
9

Bosonized gauge theories

Bosonization, the equivalence map between two-dimensional fermionic and
bosonic operators, was developed in Chapter 6. In fact several such maps have
been described. The simplest one has been the abelian bosonization that maps
the free theory of a Dirac fermion into that of a single real scalar field. The map
includes in particular an explicit bosonic expression for the left and right chiral
fermions (6.19), the vector and axial abelian currents (6.3) and for a mass term
(6.22). Using these transformations it is straightforward to write the bosonized
Lagrangian or Hamiltonian that corresponds to two-dimensional QED and QCD.
By its nature the abelian bosonization is more adequate to the abelian theory
of QED. The bosonized version of QED will be discussed in the next section.
We then apply this bosonization to QCD2 . Though it is possible to write QCD2

in an abelian bosonization formulation, it will turn out not to be very useful.
Instead, we will use the non-abelian bosonization discussed in Section 6.3. For
that purpose we will need to gauge the WZW action. Once this is done the
bosonized version of massless flavored QCD2 follows easily. The massive case
requires more care, as was explained in Section 6.3.3. Using the results of that
section the full bosonized theory that corresponds to massive flavored QCD2 will
be written down.

References on bosonization were given in Chapter 6.

9.1 QED2 – The massive Schwinger model

Recall that the fermionic Lagrangian of this model is given by,

L = −1
4
Fμν Fμν + Ψ̄(i	∂ − e 	A −m)Ψ. (9.1)

The Hamiltonian density of the system in the A1 = 0 gauge takes the form,

H = Ψ̄(iγ1∂1 + m)Ψ +
1
2
(F01)2 .

In bosonic variables, using (8, 10), the Hamiltonian becomes1

H =:

[
1
2
π2 +

1
2
(∂1φ)2 − cm2

π
cos(2

√
πφ) +

e2

2π

(
1
2

θ√
π
− φ

)2
]

:m ,

1 The treatment of the bosonized Schwinger model was done in [68] and [64].
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184 Bosonized gauge theories

where c is the constant of bosonization and the normal ordering is with respect
to the mass m, as was explained in Section 6.1.1.

After a shift in the definition of φ,

φ→ φ +
1
2

θ√
π

,

and normal ordering with respect to μ = e/
√

π, one finds,

H =:
(

1
2
π2 +

1
2
(∂1φ)2 +

1
2
μ2φ2 − cmμ

π
cos(θ + 2

√
πφ)
)

: . (9.2)

From this expression the periodicity in θ is manifest. The angle θ is the conjugate
to the winding number, appearing in two dimensions for the abelian case, since
Π1[U(1)] = Z (looking at a circle of large radius in the two-dimensional plane).
Physics is invariant under θ → θ + 2π. From (8.10) it is clear that eθ

2π corresponds
to a background electric field. The periodicity is due to the ability to produce
electron-positron pairs in the vacuum when | eθ

2π | >
1
2 e, and these pairs create

their own electric field which reduces the original one.
When we set m = 0 we discover that the massless Schwinger model is in fact

a theory of one free bosonic field with a mass equal to μ.
In the strong coupling limit, the bosonized form of the Hamiltonian is very

useful. The theory contains a meson of a mass that is approximately μ, and the
number of bound states depends on the value of θ. It can be shown that there
are no bound states for |θ| > π/2. For 0 < |θ| ≤ π/2 there is a stable two-body
bound state, while for θ = 0 there is also a three-body bound state.

Note that even though the Hamiltonian density (9.2) resembles that of a sine-
Gordon model, it does not admit soliton solutions due to the mass term 1

2 μ2φ2 .
We will come back later to analyze this bosonized Hamiltonian, in the con-
text of the question whether the system admits screening or confinement in
Chapter 14.

Finally, let us show how the anomaly arises in the bosonized version. The
equation of motion for the electromagnetic field is,

∂μFμν = eJν . (9.3)

The vector fermion current, in bosonic version, is (6.9),

Jν =
1√
π

ενα∂αφ. (9.4)

Taking the time component, we get,

∂1
(

F10 −
e√
π

φ

)
= 0. (9.5)

From here, with the vanishing conditions at space infinity,

F10 =
e√
π

φ. (9.6)
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Now, the axial current, in bosonic version, is (6.12),

Jμ
5 =

1√
π

∂μφ. (9.7)

For the case of a massless fermion, the scalar field is a free field of mass e√
π
, and

so,

∂μJμ
5 = − 1√

π

e2

π
φ =

e

π
F01 , (9.8)

which is the anomaly equation.
Note that in the bosonic version, the anomaly is a result of the equations of

motion, while in the fermionic one it is the result of one loop.

9.2 Abelian bosonization of flavored QCD2

Let us now apply the prescription of flavored Dirac fermions for the analysis
of QCD2 . It is convenient to start with the Hamiltonian of the theory in its
fermionic formulation which we derive from (8.16),

H = (ec)2
NC∑

a,b=1

(
Ea

b

)2 +
NC∑

a,b=1

NF∑
i=1

Ψ̄aiγ1
(
iδb

a∂1 −Ab
a

)
Ψbi + m

NC∑
a=1

NF∑
i=1

Ψ̄aiΨai ,

(9.9)
in the gauge,

A0 = 0; Aa
b = 0 for a = b; Ea

b = 0 for a 	= b. (9.10)

The Gauss law of the system is given by,

∂1E
a
b = i[A,E]ab +

1
2

NF∑
i=1

Ψ†aiΨbi −
δa
b

2NC

NF∑
i=1

NC∑
d=1

Ψ†diΨdi (9.11)

Bosonizing now the various parts of the Hamiltonian one then gets,2

H = H0
Ψ + HE −HI

H0
Ψ = Σai

[
1
2
[π2

ai + (∂1φai)2 ] +
cmμ

π
: (1− cos(2

√
πφai)) :

]

HE =
e2
c

8πNc

∑
ab

[∑
i

(φai − φbi)

]2

HI =
2c2μ2

π
3
2

Σa �=bΣijKij,abNμ

[
cos
√

π

∫ x

−∞
(πai − πaj + πbj − πbi)(ξ)dξ

]
[
sin(
√

π(φai + φaj − φbj − φbi)(ξ))
] [∑

ab

(φak − φbk )

]−1

, (9.12)

2 Abelian bosonization of two-dimensional QCD was discussed in [24] and [201] and was further
elaborated in [62].
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H0
Ψ is the free “fermionic” part, after bosonization, thus in terms of bosonic

variables; HE is the first term of the Hamiltonian (9.9) rewritten in terms of the
boson variables corresponding to the fermions, by eliminating the electric fields
through the Gauss law. Thus although originally coming from the kinetic part of
the gauge potentials, it actually involves the interactions. This is a result of the
fact that there are no transverse vectors in 1 + 1 dimensions. Kab

ij is a properly
generalized ordering operator.3

In the case of one flavor, i = j = 1, HI does not involve the π variables.
The interaction involves non-local terms which relate to color non-singlets.

For static and ec →∞ approximations one finds that for NF = 2 the interaction
is field independent. For NF ≥ 3, on the other hand, the limit is singular. This
singularity should not be there in the predictions of physical quantities, but it
renders any further treatment very complicated.

It is thus clear that a different method of bosonization is required for the
treatment of flavored QCD2 . In the following it will be shown that the “non-
abelian bosonization”, based on the WZW model discussed in Section 6.3, is an
adequate tool for this purpose.

Before proceeding to non-abelian bosonization and in particular to gauge the
color symmetry group of the colored-flavored WZW model, we describe briefly
another approach, in which the flavor sector appears in the form of a WZW
model, but for the color degrees of freedom the gauged abelian bosonization is
invoked. As we have seen above one can use the Gauss law to express the gauge
fields in terms of the appropriate fermionic bilinear, which translate into bosonic
group elements as,

2∂1ea =
∑

i

Ψ†iaΨia =
i

π
∂1TrF (log ga), (9.13)

where ga ∈ U(NF ) is one out of NC such matrices, and ea = 2
√

πEa
a , the diagonal

element. One can also express Ab
a for a 	= b in terms of fermion densities. Inserting

these into the QCD2 Hamiltonian one gets,

H = H0 +HI

HI = −
∑
a,b

(ec)2

32π2NC

[
Tr log

(
gag−1

b

)]2 −∑
a,b

πμ2 Tr(gag−1
b )

Tr log(gag−1
b )

+
∑

a

mcμ
√

NFTr(ga), (9.14)

H0 includes the fermion kinetic term. For NF = 2 the potential is free from
singularities, for NF ≥ 3 it is not. In the case of NF = 2 the low lying baryonic
spectrum can be extracted. Here we will not follow this approach further and
instead will move on to the fully non-abelian bosonization.

3 See Cohen et al. [62].
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9.3 Non-abelian bosonization of QCD2

Whereas abelian bosonization has been very useful to address various abelian
systems, we have seen in the last section that the implementation of this approach
to QCD2 is quite limited. Instead the natural approach is to make use non-
abelian bosonization, namely, the WZW action.4 Recall from Section 6.3 that
the bosonized action of massless free colored flavored fermions can be expressed
either using an SU(NC)× SU(NF)× U(1) scheme where it reads,

S = NCS[g] + NFS[h] +
1
2

∫
d2x∂μφ∂μφ, (9.15)

or a U(NF ×NC) where the action takes the form,

S[u] = NCS[g] + NFS[h] +
1
2

∫
d2x(∂μφ∂μφ + S[l]). (9.16)

Note that l is still an SU(NCNF) matrix while g and h are expressed now as
SU(NF) and SU(NC) matrices, respectively, but the matrix l involves only prod-
ucts of color and flavor matrices (not any of them separately). For massive Dirac
fermions we can use only the latter frame in which the mass term action reads,

Sm [u] = m
′2Nm̃

∫
d2xTr(u + u†). (9.17)

To determine the bosonized action of two-dimensional QCD2 one needs to
couple the colored degrees of freedom to the gauge fields. Thus, we first have to
gauge the WZW model.

9.3.1 Gauging the WZW action

Since there are two possible bosonization schemes (for the massless case) we
need to invoke a gauging procedure for both of them. We start first by gauging
an SU(NC) WZW model which is what is needed in the product scheme, we
later adopt it also to the U(NF ×NC). Gauging the colored WZW is achieved
by gauging the vector subgroup SUV (NC) of SUL (NC)× SUR (NC). There are
various methods to gauge the model. Here we present two of them. One is a trial
and error method, and the other is by gauging via covariantizing the current.
Those methods are applicable also in the U(NFNC) bosonization scheme.

The gauging of the WZW model and the full non-abelian bosonization of QCD
in two dimensions was analyzed in [75] and [99]. Bosonization of QCD in two
dimensions was reviewed in [101].

Trial and error Noether method

The WZW action on the SU(NC) group manifold is, as stated above, invariant
under the global vector transformation h→ UhU−1 , where U ⊂ SU(NC). Now

4 The hybrid of abelian and non-abelian bosonizations was implemented in [107].
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we want to vary h with respect to the associated local infinitesimal transforma-
tion U = 1 + iε(x) = 1 + iTAεA (x),

δεh = i[ε, h], δεh
−1 = i[ε, h−1 ]. (9.18)

The variation of the action S(0) [h] ≡ S[h] under such a transformation is,

δεS
(0) [h] = −

∫
d2xTr(∂μεJμ), (9.19)

where the Noether vector current is given by,

Jμ =
i

4π
{[h†∂μh + h∂μh†]− εμν [h†∂ν h− h∂ν h†]}. (9.20)

We introduce now the first correction term S(1) given by,

S(1) =
∫

d2xTr(AμJμ) δεS
(1) [h] = −

∫
d2xTr[∂με(Jμ + J

′μ)]. (9.21)

The variation of S(1) is derived using the infinitesimal variation of the gauge field
δAμ = −Dμε = −(∂με + i[Aμ, ε]). J

′μ is found to be,

J
′
μ =
−1
4π
{[h†Aμh + hAμh† − 2Aμ ]− εμν [h†Aν h− hAν h†]}. (9.22)

The second iteration will be given by adding S(2) , where now J
′μ is replacing

Jμ ,

S(2) =
∫

d2xTr(AμJ
′μ), δεS

(2) [h] = −2
∫

d2xTr(∂μεJ
′μ). (9.23)

It is therefore obvious that,

δε

[
S(0) + S(1) − 1

2
S(2)
]

= 0. (9.24)

Hence the action we are looking for is S[h,Aμ ] ≡ [S(0) + S(1) − 1
2 S(2) ], given by,

S[h,Aμ ] =
1
8π

∫
d2xTr(DμhDμh†)

+
1

12π

∫
B

d3yεijkTr(h†∂ih)(h†∂jh)(h†∂kh)

− 1
4π

∫
d2xεμν Tr[iAμ(h†∂ν h− h∂ν h† + ih†Aν h)], (9.25)

which can also be written in light-cone coordinates,

S[h,A+ , A−] = S[h] +
i

2π

∫
d2xTr(A+h∂−h† + A−h†∂+h)

− 1
2π

∫
d2xTr(A+hA−h† −A−A+). (9.26)

Gauging via covariantization of the Noether current

In four space-time dimensions the current, in terms of bosonic matrices, involves
up to third power gauge potentials. In D space-time dimensions the bare current
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will contain (D-1) derivatives, and is gauged by replacing the ordinary derivatives
with covariant derivatives and by adding terms which contain products of Fμν

with powers of h and h† and also covariant derivatives Dμh and Dμh†. In two
dimensions, however, there is no room for such terms in the gauge covariant
current, as these involve εμ1 ...μD

in D dimensions, with one free index and the
others contracted with Fμν s and Dμs, and in two dimensions they cannot be
constructed. Therefore the covariantized current is given by,

Jμ(h,Aμ) =
i

4π
{[h†Dμh + hDμh†]− εμν [h†Dν h− hDν h†]}. (9.27)

Knowing the current we deduce the action via, Jμ = δS
δAμ

, getting (9.26) directly.
Finally, we combine the gauged WZW action of the color group manifold, the

WZW of the flavor group manifold and the action term for the gauge fields, to
get the bosonic form of the action of massless QCD2 . The well known fermionic
form of the action is (a mass term will be added later),

SF [Ψ, Aμ ] =
∫

d2x
{
− 1

2e2
c

Tr(Fμν Fμν )− Ψ̄ai [(i	∂+ 	A )Ψi ]a
}

, (9.28)

where ec is the coupling constant to the color potentials (note it has mass dimen-
sions in 1+1 space-time), and,

Fμν = ∂μAν − ∂ν Aμ + i[Aμ,Aν ]. (9.29)

The bosonized action is,

S[g, h,A+ , A−] = NCS[g] + NFS[h] +
1
2

∫
d2 × ∂μφ∂μφ

+
NF

2π

∫
d2xTr[i(A+h∂−h† + A−h†∂+h)

− (A+hA−h† −A−A+)]

− 1
2e2

c

∫
d2xTrFμν Fμν . (9.30)

9.3.2 Multiflavor QCD2 using the U(NF ×NC) scheme

Let us now repeat the gauging of the SUV (NC) subgroup in the framework of
the U(NF ×NC) bosonization procedure.

Using the gauging prescription discussed in Section 9.3.1 we first get the action
in which the whole SU(NCNF) is gauged, namely,

S[u,A+ , A−] = S[u] +
i

2π

∫
d2xTr(A+u∂−u† + A−u†∂+u)

− 1
2π

∫
d2xTr(A+uA−u† −A−A+)

+m
′2Nm̃

∫
d2xTr(u + u†), (9.31)
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where we have also added a mass term with m
′2 = mqcm̃. Now since we are

interested in gauging only the SU(NC) subgroup of U(NFNC), we take Aμ to
be spanned by the generator TD ⊂ SU(NC) via Aμ = ecA

D
μ TD . We then add

to this action the kinetic term for the gauge fields − 1
2e′2

c

∫
d2xTr(Fμν Fμν ). The

coupling e
′
c is related to the color gauge coupling ec by e

′
c =
√

NFec , so that
after taking the trace over flavor we get the expected kinetic term with coupling
ec . The resulting action is invariant under local color and global flavor,

u→ V (x)uV −1(x), Aμ → V (x)(Aμ − i∂μ)V −1(x); V (x) ⊂ SUV (NC)

u→WuW−1 ; W ⊂ U(NF).

The symmetry group is now SUV (NC)× U(NF), just as for the gauged fermionic
theory. We choose the gauge A− = 0, so now the action takes the form,

S[u,A+] = S[u] + 1
e′2

c

∫
d2xTr(∂−A+)2 + i

2π

∫
d2xTr(A+u∂−u†)

+m
′2Nm̃

∫
d2xTr(u + u†). (9.32)

Upon the decomposition u = g̃h̃le
−i
√

4 π
N C N F

φ , we see that the current that cou-
ples to A+ is h̃∂−h̃†. In terms of u it is the color projection (u∂−u†)C =

1
NF

TrF [u∂−u† − 1
NC

TrC u∂−u†]. Thus the coupling of the current to the gauge
field i

2π

∫
d2xTr(A+ h̃∂−h̃†).

We can further manipulate the action to a form which will be convenient
for taking the strong coupling limit (see Chapter 13). We define H̃(x) by
∂−H̃ = ih̃∂−h̃†. We take the boundary conditions to be H̃(−∞, x−) = 0 and
then integrate out A+ obtaining,

S̃[u] = S[u]− ( ec

4π )2NF
∫

d2xTr(H̃2)

+m
′2Nm̃

∫
d2xTr(u + u†). (9.33)

In Chapter 13 this form of action will constitute the starting point of determining
the baryonic spectrum of QCD2 in the strong coupling limit. In Chapter (14)
we will use this action to analyze the string tension and the confining behavior
of massive QCD2 .
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