that ‖ψ̃‖ < ‖ϕ‖ + ε.

Denote by ψ the restriction of ψ̃ to Pn. Then we easily see that it is a lifting of ϕ,

and ‖ψ‖ ≤ ‖ψ̃‖. The rest is clear.

Let us turn to the special properties of homogeneous modules.
For every N = 1, 2, . . . we set PN :=

∑N
n=1 pn ∈ A.

Proposition 2.5 If an A-module X is essential and homogeneous, then for every x ∈ X
we have

x = lim
N→∞

PN · x.

Proof Take x and ε > 0. By Definition 2, there is y ∈ X of the form
∑n

k=1 ak ·zk; ak ∈
c00, zk ∈ X with ‖x − y‖ < ε/2. For all N ∈ N we have

‖x − PN · x‖ ≤ ‖x − y‖ + ‖y − PN · y‖ + ‖PN · y − PN · x‖.

But, because of the choice of y, for some M ∈ N we have y = PN · y for all N > M.
Besides, the homogeneity of X implies that ‖PN · (y − x)‖ ≤ ‖y − x‖. Therefore for
all N > M we have ‖x − PN · x‖ < ε.

Proposition 2.6 If an A-module X is essential and homogeneous, the same is true for
its completion X. (In other words, X ∈ H implies X ∈ H.)
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Proof Clearly, X is essential. Let us prove that it is homogeneous. Take x, y ∈ X
with ‖xn‖ ≤ ‖yn‖ for all n. We must show that ‖x‖ ≤ ‖y‖. By Proposition 2.5, we
can assume that for some N we have xn = yn = 0 for all n > N.

Choose sequences xk, yk ∈ X, k = 1, 2, . . . , converging to x and y, respectively.
Using Proposition 2.5, we can assume that xk

n = 0 whenever xn = 0.
For all n we have limk→∞ ‖xk

n‖ = ‖xn‖ and limk→∞ ‖yk
n‖ = ‖yn‖. We see that

for every ε > 0 there exists a natural M such that for all k > M and for all n we have
‖xk

n‖ ≤ (1 + ε)‖yk
n‖. But X is homogeneous, and therefore for the same k we have

‖yk‖ ≤ ‖(1 + ε)xk‖. It remains to pass to limits.

Now we recall a property of Banach (but not just normed) spaces, which is very
well known and which is easy to prove. Namely, if

∑∞
n=1 xn is a converging series in a

Banach space E, then there exists another series in E, say
∑∞

n=1 x̄n, such that, for some
sequence λn ∈ R, λn ≥ 1, and λn →∞, we have x̄n = λnxn, and this new series is still
convergent. From this one can easily deduce the following.

Proposition 2.7 Let X be essential and homogeneous. Then for every x in its comple-
tion X (in particular, in X) there exists x̄ ∈ X such that x̄n = λx

nxn, where λx
n ∈ R,

λx
n ≥ 1, and λx

n →∞.

Speaking informally, the coordinates of x̄, being proportional to those of x, tend
to 0 essentially more slowly.

At the end of the section we describe a certain way to construct some new homo-
geneous modules, starting with a given homogeneous module of finite type.

Suppose we have an algebraic A-module X of finite type. Set MX := {n ∈ N :
Xn 6= 0} and denote by c+

00(X) the set (actually, cone) of all finite non-negative se-
quences ξ = (. . . , ξn, . . . ) such that ξn = 0 whenever n /∈ MX .

Now assume that our X is a normed homogeneous A-module. Introduce the func-
tion fX : c+

00(X)→ R : ξ 7→ ‖x‖, where x is an (obviously existing) element of X with
‖xn‖ = ξn. By homogeneity of X, this function is well defined.

Proposition 2.8 The function fX has the following properties:
(i) if ξ ∈ c+

00(X) is not zero, then fX(ξ) > 0;

(ii) if ξ ∈ c+
00(X) and λ > 0, then fX(λξ) = λ fX(ξ);

(iii) if ξ, η ∈ c+
00(X), and ξ ≤ η, then fX(ξ) ≤ fX(η);

(iv) if ξ ∈ c+
00(X) and a ∈ A, then fX(|a|ξ) ≤ ‖a‖ fX(ξ);

(v) if ξ, η ∈ c+
00(X), then fX(ξ + η) ≤ fX(ξ) + fX(η);

(vi) if n ∈ MX , then fX(pn) = 1.

Proof The properties (i)–(iv) are immediate.
(v) Take x ∈ X such that ‖xn‖ = (ξ + η)n for all n and thus fX(ξ + η) = ‖x‖.

If ξn + ηn > 0 for a given n, then we set λn := ξn/(ξn + ηn) and µn := ηn/(ξn + ηn);
otherwise we set λn = µn = 0. After this, we set y :=

∑
n λnxn and z :=

∑
n µnxn.

We have fX(ξ) = ‖y‖ and fX(η) = ‖z‖. But x = y + z and hence ‖x‖ ≤ ‖y‖ + ‖z‖.
(vi) Take x ∈ Xn of norm 1. Then the sequence (‖x1‖, ‖x2‖, . . . ) is exactly pn.
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Sometimes we shall refer to fX as to the function associated with the module X.
Thus we got a function from a module. Proceed in the opposite direction.
Let X be an algebraic A-module X of finite type such that, for x ∈ X, the equalities

pn · x = 0; n ∈ N imply that x = 0. Suppose that every coordinate subspace Xn is
equipped with a norm, say ‖ · ‖n. Fix an arbitrary function f : c+

00(X)→ R possessing
the properties (i)–(v) of the previous proposition. Now for x ∈ X we set ‖x‖ := f (ξ),
where ξn := ‖xn‖n.

Proposition 2.9 The assignment x 7→ ‖x‖ is a norm, making X a homogeneous A-
module. If, in addition, f has the property (vi), then, for every n, the restriction of ‖ · ‖
to Xn coincides with the initial norm ‖ · ‖n.

Proof Of the properties of a norm, only the triangle inequality is not immediate.
Let x = y + z in X. Take the sequences ξ, η, ζ ∈ c+

00(X) such that ξn := ‖xn‖n,
ηn := ‖yn‖n and ζn := ‖zn‖n. We have ξ ≤ η + ζ , and the properties (iii) and (v) of
f imply f (ξ) ≤ f (η + ζ) ≤ f (η) + f (ζ). Hence ‖x‖ ≤ ‖y‖ + ‖z‖.

Now take a ∈ A and x ∈ X. Then, for sequences ξ and η with ξn := ‖xn‖n and
ηn := ‖(a · x)n‖n, we have η = |a|ξ. Therefore the property (iv) of f implies that
‖a · x‖ ≤ ‖a‖‖x‖.

Thus X became a normed module, which is obviously homogeneous.
Finally, if x ∈ Xn, then the sequence (‖x1‖1, ‖x2‖2, . . . ) coincides with ‖xn‖npn,

and therefore ‖x‖ = ‖xn‖n f (pn). The last assertion follows.

We shall denote the constructed homogeneous module by X f .

Proposition 2.10
(i) If X is a homogeneous module of finite type, then X fX = X.
(ii) If we have the data of Proposition 2.9, and f satisfies the properties (i)–(vi) of

Proposition 2.8, then fX f = f .

Proof (i) is immediate, and (ii) follows from Proposition 2.9.

Finally, suppose that we have two A-modules in the pure algebraic sense, say X
and Y , and, for every n, a linear operator ϕn : Xn → Yn is given. Suppose, further,
that X is of finite type. Then there exists, for every x ∈ X, the well-defined element
ϕ(x) :=

∑
n ϕn(xn) ∈ Y . In this way we obtain a map ϕ : X → Y , which is, of course,

a morphism. We shall call it the morphism generated by the operators ϕn. Note that
for every x and n we obviously have

(2.1) ϕ(x)n = ϕn(xn).

Proposition 2.11 Let X and Y be normed homogeneous modules of finite type with
c+

00(X) = c+
00(Y ) and with the same associated function. Suppose that for every n we are

given a bounded operator ϕn : Xn → Yn, and C := sup{‖ϕn‖; n ∈ N} <∞. Then the
morphism ϕ generated by operators ϕn is bounded, and ‖ϕ‖ = C.

Proof Take x ∈ X. Let ξ and η be the sequences with ξn := ‖xn‖ and ηn := ‖ϕ(x)n‖.
It follows from (2.1) and the assumption on ϕn that ηn ≤ Cξn. Since fX = fY ,
Proposition 2.8 (iii) and (ii) imply fY (η) ≤ C fX(ξ), that is, ‖ϕ(x)‖ ≤ C‖x‖. Thus
‖ϕ‖ ≤ C . Further, we see from (2.1) that, for every n, the restriction of ϕ to Xn is ϕn.
Hence C ≤ ‖ϕ‖.
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3 On Extremely Projective Non-complete and Complete Normed
Spaces

Looking for extremely projective spaces in the ‘non-complete context’, one inevitably
pays attention to the spaces l01(Λ), mentioned in the introduction. For every ν ∈ Λ,
we denote by eν the function in l01(Λ), taking ν to 1 and other points of Λ to 0. Clearly,
the set {eν ; ν ∈ Λ} is a linear basis in l01(Λ). In what follows, such a basis will be called
natural.

The following two statements must be well known, at least as folklore.

Proposition 3.1 Let E be a normed space, α : Λ → E a map with a bounded image.
Then there exists a bounded operator ϕ : l01(Λ) → E, uniquely defined by eν 7→ α(ν),
ν ∈ Λ. Moreover, ‖ϕ‖ = sup{‖α(ν)‖ ; ν ∈ Λ}.

Proposition 3.2 The space l01(Λ), where Λ is an arbitrary index set, is extremely pro-
jective in Nor.

Proof Take a coisometry τ : F → E in Nor, a bounded operator ϕ : l01(Λ) → E
and ε > 0. Fix, for every ν ∈ Λ, an arbitrary yν ∈ F with τ (yν) = ϕ(eν) and
‖τ (yν)‖ < ‖ϕ(eν)‖ + ε. Then the operator ψ : l01(Λ) → F, well defined by eν 7→ yν ,
is a lifting of ϕ across τ . Finally, Proposition 3.1 implies that ‖ψ‖ < ‖ϕ‖ + ε.

Let E be a normed space. Denote its unit sphere by SE. Consider the normed
space l01(SE) (i.e., l01(Λ) with SE as Λ) and its natural linear basis ex; x ∈ SE. Then
Proposition 3.1 provides a bounded operator τE : l01(SE) → E : ex 7→ x, x ∈ SE;
obviously, it is a coisometry. We shall call it the canonical coisometry for E.

Now we can prove Proposition 0, formulated in the introduction.

Proof The ‘if ’ part follows from Propositions 3.2 and 2.1. In the latter we set
A-mod := K =: Nor and Q := l01(Λ). Conversely, suppose that a certain P is
extremely projective in Nor; we can assume that P 6= 0. Consider the canonical
coisometry τP : l01(SP)→ P. Then for every ε > 0 there exists a lifting ρ : P → l01(SP)
of the identity operator 1P on P such that ‖ρ‖ < ‖1P‖ + ε. The rest is clear.

Of course, a much more sound and transparent statement would be: a normed
space is extremely projective as a normed space if and only if it is isometrically iso-
morphic to l01(Λ) for some index set Λ. But is it true? We do not know. The question
seems reasonable, especially because it has, as a background, the Grothendieck The-
orem that was formulated in the introduction.

Remark In the literature, the latter theorem is usually cited as [4] (see, e.g., [11,
p. 182]). Basically, the attribution of the result to Grothendieck is correct. At the
same time, despite the fact that the paper [4] contains all needed ingredients for the
proof, the theorem itself is not explicitly formulated (perhaps because the author
just thought it unnecessary). By ‘ingredients’ we mean the following two statements,
formulated (needless to say, in equivalent terms) and completely proved:
(i) a Banach space, which is topologically projective in Ban and isometrically iso-

morphic to some L1(Ω, µ), is isometrically isomorphic to l1(Λ) [4, Prop. 2];
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(ii) A Banach space F is isometrically isomorphic to some L1(Ω, µ) if and only if
it is extremely flat, that is, for every isometry i : F → G of Banach spaces the
operator 1E ⊗̂ i : E ⊗̂ F → E ⊗̂ G is also an isometry (here ⊗̂ is the symbol of
the projective tensor product of Banach spaces and bounded operators).

Thus, to complete the proof, one must show that every extremely projective Ba-
nach space is extremely flat. Apparently, the traditional way to do it is to use a non-
trivial criterion of extreme flatness, namely Proposition 1 in [4], and then to verify
the relevant condition. For this aim one takes a certain family of operators (indexed
by ε from Definition 1, and then, applying the Banach–Alaoglu Theorem, proceeds
to the cluster point of this family with respect to a suitable weak∗ topology. See, e.g.,
[13, 27.4.2].

Here we suggest what seems to be a shorter way.
As is well known, the property of a bounded operator, in particular 1E ⊗̂ i, to be

isometric is equivalent to the property of its adjoint to be coisometric. But (1E ⊗̂ i)∗,
by the standard Banach version of the law of adjoint associativity (see, e.g., [2, p. ix],
[15, III.B.26] or [9, p. 180]) is isometrically equivalent to the operator

B(E, i∗) : B(E,G∗)→ B(E, F∗) : ϕ 7→ i∗ϕ,

where B( · , · ) denotes the space of all bounded operators between relevant Banach
spaces. But E is extremely projective, and also, since i is isometric, i∗ is coisometric.
Therefore, by Definition 1, B(E, i∗) is coisometric, and we are done.

Returning to general normed spaces, combining the Grothendieck Theorem with
the suitable particular case of Proposition 2.2, we immediately get the following
proposition.

Proposition 3.3 Suppose P is extremely projective in Nor. Then it is, up to an isomet-
ric isomorphism, a dense subspace in l1(Λ) for some index set Λ.

Thus the question, formulated above, can be posed in the following somewhat
more detailed form. For a given Λ, which dense subspaces of l1(Λ) are extremely
projective in Nor (like l01(Λ)), and which are not?

Concluding this section, we point out another necessary condition of the property
under discussion.

Proposition 3.4 Let P be a separable normed space. Suppose that it is extremely, or at
least topologically, projective in Nor. Then it has at most countable linear dimension.

Proof Consider the canonical coisometry τP : l01(SP) → P for P. Then the identity
operator 1P has a bounded lifting ψ : P→ l01(SP) across τ .

Choose an arbitrary dense subset, say {xn; n ∈ N}, in P. Since l01(SP) has the linear
basis ex, x ∈ SP, every ψ(xn), n ∈ N, has a form

∑mn

k=1 λ
(n)
k en

xk
for some mn ∈ N,

xn
k ∈ SP and λ(n)

k ∈ C, k = 1, . . . ,mn. Therefore all ψ(xn), n ∈ N, belong to the
linear span of all exn

k
, n ∈ N, k = 1, . . . ,mn, denoted for brevity by F. The latter is

obviously closed in l01(SP), the set {xn; n ∈ N} is dense in P, and ψ is continuous.
Consequently, ψ maps P into F and, being a right inverse to τ , it is injective. There-
fore, ψ implements a linear isomorphism of P onto its image in F, and this image, of
course, has at most countable linear dimension.
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Proposition 3.5 Let Λ be an arbitrary infinite index set. Then the space l1(Λ) (be-
ing, thanks to Grothendieck, extremely projective in Ban) is not topologically, and hence
extremely, projective in Nor.

Proof Clearly, l1(Λ) has l1 as its near-retract. Therefore, by virtue of Proposition 2.1,
it is sufficient to prove our assertion for the latter space. But l1 is separable, and its
linear dimension, by an old theorem of Lövig [12], is continuum.

4 The Proof of Theorems 1.1 and 1.2

Up to the end of the paper, A is a fixed sequence algebra, the word “module” means
“A-module”, and “morphism” means “morphism of A-modules”.

Theorem 4.1 Let P be a homogeneous normed A-module of finite type such that for
every n, Pn = l01(Λn) for an index set Λn. Then P is extremely projective with respect
to H.

Proof For every n we denote by en
ν ; ν ∈ Λn the natural basis in l01(Λn), by S the unit

sphere in P and by E(S) the set of such z in S that, for every n, zn is a multiple of en
ν

for some ν ∈ Λn.
We need two preparatory assertions. In both of them X is an arbitrary normed

module, and ϕ : P→ X is a bounded morphism.

Lemma 1 For every x ∈ P and N ∈ N there exists x(N) ∈ P such that x(N)
N is a multiple

of some eN
ν , ν ∈ ΛN , x(N)

n = xn for all n 6= N, ‖x(N)‖ = ‖x‖, and ‖ϕ(x(N))‖ ≥ ‖ϕ(x)‖.

Proof We can assume that xN 6= 0, and thus it has a form
∑m

k=1 λkeN
νk

, where λk 6= 0,
νk ∈ ΛN . Set µk := |λk|/‖xN‖ and consider, for every k = 1, . . . ,m, the element xk ∈
P with the coordinates xk

N := µ−1
k λkeN

νk
and xk

n := xn for n 6= N. Obviously, for all k
we have ‖xk

N‖ = ‖xN‖. Since P is homogeneous, this implies ‖xk‖ = ‖x‖. Further,
since

∑m
k=1 |λk| = ‖xN‖, we have

∑m
k=1 µkxk = x. Therefore

∑m
k=1 µkϕ(xk) = ϕ(x),

and we see that ϕ(x) is a convex combination of elements ϕ(xk) in X. Consequently,
for at least one of k we have ‖ϕ(xk)‖ ≥ ‖ϕ(x)‖. Thus the appropriate xk has all
properties of the desired x(N).

Lemma 2 We have ‖ϕ‖ = sup{‖ϕ(z)‖; z ∈ E(S)}.

Proof Take an arbitrary x ∈ S. Apply to this element the previous lemma for the case
N := 1. Then apply to the resulting element x1 (also belonging, by the construction,
to S) the same lemma, this time for the case N := 2, and so on. Since x is finite,
eventually we come to an element, say z, belonging to E(S) and such that ‖ϕ(z)‖ ≥
‖ϕ(x)‖. The rest is clear.

The End of the Proof of Theorem 4.1
Suppose we are given modules X,Y ∈ H, a coisometric morphism τ : Y → X, a

bounded morphism ϕ : P → X, and ε > 0. Consider the coordinate submorphisms
ϕn : Pn → Xn, τn : Yn → Xn, and choose δ > 0 with (1 + δ)2‖ϕ‖ < ‖ϕ‖ + ε/2. By
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Proposition 2.3, all τn are coisometries. Therefore for every ν ∈ Λn there exists an
element yn

ν ∈ Yn such that τn(yn
ν) = ϕ(en

ν) and ‖yn
ν‖ ≤ ‖ϕ(en

ν)‖+ δ‖ϕ(en
ν)‖. Observe

that Proposition 3.1 provides, for every n, an operator ψn : Pn → Yn, well defined by
en
ν 7→ ynν , ν ∈ Λn. Consider the morphism ψ : P → Y , generated (see above) by the

operators ψn. Clearly, it is a lifting of ϕ across τ .
Now take x ∈ E(S). For every n we have xn = λn

νen
ν for some ν ∈ Λn and λn

ν ∈ C.
Hence ϕn(xn) = λn

νϕ(en
ν) and ψn(xn) = λn

ν yn
ν . Therefore we have

(4.1) ‖ψn(xn)‖ ≤ (1 + δ)‖ϕn(xn)‖.

Since τ is a coisometry, there exists z ∈ Y with τ (z) = ϕ(x) and ‖z‖ ≤ ‖ϕ(x)‖ +
δ‖ϕ(x)‖. Note that τ (zn) = τ (z)n = ϕ(x)n = ϕn(xn) and hence ‖ϕn(xn)‖ ≤ ‖zn‖.
Together with (4.1), this gives ‖ψ(x)n‖ = ‖ψn(xn)‖ ≤ (1 + δ)‖zn‖. From this, by
homogeneity, we obtain that

‖ψ(x)‖ ≤ (1 + δ)‖z‖ ≤ (1 + δ)2‖ϕ(x)‖ ≤ (1 + δ)2‖ϕ‖ < ‖ϕ‖ + ε/2.

Therefore the previous lemma gives ‖ψ‖ ≤ ‖ϕ‖ + ε/2. The rest is clear.

The Proof of the ‘If ’ Part of Theorem 1.1
Now the coordinate subspaces Pn of our homogeneous module P of finite type

are arbitrary spaces that are extremely projective in Nor. By virtue of Proposition 0,
formulated in the Introduction and proved in Section 2, for every n ∈ N there exists
an index set Λn and an operator σn : l01(Λn)→ Pn which is a near-retraction.

Set, for brevity, Qn := l01(Λn) (thus, in particular, Qn = 0 exactly when Pn = 0).
Denote by Q the algebraic sum

⊕
n Qn. Clearly, Q is an A-module of finite type with

respect to the outer multiplication, well defined, for a ∈ A and x ∈ Q of the form
x =

∑
n xn; xn ∈ Qn, by a · x :=

∑
n anxn.

Of course, c+
00(Q) = c+

00(P), and hence we can endow Q with a norm by the recipe
of Proposition 2.9, taking, in the capacity of f , the function fP.

We obtain a homogeneous A-module of finite type. By virtue of Theorem 4.1, it
is extremely projective with respect to the category H.

Take ε > 0. As we know, for every n the operator σn has a right inverse operator,
say ρn, with the norm< 1 +ε/2. Consider the morphisms σ : Q→ P and ρ : P→ Q,
generated by the sequences σn and ρn, respectively. Obviously, ρ is a right inverse
to σ. By virtue of Proposition 2.10 (ii), fQ = fP, and we can apply Proposition 2.11
to both morphisms. Therefore, since all σn are contractive, the same is true for σ, and
the estimate for ‖ρn‖ gives ‖ρ‖ ≤ ε/2 < ε. Thus σ is a near-retraction of normed
modules, and it remains to apply Proposition 2.1.

The End of the Proof of Theorem 1.1
Now we suppose that a module P ∈ H is extremely projective with respect to the

category H. Since every coordinate submodule of a homogeneous module is itself
homogeneous, we can use Proposition 2.4. This implies that P has the property (i).

To complete the proof of Theorem 1.1, we proceed to show that every module in
H that is topologically projective with respect to H has finite type. For brevity in
what follows, for an arbitrary A-module X we denote the set X \ X00 by X∞.
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Suppose that for X ∈ H we have X∞ 6= ∅. Our nearest aim is to construct,
starting with X, another module Y ∈ H that will serve as the domain of a future
coisometry onto X.

For every x ∈ X∞, choose and fix an arbitrary x̄ ∈ X and the sequence λx
n with

the properties indicated in Proposition 2.7. Further, denote by Y x the submodule
{µx̄ + b · x̄;µ ∈ C, b ∈ A} in X, that is the submodule, algebraically generated by x̄.
After this, we introduce the A-module

Y :=
( ⊕

x∈X∞
Y x
)
⊕ X00,

the algebraic direct sum of the indicated modules. In what follows, for a given y ∈ Y
the notation y = {yxk ; k = 1, . . . ,m, y∗} means that yxk ∈ Y xk and y∗ ∈ X00 are
direct summands of this element and all other summands are zeroes. Note that yn,
the n-th coordinate of our y can be presented as {yxk

n ; k = 1, . . . ,m, y∗n}.
We want to equip Y with a norm. To avoid a misunderstanding, we shall denote

this future norm by ‖ · ‖Y, whereas the already given norm on X, as well as on its
completion X, will be denoted just by ‖ · ‖.

We begin with the coordinate submodules of Y. Fix, for a moment, n ∈ N and
for an arbitrary y = {yxk ; k = 1, . . . ,m, y∗} ∈ Yn (where, of course, yxk ∈ Y xk

n and
y∗ ∈ Xn), set

‖y‖n :=
m∑

k=1

‖yxk
n ‖ + ‖y∗n‖.

Evidently, ‖ · ‖n is a norm on Yn. Further, for every n ∈ N, we have Xn = 0 if and only
if Yn = 0. It follows that, in the notation of Section 1, c+

00(Y00) = c+
00(X00). Denote

by f the function associated with the module X00. Using the recipe of Proposition 2.9,
we introduce, with the help of that f and the norms ‖ · ‖n, the norm on Y00. Denote
this norm by ‖ · ‖0

Y.
Thus Y00 becomes a homogeneous A-module. Now take an arbitrary y ∈ Y and

consider numbers ‖PN · y‖0
Y for all N ∈ N. By homogeneity, they form an increas-

ing sequence. Further, note that for every y ∈ Y00 with the only non-zero direct
summand, say y, we have ‖y‖0

Y = ‖y‖. It follows that for every y = {yxk ; k =
1, . . . ,m, y∗} ∈ Y and N we have

‖PN · y‖0
Y ≤

m∑
k=1

‖PN · yxk‖ + ‖PN · y∗‖ ≤
m∑

k=1

‖yxk‖ + ‖y∗‖.

Thus the sequence ‖PN · y‖0
Y, N = 1, 2, . . . , converges; denote its limit by ‖y‖Y. It is

easy to check that ‖ · ‖Y is also a norm, this time on all Y, and it makes the latter an
essential homogeneous A-module.

Of course, if a certain y ∈ Y belongs either to Y x for some x ∈ X∞, or to X00,
then ‖y‖Y is the norm of our element in the respective submodule of X. On the other
hand, if y belongs to Yn for some n, that is y can be written as {yxk ; k = 1, . . . ,m, y∗}
with all yxk ∈ (X)n and y∗ ∈ Xn, then we obviously have

(4.2) ‖y‖Y = ‖y‖n =
m∑

k=1

‖yxk‖ + ‖y∗‖.
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Our next aim is to introduce a morphism of A-modules τ : Y→ X.
It is sufficient to define τ on direct summands of Y. First, take a summand of the

form Y x; x ∈ X∞ and its element, say y. The latter, as we remember, has the form
µx̄ + b · x̄ for some µ ∈ C and b ∈ A. We set τ (y) := µx + b · x. Since we have,
of course, τ (y)n = (λx

n)−1 yn (cf. Proposition 2.7), and X is homogeneous, our τ (y)
is uniquely defined by y. This gives rise to the well defined map from Y x into X,
which is obviously a morphism of A-modules. In the case of the remaining direct
summand, X00, we define τ as just the natural embedding into X.

Thus τ is defined. Note that for y ∈ Y, say y = {yxk ; k = 1, . . . ,m, y∗}, we
obviously have

(4.3) τ (yn) =

m∑
k=1

(λxk
n )−1 yxk

n + y∗n .

Proposition 4.2 The morphism τ is coisometric.

Proof Clearly, τ has a well defined birestriction τ00 : Y00 → X00, and τ00 is generated
by its coordinate submorphisms (τ00)n : (Y00)n → (X00)n; here, of course, (Y00)n =
Yn and (X00)n = Xn.

Fix, for a moment, n ∈ N and take y = {yxk
n ; k = 1, . . . ,m, y∗n} ∈ Yn. We have

τ (yxk
n ) = (λxk

n )−1 yxk
n , where, by Proposition 2.7, λxk

n ≥ 1. Combining this with (4.2),
we see that the norm of (τ00)n(y), that is of τ (y), does not exceed ‖y‖.

From this, by Proposition 2.11, we have ‖τ00(y)‖ ≤ ‖y‖ for all y ∈ Y00 and hence
‖τ (PN · y)‖ ≤ ‖PN · y‖ for all y ∈ Y and N ∈ N. But, by Proposition 2.5, τ (y) =
limN→∞ PN · τ (y). In addition, τ is a module morphism. Hence τ is contractive.

It remains to display, for a given x ∈ X and ε > 0, a certain y ∈ Y with τ (y) = x
and ‖y‖Y < ‖x‖ + ε. If x ∈ X00, then the copy of x in the direct summand X00 of Y
already fits. If x ∈ X∞, we recall that X ∈ H (Proposition 2.6), and therefore, by
Proposition 2.5, there exists N ∈ N such that ‖x̄ − PN · x̄‖ < ε.

Now consider y ∈ Y with at most two non-zero direct summands, namely
x̄ − PN · x̄ ∈ Y x and PN · x ∈ X00. We see that τ (y) = x, and

‖y‖Y ≤ ‖x̄ − PN · x̄‖ + ‖PN · x‖ < ε + ‖x‖.

Proposition 4.3 Let X, non-empty X∞, Y and τ be as before. Then the identity
morphism 1X has no bounded lifting across τ . In other words, there is no bounded
morphism of A-modules ψ : X → Y making the diagram

Y

τ��
X

ψ
88qqqqqqqqqq 1
// X

commutative.
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Proof Letψ be an (algebraic) morphism of A-modules, being a lifting of 1X across τ .
Fix an arbitrary x ∈ X∞. Denote, for brevity, ψ(x) by y and write it as y = {yxk ; k =
1, . . . ,m, y∗} (see above). Since ψ is a morphism, ψ(xn) coincides with yn and thus
can be written as {yxk

n ; k = 1, . . . ,m, y∗n}, where yxk
n ∈ (Y xk )n and y∗n ∈ Xn. Since

y∗ is a finite sequence, the equality (4.2) transforms to ‖yn‖ =
∑m

k=1 ‖yxk
n ‖ for suffi-

ciently large n. But by (4.3) for these n we have also

xn = τψ(xn) = τ (yn) =

m∑
k=1

(λxk
n )−1 yxk

n .

Therefore for all sufficiently big n we have

‖xn‖ ≤ ζn

m∑
k=1

‖yxk
n ‖ = ζn‖yn‖Y,

where we set ζn := max{(λxk
n )−1; k = 1, . . . ,m}. Since ζn tends to 0, the set of

numbers ‖ψ(xn)‖Y/‖xn‖, taken over all n with xn 6= 0, is not bounded. This shows,
of course, that the morphism ψ is not bounded.

Recall that the module Y above belongs, together with X, to the category H.
Therefore the last assertion of Theorem 1.1 is valid. Since every extremely projec-
tive module is topologically projective, we obtain the ‘only if ’ part of the theorem.
This completes the proof of Theorem 1.1.

The Proof of Theorem 1.2

‘If ’ Part Suppose we are given a module X ∈ H with Xn = l1(Λn); n = 1, 2, . . . .
Consider its submodule P of finite type with Pn := l01(Λn). Of course, P belongs to H,
and hence, by Theorem 4.1, it is extremely projective with respect to that category.
But the completion of P is obviously our initial X. Therefore, by Propositions 2.6
and 2.2 combined, X is extremely projective with respect to H.

‘Only If ’ Part Suppose that X ∈ H is extremely projective with respect to H.
Clearly, H satisfies the condition on K, formulated in Proposition 2.5, and Kn, for
K := H, is Ban. Consequently, Proposition 2.5 implies that for every n, Xn is ex-
tremely projective in Ban. It remains to apply the Grothendieck Theorem, formu-
lated in the introduction.
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