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Abstract. It is shown that when viewed properly some concepts in topological
dynamics and ergodic theory are not merely analogous but equivalent. Also the
Mackey-Halmos-von Neumann theorem on ergodic processes with discrete spec-
trum is generalized and an account of the Mackey-Zimmer theory of minimal
cocycles is given in a more general setting.

0. Introduction
This paper is an attempt to link topological dynamics and ergodic theory more
closely. There are many concepts which have counterparts in both theories, e.g.,
minimality-ergodicity, equicontinuous-discrete spectrum, almost periodic ex-
tension-relatively discrete spectrum, etc. These have led to the formulation of
analogous theorems. However, they have up until now remained analogies; the
proofs involved being entirely different and neither directly deducible from the
other. This, of course, is not surprising since the methods used in one are topological
and in the other measure theoretic.

However, there is a meeting ground. Thus, let (X, /A) be a 'probability space' and
T a group of measure preserving transformations on X. Then T acts as a group of
homeomorphisms on the Gelfand space U of V°{X, /u,). Now /A induces a T-
invariant probability measure v on U such that L°°(U, v) = Lx>(X, /J,) and since
ergodic theory is 'really' about the measure algebra on X and not the flow {X, T)
itself, (U, T) captures all the ergodic-theoretic essentials. Consequentially, there is
hope that some ergodic theorems could be deduced by topological means from the
flow (U, T, v). (As a simple example it is immediate that (X, T, fi) is ergodic if and
only if (U, T) is topologically transitive.)

A priori there are problems with this approach. Usually the group T is provided
with a topology such that the action of T on X is measurable and this does not
entail the continuity of the map (u, t)-*ut: UxT^> U. However, as with most
problems in topological dynamics this is a mere technicality and one may assume
without loss of generality that T is discrete. (An example of how the given topology
on T may be introduced at the 'critical' moment is given in § 3.)

Another problem is that the space U is 'huge' and that (U, T) is in general not
minimal, though in the situations discussed it is topologically transitive. This is a
real drawback since there is a rather extensive theory for minimal flows which has
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as yet not been extended to the topologically transitive case. (One approach might
be through homomorphic images and universe limits. Recall that a distal, topologi-
cally transitive flow is minimal, [5]).

At this point it should also be mentioned that nowhere in this paper is it assumed
that (X, /x) is a standard Borel space. This assumption seems to be made for technical
reasons, but is unnecessary for the results contained herein. (Thus, the latter are
generalizations of those in Zimmer [10] which are in turn generalizations of the
classical results.) One of the principal uses of this assumption is to produce a
disintegration of tx with respect to p when there is a homomorphism of the system
{X, T, ix) onto (Y, T,p). In our context this is replaced by the conditional expecta-
tion. (See § 2 for details.)

The disadvantages mentioned above are offset by some useful properties of the
space U. These include:

(i) L°°(U) = C{U) and so one may always use continuous functions, thus
avoiding arguments involving sets of measure zero;

(ii) (U, /x) is a hyperstone space (see [2]) which means that a subset A of U
has measure 0 if and only if it is of the first category;

(iii) U is extremely disconnected and as such has many useful topological
properties (see [2] and [6]) which are exploited throughout this paper.

As in [4] it is more convenient to look at C(X) rather than X. Also, even though
the flows involved are not minimal and there is in general no universal object, it is
still convenient to work in the category of T-subalgebras of a given algebra, °U. The
basic situation is described in § 1.

The introductions to the various sections discuss the relation between the dynami-
cal and ergodic notions studied in that section. Thus, the reader might find it helpful
to read these before plunging into the 'gory' details.

At this point suffice it to say that § 2 deals with disjointness-independence, § 3
with equicontinuity-discrete spectrum, § 4 with the Mackey theory of minimal
cocycles and ergodic decompositions, and § 5 with the twin notions almost periodic
extension-relatively discrete spectrum.

Much of the material of this paper is considered from a different perspective in
Zimmer [10]. Indeed, the point of view presented here developed in part as an
attempt to understand Zimmer's paper.

1. Basic Material
In this section the underlying situation discussed in this paper is described. Good
references for this material are [1] and [2].

(1.1) Standing Notation. Throughout this paper U will denote a fixed compact
Hausdorff space, °ll the algebra of complex valued continuous functions on U, and
m a fixed regular supported Bo*el probability measure on U. It is also assumed
that given fe L°°( U) there exists g e l / such that / = g (a.e m).

(1.2) Remarks, (a) The pair (U, m) constitutes a hyperstone space in the terminology
of [2].
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(b) Let (X, n) be a probability space and U the Gelfand space of L°°(X). Then
/x induces a measure m on U such that the pair (U,m) has the properties required
in (1.1).

(c) Indeed, the space U of (1.1) may be identified with the Gelfand space of
L°°([/).

(1.3) Notation. The topologies of uniform convergence and convergence in
measure on % will be denoted by STU and 9~m respectively. If s2<^°U, then si {si)
will denote its closure with respect to STU (3~m).

The following is well known. (See [1].)

(1.4) THEOREM, (i) STmc STU.
(ii) If the sequence (/„) converges to f (a.e.), then it converges to fin STm.

(iii) If the sequence (/„) converges to fin 3~m then there exists a subsequence (/„.)
of (/„) such that fni^f{a.e.).

(iv) Both STm and 2TU are metrizable.

(1.5) Definition. The subset si of °IL is a subalgebra of % if it is a subspace of %
containing the constant function 1 and is closed under multiplication and complex
conjugation.

Let d^°U. Then R(si) will denote the equivalence relation on U: x = y {R{d))
if f(x) =f(y) (fe si), and \$t\ will denote the quotient space U/R(si).

It is well known that \si\ is a compact Hausdorff space and that m^ = wll^1 is a
supported probability measure on \si\. (Here 11^ is the canonical map of U onto
\si\.) When there is no danger of confusion m^ will also be denoted by m.

(1.6) THEOREM. Let si be a subalgebra of°U and U: l/-» \si\ the canonical map. Then
(i) U*C(\si\) = si; and

Proof, (i) Clearly II*C(|^|) is a uniformly closed subset of °U containing si, whence
^cI l*C( |^ | ) . On the other hand every element / of si induces fe C(\si\) with
n*(/) = / ° II =/. Moreover, the set 38 = {/|/e si} is a uniformly closed subalgebra
of C(\s£\) which separates points. Thus, 38 = C(|.ss?|), whence U*(\si\)^sl.

(ii) Let/e L°°(|^|). Then there exists a sequence (/„) in C(|^|) which converges
to / (a.e. mil"1). Hence, (/„ ° II) converges to f° U (a.e. m) and so

n*f=f°neclssrmsl = s?.

On the other hand let/ ° II e si. Then by (1.4) there exists a sequence (gn) contained
in si which converges t o / ° I I (a.e. m).

Now gn induces/, e C(\si\) with gn =/„«n for all n. Set K = {x e \si\ :/„(*) ^/(x)}
andL = {we t/|gn(M)^/(n(M))}.Thenn"1(|^|\A:)c U\Land m(l/\L) = 0implies
that mn"1(l^l\£) = 0. Consequently /eL°°(H) .

(1.7) Remarks. Let i be a subalgebra of °U with ^ = jj . Then (1.6) implies that
the pair {\si\, m) is a hyperstone space and m is a normal or category measure on
|> |̂ [2]. Among other things this implies that a Borel subset A of \sl\ is of the first
category if and only if m(A) = m(A) = 0. Moreover the space \sl\ is extremely
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disconnected, i.e. the closure of an open subset of \s~t\ is again open, hence both
open and closed.

(1.8) THEOREM. Let 2F, si be subalgebras of°U with 9 = #c= M = si. Then the canonical
map of \si\ onto \&\ is open.

Proof. Let iVbea non-vacuous subset of \si\ which is both open and closed. If the
interior of the closed subset U(N) were null, U(N) would be of the first category,
whence by (1.7)

But this is impossible since m^ is supported.
Now let M = clsintn(N). Then M is open (1.7) and Mdl(N).

Since N\U~l(M) j s both open and closed, and int (n(N\ir1(M)) = 0,
N\U~\M) = 0 . Hence H(N) = M which is open. The theorem now follows from
(1.7).

(1.9) COROLLARY. Let 9, si be subalgebras ofU with 9= # c si. Then the canonical
map of \si\ onto \&\ is open.

Proof This follows from (1.8) and the fact that

is commutative, where the arrows are the canonical maps.

2. Independence and disjointness
One of the most useful tools in ergodic theory is the theorem on the disintegration
of measures. Since in general this requires some sort of countability assumption, it
is unavailable to us. The device which replaces it is the conditional expectation
which yields a continuous disintegration in the proper context; (see (2.3)).

Consideration of conditional expectation leads naturally to the notion of indepen-
dence and its topological counterpart, disjointness; (see definition (2.8)). Theorem
(2.10) relates these two concepts.

(2.1) Definition (Conditional expectation). Let i be a subalgebra of °ll. Then
EM: °U -* M is the map such that

(fe%ges4).

The existence of EM and the properties given below are standard results.

(2.2) Remarks. Let si, 98 be subalgebras of % with si <= 38. Then
(1) E& is linear.
(2) EJ=f (feJl).
(3) E^Em = EM.
(4) EAfg)=fEAg) (fe£,ge<U).
(5) £,, />0 (/6%,/aO).
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(2.3) THEOREM. Let si, 58 be subalgebras of °U with stfcSft and let Ay be the map

f+(EsJ)(y):& + C (ye\£\). Then:
(1) Ay€Af(|»|) £
(2) s u p p A y c | a ,
(3) The map y -4 Ay: | JJ | -»M(|J | ) is continuous.

(4) J|«,/rfm = Jui A,(/) dm(^), ( /e £§).
iVoo/ (1) This follows from (1) and (5) of (2.2) and the fact that £^(1) = 1.

(2) Let II:|S8|-»|.s5| be the canonical map and suppose x£TTl(y). Then there
exists an open-closed neighbourhood N of y with x£H~1(N).

Let g be the characteristic function of N and /= 1 - g. Then/e sk and s o / = E^(f).
Hence

(3) Let (ya) be a net in |J5| which converges to y e \si\ and let / € ®. Then

since Eaf is a continuous function.
(4) Set g = 1 in the equation which defines EM.

(2.4) LEMMA. Let 3F= 2F, s& = skbe subalgebras of°U with &<^ si, N a non-vacuous
open-closed subset of \sd\,fthe characteristic function ofN, g = E9f, and II: \s&\ -» \S'\
the canonical map. Then:

(1) s(y) = 0 (y^n(TV)); and
(2) g'\0, oo) is dense in U(N).

Proof. (1) Let h be the characteristic function of the open-closed subset II(iV)' of
\&\. Then

f g=\ hg=\ hE*(f)=\ (A»n)/=0.

(2) By (1), g~\0,°o) is an open-closed subset of II(JV). Hence W =
n(Ar)\g~'(O, oo) is again both open and closed. Since g vanishes on W,

0 = | gXw=\ EU)Xw=\

If IV were not null, then I I (M)€ W for some neN. Consequently
would be a non-vacuous open set. But then m^(N nU~\W)) ^ 0. The proof is
completed.

(2.5) THEOREM. Let s& = sk, ® = <3& be subalgebras of % &=stn&, A :|^|-*|.s£|,
Ai:|^|-»|S8| as in (2.3). Then:

(1) y-»p(/)Ayx/*„(/) :|y|-»R is continuous (fe C(|rf|x |»|,R)).
(2) Themapf-*jw\yXfx,y(f)dm(y): C(\sl\x\®\, U)^U is positive and linear

and so determines a measure ms4®mm on \si\x. |S8|.
(3) m^Omad^lx lae^ l and supp m^m^ = |.ss?|x3r|38| = {(x,.y):xe | ^ | , ye

1381, xJr = y^}, f/ie 50 called fibred product of \s*t\ and |&| ouer |^ | . (Notice that
9= 3F.) {Here xSF denotes the image of x in \3F\ under the canonical map.)
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Proof. (1) Let heM=C(\si\), ge 38 = C(|S8|), and hxg the map (x,y)^
h(x)g{y):\si\x\&\-*U. Then p(hxg) is the map y->\y(h)iiy(g):\&\^M which is
continuous by (2.3).

Since every element of C(|^|x|S8|) is the uniform limit of linear combinations
of elements of the form fixg and all the measures \y x fiy are of norm 1, statement
(1) follows.

(2) This follows immediately from the definition of Â , ny (ye \^\)
(3) That msi®mm(\s£\x\38\) = l is clear. Let xe\si\, ye\®\ with (x,y)i

\s£\ x &\$\. Choose open-closed neighbourhoods M and N of x and y respectively
such that

and let g = E&XM, h = E&XN- Then

where ITTa: 1-S23.| —*-1Ŝ| and n2:|38|->|^r| are the canonical maps. Consequently

K x Mz(M xN) = Az(M)Mz(N) = g(z)h(z) = 0 (z e |

by lemma (2.4). Hence mst®mS)(Mx N) = 0 and so (x, y)£supp -
Now let (x,]y)e|.stf|xy|98|, M, N be open-closed neighbourhoods of x and y

respectively, and let Ht, U2, g, and h be as defined above. This time n,(x) = U2(y)
and so n1(M)nIl2(N) is a non-vacuous open-closed subset of |2F|. Consequently
by (2) of lemma (2.4), gh is a nowhere negative continuous function on | ^ | which
does not vanish identically. Then

The proof is completed.

(2.6) THEOREM. Wi'/ft the same assumptions as in (2.5)

w/iere £ is f/je expectation operator induced by the canonical map, r of (\s£\ x ̂  |<l|,
mM®mm) onto (\&\, m&).

Proof. It suffices to take the case / = XA and g = XB where A and B are open-closed
subsets of |J^| and |S8| respectively.

Let / = J|^|X3S|aj (/xg)«p o r. Then we must show that J = J ^ FG«p, p e f , where
F = E?{f) and" G = £»(g).

Again we may assume <p = XN where N is an open-closed subset of \&\. Then

r\N) = n7x(N) x n2 '(JV) n |^| x , \a\
and (/xg)((p°r) equals the characteristic function of C x Dn |^ |x y |S8 | where
C = Ui\N)n A and D = n2~

1(JV)nB. (Here n ^ I ^ are the canonical maps of \st\,

1381 onto | ^ | respectively.) Then

/ = mi®a(Cx D) = Az x Mz(C x D) dmy(z) = AZ(C)/*Z(D) d%(z)
J | * | J |* l

since supp mM&m c |̂ 2i?| x^|S3|, (by (3) of (2.5)).
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Now
AX(C) =

and

Thus J = J|^| FG<p. The proof is completed.

(2.7) THEOREM. WWI tfie same notation as in (2.6), /ef K be the map
(usi,u®):U+\si\x\®\. Then:

(1) ic([/)c |rf |x, |a | ; and

(2) E,(fg) = E9{f)E*{g) ( / e Jrf, g e 38) i/ and only if K is onto and WK

/Voo/ (1) This follows directly from the definitions of K and | ^ | x y | 5 8 | .
(2) Necessity. Let (x, y) e | ^ | Xat|S8| and suppose it is not in K(U). Since the latter

is closed, there exist open-closed neighbourhoods M and JV of x and y respectively
with MxNnK(U) = 0. Let g = Egi(XM) and h = E<?(XN). Then by (2) of (2.4),
g~'(0, oo) is dense in p( Af) and /T'(0, OO) is dense in q(N) where /? and g are the
canonical maps of \s£\ and |S8| onto ] ^ | respectively. Since (x,>»)e|j^|xy|a8|, this
implies that p(M) n q(iV) is a non-vacuous open subset of |5F| whence g/i ^ 0. On
the other hand M x NnK(U) = 0 implies that (XM ° K)(XN ° K) = 0 whence 0 =
EAXMXN)* gh = ES;(XM)E3;(XN), a contradiction. Thus « is onto.

Now let A and B be open-closed subsets of \stf\ and |S8| respectively. Then

•I
-I

Since «(«) = |^ |xy |S8 | , A'AA'B ° * =Xi. where L = K " ' ( / 1 X B n |^ |x y |S8 | ) . Hence

m^®mm(AxB) = mK~\Ax B).

The proof of necessity is complete.
Sufficiency follows from the fact that if K is onto and m^®9m^ = nwc"1, then

E?(fg) = EAf)EAg) by (2.6) for

(/<= K)(g o K) = / X g | M x , | a | , ( / 6 i , g e 38).

(2.8) Definition. Let f be a subalgebra of % and f, ge% Then / and g are
independent over ^ if E&(fg) = E^ifjE^ig). The algebras ^ and 38 are independent
over & if f and g are independent over 3* ( / e jtf, g e 38).

The algebras .stf and 38 are disjoint over ^ if ^<= ^ n 38 and K(U) = \S£\ X9|38|
where K is the map w-»(w,s/, M58): t/-»|.stf|x|S8|.

The definitions coincide with the usual ones.

(2.9) THEOREM. Let M, 38, and 9 be subalgebras of°U. Then:
(1) si and 38 are independent over $F if and only if si and 38 are independent over

2F; and
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(2) If si and 2ft are independent over 5F, then si v 9 and 98 v 9 are also independent
over cF.

Proof. (1) Necessity. Let feM and ge38. Then there exists a sequence (/„)<= si
which converges to / in measure. By choosing a subsequence we may suppose that
(/„) converges to / a.e. Furthermore since / is bounded, we may assume that (/„)
is uniformly bounded. Then Lebesgue's bounded convergence theorem implies that
^ ( / n ^converges to E9(f), whence E&{fn)E9{g) = E<?(fng) converges to E<?(fg)-
Thus si and 98 are independent over 9 (E& = Eg). Another application of this
argument shows that si and 33 are independent over #.

The converse is clear.
(2) Let qesd,fe 9, and he 98. Then

Thus gf and h are independent over 9 whence so are £"=, gj{ and h where g, e si,
fe SF, l < i < n . Since £ gJi is a typical element of sd v ̂ , this shows that S4M 3F
and 38 are independent over ^ . Finally another application of this argument serves
to complete the proof.

(2.10) THEOREM. Let si, 98, and 9 be subalgebras of °U with 9adn®. Then d
and 98 are independent over S* if and only if si n 38 = §>, si and 2ft are disjoint over
9, and ITIK~1 = m^®&m&, where K : U^ \si\ x |38| is the canonical map.
Proof. Necessity. By (2.9) M and #! are independent over 3F.

Since si and 38 are closed, # c sin 33 = % Then

But K(U) = \si\xg\§\ by (2.7). Now if # were not equal to ^, then there would
exist distinct elements gx, g2 in |®| with the same image in |^ | . Let a e \si\, b e |38|
with a<£=gx, b

cS = g2. Then (a, b) e |J5| X^|381X1^1 X « | ® | which is a contradiction.
Thus # = J5 n J .

The rest of (2.10) now follows immediately from (2.7).

3. Almost periodicity and discrete spectrum
In this section we begin the study proper of the relation between certain concepts
employed in topological dynamics and ergodic theory. The first of these to be
discussed is almost periodicity (or equicontinuity) and the corresponding ergodic
theory concept of discrete spectrum.

A flow (X, T) is equicontinuous or almost periodic if the family of maps x -* xt: X ->
X is equicontinuous. It turns out that this is so if and only if C(X) is the uniform
closure of the span of the (continuous) eigenfunctions on X. (A function fe C(X)
is an eigenfunction if span {tf\ t e T} is finite dimensional.)

Now an ergodic 'process' (X, T, ̂ u,) has discrete spectrum if L2(X) is spanned in
the Hilbert. space sense by the L2-eigenfunctions. (fe L2(X) is an L2- eigenfunction
if span {tf\ te T} is a finite dimensional subspace of L2(X).)

The similarity of the two notions is of course striking but it becomes even more
so if we consider the latter in terms of C(X) where X is the Gelfand space of
L°°(X, yu,). Then C(X) = L°°(X) and the two notions of eigenfunction coincide.
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What should discrete spectrum mean in terms of C{X)1 Of course it is not
'reasonable' to expect C(X) to be the uniform closure of the span of its eigenfunc-
tions. The correct requirement is that it be the 5"m-closure of the latter. This means
that there is a compact Hausdorff process (Y, T, v) such that the flow (Y, T) is
equicontinuous and V°(X) = L'X(Y).

This approach leads directly to (3.10) which is a generalization of the classical
result of Halmos & Von Neumann concerning ergodic processes with discrete
spectrum. (If certain countability assumptions are added, then the isomorphism
above is induced by an 'isomorphism' of X onto Y.) Moreover the proof of the
ergodic theory result is deduced directly from the corresponding one in topological
dynamics.

In the course of the proof it is shown (3.9) how one takes account of the topology
on T; (see § 0.)

(3.1) Standing notation. In addition to (1.1) it is henceforth assumed that a group
T acts on U in such a way that m is T-invariant and the flow (U, T, m) is ergodic.
Unless specified otherwise T will assumed to be provided with the discrete topology.

Let /e °U and t e T. Then tf will denote that element of <% such that (tf)(x) =f(xt)
(xe U). (tfe °U since the map (x, s)->xs: Ux T-> U is assumed continuous.)

A subalgebra s& of °U is a T-subalgebra if it is invariant under T, i.e. tfe sd {teT,

/erf).
The invariance of m implies that m(tf) = m{f) (te T,fe°U).

(3.2) Remarks. (1) Let V be a non-vacuous open subset of U. Then VT is an
open-closed T-invariant subset of U and the ergodicity of m implies that its
characteristic function is constant a.e. m. Since m(V)^0, VT= U. Thus the flow
(U, T) is topologically transitive.

(2) Let rf be a T-subalgebra of <%. Then rf and rf are also T-subalgebras of °U.
Moreover R(si) (see (1.5)) is a closed T-invariant equivalence relation on U, whence
T induces an action on |rf| such that the canonical map U-* |rf| is a flow epimor-
phism, m^ is T-invariant and (|rf|, T, m^) is ergodic. It now follows from (1) above
that (|rf|, T) is topologically transitive. Consequently if in addition |rf| is metrizable,
the flow (|rf|, T) is point transitive; i.e. there exists xe |rf| with xT= \si\.

(3) Let i be a T-subalgebra of °U. Then the invariance of m implies that

Af) A f ) ( , f )
(4) If the algebras sd, 58 of theorem (2.3) are T-invariant, then the map A : |
(|S8|) is a relatively invariant measure (RIM) i.e. ky, = kyt where (\yt)(f) = A

» r | r f | )
(3.3) Definition. Le t / e %. Then / i s almost periodic if jT is ^-compact.

(3.4) THEOREM. Let % be the set of almost periodic functions. Then:
(1) % is a uniformly closed T-subalgebra of°U; and
(2) (|&|, T) is a compact, minimal, equicontinuous flow.

Proof. The only nqn^tandard item of (3.4) is the minimality of (|^|, T). To see this
set x = y(R) if yexT (x,ye\^S\). Then the equicontinuity of T implies that R is a
closed invariant equivalence relation on \fS\. If |f?| were not minimal, |^|//? would
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not reduce to a point, and so would admit a non-constant continuous real valued
function/ Then/ composed with the canonical map from |*| onto \%\/R would
a non-constant continuous invariant function contradicting the ergodicity of

For the rest of (3.4) see [4] for example.

(3.5) Definition. Let /e aU. Then T(f) will denote the subspace of °U. generated by
{l/| t e T} and eig (<%) = {/|dim T(/) < oo}. (Thus eig (<%) is just the set of eigenfunc-
tions in "U.)

Let i be a T-subalgebra of %. Then si has discrete spectrum if sk =
c\%srm span {eig {°U) n ja?}. (This coincides with the usual definition.)

(3.6) Remarks. Let * be the set of almost periodic functions. Then it follows from
(3.4) that the enveloping semigroup E = £( |*| , T) is a compact topological group
containing T as a dense subgroup and that (\%\, T) = (E/H, T) for some closed
subgroup H of E. This in turn implies that % is the uniform closure of span {eig (%)}.

(3.7) THEOREM. Let si be a T-subalgebra of°U with discrete spectrum and 58 = sin%.
Then 58 is a uniformly closed T-subalgebra of 11 such that 53 = si and (|38|, T) is a
minimal equicontinuous flow.

Proof. Since eig (<ft)c % ((3.6)), & = d by (3.5). Since 33 c g, (|58|, 7") is a homo-
morphic image of (|*|, T) whence it is minimal and equicontinuous by (3.4).

(3.8) Definition. Let Y be a 7-invariant subspace of °U. Then /-» I/: T-> T" is a
linear map (I e T) and thus T is represented as a set of linear maps of Y into Y.
This allows one to define various natural toplogies on T which all coincide when
Y is finite dimensional. In this case the topology induced on T will be denoted T( Y).

(3.9) THEOREM. Let si be a T-subalgebra of °U with si = si and ST a topology on T
such that 2Tz>T(Y{f)) for all/e °H with dim Y(f) finite. Then the canonical map
<p:(T, 3~)^> E(\s$n %\) is continuous, and if moreover ST is compact, then <p is an
epimorphism with T/ker<p isomorphic to E(\sin *|).

Proof. Let (ta) be a net in T which converges to teT with respect to 3~ and let
x e U. Then to demonstrate the continuity of <p it suffices to show that

l im/(xO=/(x) ( /e-s /nS) . (*)

Let 2& = {fesin *|(*) holds}. Then S3 is clearly a uniformly closed T-subalgebra
which by assumption contains {/e sin ^|dim Y(f) finite}. Since the uniform
closures of the span of the latter is all of si n %, S3 = si n &

The rest of (3.9) is straightforward.

(3.10) COROLLARY (von Neumann, Halmos, Mackey). Let (X, /J.) be a standard
Borel space, T a second countable locally compact topological group, U:XxT-*Xa
Borel map which defines an ergodic action of Ton X with discrete spectrum. Then there
exists a compact topological group G, a closed subgroup HofG, a representation of
Tas a dense subgroup of G and a Borel isomorphism of (G/H, T, A) onto (X, T, fi)
where A is Haar measure on G.
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Proof. If we take °U = L°°(X, n) = si, then the assumptions on II imply that the
topology on T satisfies the condition of (3.9). Consequently L2(X,T,^i) =
L\G/H, T,\) where G = E(\W\) and H is a closed subgroup of G. Theorem (3.10)
now follows from Mackey's point realization theorem [9].

4. Bitransformation groups and cocycles

Before studying the notion of generalized discrete spectrum in this general context
it is convenient to extent the results of Mackey and Zimmer on minimal cocycles [10].

The basic result is (4.6) which is the relativized version of the theorem that a
measurable eigenfunction is continuous.

(4.1) Definition. A bitransformation group is a triple (G, X, T) where (G, X) and
(X, T) are two flows with the same phase space X and phase groups G and T
respectively such that (gx)t = g(xt), (xeX, geG, te T). Notice that in this case
the product GxT acts on X via the map (x, g, *)-> g~lxt .XxGxT^X.
(4.2) Standing assumptions. In addition to the assumptions made in § 3 the following
will be in force throughout this section.

(1) (G, X,T) will denote a bitransformation group such that G and X are compact
Hausdorff and G acts freely on X.

(2) The quotient transformation group {X/G, T) will be denoted (Y, T) and it
is assumed that Y is of the form \&\ for some T-subalgebra & of °U, with &= #.

(3) /J. will denote the Haar lift of m to X and X the Gelfand space of L°°{X, fj,).
(4) The canonical map of X onto Y= X/G will be denoted by II.

(4.3) Remarks. (1) Let feC(X), A the Haar measure on G, and /(*) =
iaf(gx) d\(g), (xeX). Since f(gx) =/(x) (ge G, xeX), it induces an element fY

of C(Y). Then fi(f) is defined to be m(fY).
The measure fi is invariant under both G and T. It is ergodic with respect to the

action of GxT, but need not be with respect to the action of T.

(4.4) Definition. A process (Z, T, v) is a flow (Z, T) together with a T-invariant
Borel probability measure v. A homomorphism of the process (Z, T, v) into the process
(W, T, y) is a homomorphism h of the flow (Z, T) into the flow (W, T) such that
y{A)=v(h-\A)) for all Borel subsets A of W.

(4.5) LEMMA. Let (Z, T, v) be a process with compact Hausdorff phase space Z and
supported measure v, and h a homomorphism of (Z, T, v) onto (Y, T, m) such that
the induced map /i*:Loo(y)-»Loc(Z) is also onto. Then h is an isomorphism.

Proof. Let feC(Z). Since every L°°-function on Y is equal almost everywhere to
a continuous one, the assumption that h* is onto implies that there exists ge C(Y)
with g° h = / (a.e. v). Since v is supported and both / and g° h are continuous,
g°h=f. Thus the map of C(Y) into C(Z) induced by h is onto whence h is
one-one. The proof is completed.

(4.6) THEOREM. Letfe C(X) be such that dim span {fa | a 6 G} < oo. Thenfe C(X).

Remarks. (I) Here (fa)(x)=f(ax) (aeG,xeX) and C(X) is identified with a
subalgebra of C(X) via the canonical map of X onto X.
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(2) If we take T= e and X = G, then we get the classical result that a measurable
eigenfunction is continuous.

(3) Notice that dim span {tfa\a e G}<oo(f e r ) .
The assumption of (4.6) is carried over to the following lemmas upon which its
proof is based.

(4.6.1) LEMMA. Let si be the uniformly closed T-subalgebra of C(X) generated by
{fa\a e G}u C(X). Then si is invariant under GxT and the map (a, x)-»<p
ax:Gx \$£\-»\sl\ is continuous.

Proof. By definition si is invariant under T. Its invariance under GxT now follows
from the invariance of {fa | a e G} u C(X) under G.

To prove <p continuous it suffices to show that it is unilaterally continuous, [3].
Let (an) be a net in G which converges to aeG, xe\s&\, and 58 =
{h e si\h(anx)-> h(ax)}. Then it is not hard to see that 38 is a uniformly closed
T-invariant algebra containing {fa \a e G}u C(X). Hence S8 = .s# and so the
map a-»ax: G-»|.s#| is continuous (xe|.stf|). Since x-»ax:|.s#|-»|.stf| is continuous
(a e G), the proof is completed.

The proof of the next lemma is standard and so will be omitted.

(4.6.2) LEMMA. Let (G, W, v) be a process with compact acting group G, compact
Hausdorff space W and Borel probability measure v. Then the canonical map II: W-*
W/G induces a monomorphism U*:L2(W/G, j])^L2(W, v) with

imTl* = {h\h = ha (a.e. v) (a e G)}.

(Here v = PU~\)

Proof of (4.6). Let si be as in lemma (4.6.1). Then the diagram:

-!U x

\s£\/G —^ Y=X/G

is commutative where II, p, Hi are the canonical maps and px is induced by p
Passing to L2 yields the commutative diagram:

L\\d\) *?- L\X)

L\\d\/G) J2- L\Y)

Now let feL2(\si\/G). Then II*(/) is G-invariant. Since s4^C(X), p* is an
isomorphism onto. Hence there exists a G-invariant element h of L2(X) with
p*(h) = U*(f). By lemma (4.6.2) there exists geL2(Y) with nf(g) = fc. Then
n*pf(g) = p*nf(g) = p*h = n*f, whence by lemma (4.6.2) p f ( g ) = / Thus p? is
onto and so by (4.5) px is an isomorphism.

Now let z,, z2 e \si\ with p{zx) = p(z2). Then p^IIz,) = n,p(z,) = n,p(z2) = p,(nz2)
whence n z , = n z 2 . This implies that z2 = az,, for some aeG. Consequently
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ap(z1) = p(aZi) = p{z2) = p(z2) = p(z{) whence a = e since G acts freely on X. Thus
z, = z2 which means that p is one-one; i.e. si = C(X). The proof is completed.

(4.7) THEOREM. Let f be a T-invariant element ofC(X) with dim span {fa | a e G}
finite, 2> the T-subalgebra ofC(X) generated by {fa \ a e G), i//: X -* |®| the canonical
map, de\2)\, Z = (p~\d), and H = {a e G\ad = d). Then:

(1) 3) is a Gx T-invariant subalgebra ofC{X) and <p is a Gx T-epimorphism.
(2) Gd = \3>\ i.e. G acts transitively on \2\.
(3) aZnZ^O if and only ifaeH.
(4) Z is closed and T-invariant.
(5) (H,Z,T) is a bitransformation group.
(6) n(z!) = n(z2) if and only ifz2 e Hzl (z,, z2 e Z) w/iere II: X -* Yis the canonical

map.

Proof. (1) This follows from the definition of $.
(2) Since tfa =fa (teT,ae G), all the elements of 2 are T-invariant. This implies

that T acts trivially on \3)\. Hence (G, \3>\) is minimal and (2) follows from the
compactness of G.

(3) Let aeG, ze aZ nZ. Then z = au for some ueZ and ad = a<p(M) = <p(aM) =
(p(z) = d, whence ae H. On the other hand if a e / / then azeZ (ze Z).

(4) and (5) are evident.
(6) Let z,, z2eZ. Then n(z,) = n(z2) if and only if z2= azi, for some aeG. But

then a e H by (3).

(4.8) Definition. Let (W, T) be a flow and G a topological group. A cocycle on W
to G is a continuous function cr:WxT-*G such that

o-(x, ts) = <T(X, t)o-(xt, s) and o-(x, e) = e,
(X6 W,t,S6T).

Two cocycles CT, 17 on W to G are cohomologous if there exists a homeomorphism
<p: W-» W such that

(p(w)o-(w, t) = r)(w, t)<p(wt) (weW,te T).

Let o- be a cocycle on (W, T) to G. Then the maps (/3, a, w) -»(/3a, w):GxGx W -»
Gx Wand (a, w, ( (^(a^w, t), wt):GxWx T-» Gx W define a bitransformation
group structure onGx W which is denoted {G,Gxa W, T). The projection GxW->
W induces an isomorphism of (Gx^W/G, T) onto (W, T).

(4.9) THEOREM. There exists a cocycle a on Y to G such that (G, X, T) is isomorphic
to (G, Gx a Y , T) via an isomorphism which induces the identity on Y. Any two such
cocycles are cohomologous.

Proof. Let II: X -* Y be the canonical map. Then there exists a continuous map
8: Y^X with y = U(S(y)) (ye Y) [6]. Define a by the equations:

<r(y,t)S(y,t) = S(y)t (y e Y, te T)
and

<p(a,y) = a8(y) (aeG,yeY).

Then it is standard that <p is a homeomorphism of Gx Y onto X. Also

<p(P(a, y)) = <p(0a, y) = a8(y) = P<p(a, y),
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and

<p({a, y)t) = (p{aa{y, t), yt) = aa(y, t)S(yt) = aS(y)t = (p(a, y)t

(a, /3 € G, y e Y, teT) shows that (p is a bitransformation group isomorphism of
(G xCT Y, T) onto (X, T).

Finally U<p{a, y) = U(aS(y)) US(y) = y (aeG,yeY) implies that <p induces the
identity on Y.

Now let y be a cocycle on Y to G and £ an isomorphism of (G, G xy Y, T) onto
(X, T) such that II(£(a, y)) = y (a e G, y G Y). Set p(.y) = £(e, y). Then II(p(>>) = y
and y(y, t)<p(yt) = <p(y)t {ye Y, te T). Since n<p(y) = y = U8{y) (y e V), there exists
a function / : Y-> G with <p(>')=/(j')5(y) (y£ Y). Since G acts freely on X and
cp, 5 are continuous, so is / Then

7(y, tyl<p(y)t = <p(yt) =f(yt)S(yt) =f(yt)tr(y, t)-*8(y)t,

whence

y(y, t)~lf(y) =f(yt)<r(y, t)~l (yeY.teT)

so that <r and S are cohomologous. The proof is complete.

(4.10) Definition. Let H be a closed subgroup of G. Then a reduction of G to H is
a subflow (#, Z, T) of (G,X, T) such that Z is a closed subset of X and the
canonical map II induces an isomorphism of (Z/H, T) onto {Y, T). The flow
(G, X, T) is irreducible if G cannot be reduced to any proper subgroup.

Notice that in this case, aZ n Z ̂  0 if and only if a e H.

(4.11) LEMMA. Let v be a T-invariant probability measure on X with PET1 = m. Then
v = fji if and only if av= v (a e G).

Proof. Necessity is clear. To prove sufficiency let / e C{X). Set F(a,x)=f(ax)
(a G G, x G X). Then F E C ( G X X ) and so by Fubini's theorem

/ = F(a,x)dv(x)d\{a)=\ F(a, x) d\(a) dv(x) = J,
J a J x J x J a

where A is Haar measure on G.
Since av= v,

\ F(a, x) dv(x) = [ f(ax) dv{x) = \ f(x) dv(x) (a G G)
Jx Jx Jx

whence I = jxf(x) dv(x). The map

x->\ F(a,x)d\(a)=\ f{ax)dk{a)
J a Jo

is continuous and invariant under G whence

J

= f f(x)
J X

The proof is complete.

=\ f(ax)d\(a)dvU-\x)=\ f(ax) d\(a) dm(x)
J Y JG J Y Ja

f
J X
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(4.12) THEOREM. The following are pairwise equivalent:
(1) (G,X,T) is irreducible.
(2) fi is T-ergodic.
(3) M{X) = {fi} where M{X) is the set of T-invariant probability measures v on

X with vU'1 = m.

Proof. (1) implies (2). If /A were not ergodic the G invariant subspace $f =
{fe L2(X)\tf=fa.e. (fe T)} of L2(X) would contain non-constant functions. Since
G is compact there would be a non-constant / in $f with dim span {fa | a e G} < oo.
By (4.7) there would then be a non-trivial reduction of G thus contradicting (1).

(2) implies (3). Let veM{X). Then \a{av) dk{a) is a G-invariant element of
M(X). Hence /u, = JG (av) d\(a) by (4.11). Since (2) implies that n is an extreme
point of M(X) and /u. 6 cnv (Gv), n e Gv. Consequently fi = v.

(3) implies (1). Let (H, Z, T) be a reduction of (G, X, T) with H # G. Let o> be
the Haar lift of m to Z and set *>(A) = ai(AnZ) for all Borel subsets A of X. Then
ceM(X) with v^ fi which contradicts (3).

(4.13) THEOREM. There exists an irreducible subflow (H, Z, T) of(G, X, T) such that:
(1) {aZ | a e G} w a partition ofX; and
(2) i/ (£, W, T) is an irreducible subflow of (G,X, T), then W=aZ and K =

alia'1 for some ae G.

Proof. Let % be the collection of subflows (I , N, T) of (G, X, T) such that (I , JV, T)
is a reduction of G to L. For (Li,NuT), (L2,N2,T)e% set (L,,JV,,T)<
(L2,N2,T) if LtcL2 and JV,c JV2. Then it is straightforward that (&, <) is
inductive, whence by Zorn's lemma there exists a minimal element (H, Z, T) in &
Then {H, Z, T) is clearly irreducible and (1) follows from the fact that aZ nZ # 0
if and only if as H.

(2) Let (E, W, T) be an irreducible reduction of (G, X, T). Then by (4.12) the
Haar lifts w, v of wi to Z and W respectively are T- ergodic probability measures
on those spaces. Then w, v may be viewed as elements of M(X) and as such remain
T-ergodic.

Now fjL=\G(aa>) dk{a) = \a (av) d\(a) implies that Gv- Gco since M(X) is a
simplex [8]. Consequently there exists aeG with av = w. Then

1 = v(Z) = (a"1w)(Z) = u)(aZ)

whence co{aZ n W) = 1. Since W\aZ n W is an open T-invariant subset of W with
<o(W\aZ n W) =0 and w is supported, W \ a Z n W = 0 and so We aZ. A similar
argument shows that a Z c W; whence W= aZ.

Finally /36X if and only if pWn W*0 and yeH if and only if yZnZ*0
together with W=aZ imply that K = aHa~\ The proof is completed.

(4.14) Definition. Let o- be a cocycle on Y to G. Then G(<r) will denote the set of
closed subgroups {aHa~l \ a £ G} such that (H, Z, T) is an irreducible reduction of
(G,G*vY,T). The cocycle o- is minimal if there exists KeG(cr) such that
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(4.15) THEOREM. Let a be a cocycle on Y to G. Then there exists a minimal cocycle 
S on Y to G with 8 and cr cohomologous. 
Proof. By (4.13) there exists an irreducible subflow {H,Z,T) of the flow 
(G, Gx^Y, T). As in (4.9) there exists a continuous section p: y ^ Z c X Then the 
induced cocycle 8: Yx T-» G defined by the equation 

8{y,t)p{yt) = p(y)t (yeY,teT) 

takes its values in H and p and a are cohomologous by (4.9). 

(4.16) THEOREM. Let (E, T) be a flow, i/,:(X, T)^{E, T) <p:{E, T)^(Y, T) epi-
morphisms with Yl = <p°\}/\ (W, T) a subflow of {E,T), v a supported, ergodic, 
T-invariant measure on W with m = v<p~l and suppose that the set M of T-invariant 
probability measures yonX with y<p~l = vis non-empty. Then there exists an irreducible 
subflow (H, Z, T) of (G, X, T) such that <p(Z) = Wand v = co<p~1 where w is the Haar 
lift of m to Z. 

Proof. Since M is compact and convex, there exists an extreme point w of M. It is 
immediate that w is an extreme point in the set of probability measures on X. Hence 
a> is ergodic. 

Let (K, N, T) be an irreducible subflow of (G, X, T) and p the Haar lift of m to 
N. Then p and a are both T-ergodic lifts of m to X whence w = ap for some a e G 
(see proof of (2) of (4.13)). Consequently to is the Haar lift of m to the irreducible 
flow (H, Z, T) where Z = a(N) and H = aKa~\ 

Now iZ'(Z) is a closed T-invariant subset of Y such that 

v(*{Z)) = a>4,-\4>(Z)) = \. 

Hence W c ip(Z) since W = supp v. 
On the other hand i/>~'( W) is a closed T-invariant subset of X with 

(o(^-\W))= p(W) = l. 
Hence Z c f ' f l V ) . 

Thus W= i/»(Z) and the proof is complete. 

5. Relatively discrete spectrum 
In this section the results of § 3 are 'relativized'. The idea of relativizing notions 
arose in topological dynamics as a result of attempts to generalize Furstenberg's 
structure theorem for minimal distal flows. In place of almost periodic flows one 
was lead to consider almost periodic extensions (X, T) of a given flow, (Y, T). The 
latter are so defined that they reduce to the former when Y is the trivial one point 
flow. 

The fundamental result is: let (X, T) be a minimal almost periodic extension of 
(Y, T) then there exists a bitransformation group (G, Z, T) and a closed subgroup 
H of G such that G is compact, (Z, T) minimal, ( Z / G, T) = { Y, T) and (Z/H, T) = 
(X, T). 

This section addresses the problem of translating this result into the ergodic theory 
framework. To this end it is first necessary to come up with the ergodic theoretic 
counterpart of an almost periodic extension. Zimmer [10] does this in the context 
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of standard Borel spaces with the notion of relatively discrete spectrum and he
proves a result analogous to the fundamental one quoted above.

If one examines his definition one sees that it is equivalent to the following: let
<p:(X, T,n)^(Y, T, P) be an epimorphism of ergodic flows with V = /A<P~\ then
(X, T, n) has relatively discrete spectrum over (Y, T, v) if there exist a family (Jit)
of subspaces of L2(X) such that L2(X) is the Hilbert space sum of the Mt and each
Mt is T-invariant and finitely generated as a module over (p*(L°°(y)).

Under these conditions Zimmer [10, theorem 4.3] proves that there exists a
compact group K, a closed subgroup H of K and a minimal cocycle a: Yx T-* K
such that X is essentially isomorphic as an extension of Y to K/H xaY.

In our context the assumptions on the family (Mt) amount to requiring that its
union generate L°°(X) as a ^"m-closed, T-invariant conjugated closed algebra. The
principal result of this section ((5.36) below) is a structure theorem analogous to
Zimmer's with X and Y replaced by compact Hausdorff spaces (X, /1)(Y, v)
respectively such that L°°(X) = L°°(X), L°°( Y) = L°°( Y).

(5.1) Notation. Throughout this section the following notation will be in force: 9
a fixed T-invariant subalgebra of "U with 9 = 9 and 19\ = Y, II: U -» Y the canonical
map,/,, the restriction of / to U'\y) (fe %ye Y), Uy = {fy|/e <%} (y e Y), °U the
disjoint union +{°Uy \y e Y}, K:°U-> Y, the canonical map.

The sup norm on °U induces a norm, || ||y on °Uy which makes it a Banach
space (ye Y). A topology 3~ is defined on % by specifying that We ST if given
ae W there exists fe% and e>0 with a e (f, e) = {gy\\\f~ g\\< e}<^ W.

The following remarks are standard (see e.g. [7]) and so the proofs will be omitted.
(Recall that the map FI is open.)

(5.2) Remarks. (1) ST is a topology on %
(2) The inclusion map (%,, || , \\y)^(% ST) is a homeomorphism into.
(3) The map (a, )3)^a+jS: % x v % ^ <U is continuous, where %x y % =

(4) The maps (c, a)-» cat:C x % -> % and a -» ||a||: % -»R are continuous.
(5) The canonical map K : <% -» y is both continuous and open.

(5.3) Definition. Let sic<U. Then ^ = {fy \fe si) c % and ^ = +^ y <= %. Let 0 #
N <= V. Then F(AT, ^ ) = {o-1 <r: N •* ^ is continuous and Ko-(y) = y(ye N)}. Iffe °U
then o-f will denote the map y^fy: Y^> <U (fe °U). Notice that o-feT(Y, %).

(5.4) THEOREM. Lef Nbe a non-vacuous subset of Yand a e T(N, °U). Then the map
x-»Fcr(nx)(x):n~1(iV)^C is continuous.

Proof. Let y = II(x) € JV and e > 0. Let/€ °IL with cr(y) =fy. Choose K a neighbour-
hood of y with a(K n JV) <= ( / e/2) and W a neighbourhood of x with U(W)czK
and | / (w)- / (x) |<e/2(we W). Let we WnU'\N), « = II(W)G JV, and a(u) = gu

for some ge°U. Then | | g - / | | < e/2 implies that

\F( w) - F(x)\ = |o-(n w)(w) - <

e/2=e.
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(5.5) COROLLARY. Let N be a non-vacuous closed subset of Y, si a uniformly closed,
conjugate closed subalgebra of °U containing 9, and creY(N, si). Then there exists
fe si with cr = o-f.

Proof. Let F(x) = a-(Ux)(x) (xeU~\N)). Then by (5.4) F is continuous.
Now let u,veU'\N) with/(u)=/(i>) ( / e i ) . Then U(u) = n(v) = y for some

y e Y since <̂= si. Hence

F(u) = gy(u) = g(u) = g(v) = gy(v)

where gesi with cr{y) = gy. Consequently F=f\N for some fe si by the Stone-
Weierstrass theorem. Thus

<rf{y){x) =/„(*) =f(x) = F(x) = o-(Hx)(x) = cr(y)(x)

(yeN,xe II"1^)). The proof is complete.

(5.6) Definition. The action of T on % It is immediate that

(a, t)^at = {rif)yt:
ajlxT^aU

is a well denned action of T on % where y = K(OI) a n d / e °U with a =fy. Moreover
the map a -» a<: ̂ - » % , is an isometry ()>ey, (e T).

(5.7) Definition. For f ge°U and ye Y set

= f /g dky = I /^
J u J u

Here Ay is the measure on U induced by the linear functional h -> (E<ph)(y) :<>U->C.
(The last equality follows from the fact that supp A,, c ET^y) (ye Y).)

The following remarks follow from the definitions and the results of § 2.

(5.8) Remarks. (1) The map (/„ gy) -* ( / | g)y: °Uy x % ^> C defines an inner product

(2) (a|/8)y ,
(3) The map y-*(f\g)y'- Y^-C is continuous (f ge %).

(5.9) Standing assumption. Throughout the rest of this section M will denote a subset
of 11 such that: (i) &<^M, (ii) g + heM (g,heM), (in) fgeM (fe&, geM) (iv)
there exist g\ ..., gk e M such that % ' + • • • + &gk = M,(\) tM- M (te T). State-
ments (i) through (iv) say that M is a finitely generated ^-module and (v) that it
is T-invariant. Such a set will be called a finitely generated T-& module.

(5.10) THEOREM. The set My = {gy\geM} is a subspace of <%y with dimMy<k
(yeY).

Proof. That My is a subspace of % (y e Y) follows immediately from (i) and (iii)
of (5.9).

Now let g G M. Then by (iv) of (5.9) g=f1g1+ • • • +fkgk for some/ 1 , . . . ,fke 9.
H e n c e gy = f \ g \ + • • • + f k

y g k e C g l + ••• + ( € g k ( y e Y ) .
Henceforth r will denote max {dim My \y e Y}.

(5.11) THEOREM. (1) For (ye Y, te T) dimMy = dimMyl, and
(2) f/ie set L = {y |dim ^ y = r} 15 an opew, dense, T-invariant subset of Y.

Proof. (1) Since M is T-invariant, the map a-* at:aU,^*aU induces an isomorphism
of My onto Myl.
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(2) Let yeL, hl,...,hreM such that hy,...,h
r
y are independent. Then

det ((h'\hj)z)^O for all z in some neighbourhood N of y. Consequently dim Mz = r
(ze N) and so L is open. It is T-invariant by (1) whence L = Y since F is ergodic
and L is both open and closed. (Recall that Y is extremely disconnected.)

(5.12) THEOREM. There exists an open dense subset K of Yand cru ..., ar e T(K, M)
such that ((T,(y)\<rj(y))y = 8IJ (ye Y).

Proof. Let L be as in (5.11). Then the Gram-Schmidt orthonormalization process
shows that for each ye Y there exists a neighbourhood N of y and p 1 , . . . , pr e
r(N,Jt) with (p'(z)\pi(z))z = Sij (zeN). An application of Zorn's lemma now
gives (5.12).

(5.13) THEOREM. Let K, au ..., o-r be as in (5.12), S = U~\K), i//:S^Cr, (p:S^U
such that 4>(x) = (o-in(x)(x),...,o-rn(x)(x)) and <p(x)= ||<A(x)|| (xeS). Then <p is
a constant not equal to zero.

Proof. By (5.4) t/» is continuous, whence so is <p. Now let x, xt e S, y = Hx. Then

trl(y)(t)=ZAi(y,t)tT,(yt) (*)
i — 1

(1 < i < r) with (A'i) unitary since the map t: °Uy^ °Uy, preserves the inner product.

Now by (5.5) there exist g1, ...,gre°U such that o-i(y) = g1
y and o-i(yt) = g'y,

( l s / s r ) . Then «A(x) = (g\x),..., gr(x)) and #(xt) = (g\xt),..., gr(xt)) and (*)

becomes

whence g'(x) = lj M{y, t)gJ(xt) and so <p(x) = \\ip(x)\\ = \\Hxt)\\ = <p(xt) since (M)
is unitary.

Thus t<p = <p on 5 n 5f"'. Since w(5) = wy(/C) = 1, w(5 n si"1) = 1 whence ty> = ^
(a.e. m(te T)). The ergodicity of m now implies that <p is a constant. This constant
cannot be zero since o-,(>>), • • •, ovGO is a basis for My(y e K).

(5.14) THEOREM. With the same notation as in (5.12) there exist g1,..., gr e 'U such
that g\ = o-y (1 < i < r, yeK).

Proof. By (5.13) there exists c > 0 such that tji{x) = {o-x{Ylx{x),..., o-r(IIx)(x)) is a

continuous map of the dense open subset 5 of U into the sphere of radius c in Cr.

Since the latter is compact there is a continuous extension ip of i/» to all of U [2].

The r components, g ' , . . . , g r of i^ then satisfy the relation gy = a-i(y) ( l < i < r ,

yeK).

(5.15) THEOREM. Letg\...,gr, h\... ,We°U be such that (gy\g>y) = 8i} = (tiy\tiy)
(1 < i, j< r, ye Y) and span {g'y\ 1 < i< r} = My = span {h'y\ 1 < i < r} / o r a// _v in a

dense su/«e* 5 o / y, and let Z£= % ' + • • • + % r , ^V= ^ / j 1 + • • • + ^ n r . 77ien (i)

McJfng; (ii) >T = ̂ , (iii) if « T-invariant.

Proof, (i) L e t / e ^ . Then/y=X,"=, tfgy (yeS) whence
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Since c^x(x) = (fnx\g'nx)(x) is continuous and IP^S) is dense (recall that El is
open), (*) holds for all x e U, whence fe 9gx + • • • + &gT = if. Similarly fe Jf.

(ii) If fe N, the argument given above shows that fe if. Similarly if c jV.
(iii) Let/eif, teT. Then (tf)y = (fy,)t~\ (ye Y), and if ye SnSt~\

~t*ytt
 = d*tytt

 == dty = oCy,

whence (tf)y = £\ d?g'y and one proceeds as before to show that tfe if.

(5.16) Remarks. (1) Theorems (5.14) and (5.15) show that there is a well defined
T-invariant, ^-submodule, A of °U such that Ma A and there exist g\ ..., gr e A
with (gy | g

i
y) = Stj and Ay = span {gy,..., gr

y) (1 < i, ; < r; y e Y).
(2) If si is a T-invariant, conjugate closed subalgebra of °U with Me si and

M = M, then J< c j ^ . (To see this observe that all the results go through with °U
replaced by M.)

(5.17) Definition. The goal is now to construct an almost periodic extension of Y
using the module, A. (Compare chapter 17 of [3].)

To this end set Xy = {x\x: C -* Ay an isometry},X the disjoint union, +{X),|>'£ Y]
and p:X^Y the canonical map.

Let te T, xe Xy. Since a^>at:Ay^> Ay, is an isometry the composite map xt(v) =
x(v)t (veCr) is in Xyl, and the map (x, t)->xt:Xx T-»X defines an action of T
onX.

Let G be the unitary group, U(r). Then the map (a, JC) -» ax: G x X -* X defines
a free action of G on X. Here (ax)(u) = x(a"1(/;) (xeX, aeG, veCr).

Moreover the action of G commutes with that of T so that (G, X, T) is a
bitransformation group.

For ge A, ve£.r let (g, v):X->C be such that

(g, z;)(x) = (x(u)|gpU))p(x).

Finally let J"be the smallest topology on X making the maps (g, v) and x-»/(p(x)):
X -» C continuous (geA, ve C, fe 3F).

(5.18) THEOREM. (1) The topology ST is Hausdorff.
(2) The map p: X -» y is continuous.
(3) 77ie map >> -^"e,: Y-» X is continuous, where ey is the linear map of C into Xy

which maps the canonical basis vector e, of C onto g'y (1 < i< r).
(4) The map (a, x)-*Lax: GxX-*X is continuous.
(5) The map (x,t)^Bxt:XxT^Xis continuous.
(6) (X, ST) is compact.

Proof. (1) The set {(g, v) \ g e A, v e Cr} u {/ ° p \f e 9} separates points of X.
(2) The maps {/° p\fe&= C(Y)} are continuous.
(3) Let fe 9>. Then (f°p)°cr = / which is continuous.
Now let geA, ve C. Then v = £ t/e, whence
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Then (g, v) ° cr is continuous and so cr is continuous by the definition of ST.

(4) Let / e # Then

fop o L(a, x) =f(p(ax)) =/(p(x)).

Hence f°p°Lis continuous.

Let geJi, veC. Then

<g, w)(L(o, x)) = <g, «>(ax) = (X(«-1D) I gp(x))

= 1 a'(a, o)(x(e,)|gp(x))=I a'(o, «)<gi|ei>(x),

where a~!t; = Jf a'(a, t))ef.
Thus (g, u) ° L is continuous. Hence L is continuous.
(5) Le t / e ^ ( e l Then f° p(xt) = (tf° p)(x) whence / ° p ° R, is continuous

since tfe&. (Here R,(x) = x< (xeX).)
Let geJi, veC. Then

<g, «>(xO = ((xt)(v)\gyl) = (x(v)t\gyl) = (x(v)\(tg)y)

(where y = p(x)).
Thus R, is continuous (<e T). Hence R is continuous since T is discrete.
(6) This follows from (3), (4) and the fact that X = L(Gxa( Y)).

(5.19) Notation. For the remainder of this section the following notation will be in
force: S the sphere of radius c= ||iA(*)|| (xsX) (see (5.13)), SxaX the orbit space
SxX/G where a{v, x) = (av, ax) (aeG, veS, xeX), and [v,x] the image of
{v, x) under the canonical map of S x X into S xaX.

Let T act on SxX via the map (s, x, t)^(s,xt):SxXxT^SxX. Then (G,
SxX, T) is a bitransformation group and so there is induced an action of T on
SxaX.

(5.20) THEOREM. The map u->y[h(u), aTI(u)]: U->SxaX is a homomorphism;
where h{u) = (g\u),...,gr(u){ueU).

Proof. Let ueU, teT and y = U(u). Since o-(_y)f and cr(yt) are both isometries of
Cr onto Myl, there exists j8 e G with cr(>>f) <> y3 = cr(y)/; i.e. p~lcr(yt) = a{y)t.

If j8(«f) = i ;= , /3,-,-e,- then this says that r " 1 ^ = ̂  0,-,-gj,, whence

g'(«) = Zi
j

( l < / < r ) . Consequently fi~\h{ut), <r{yt)) = (h(u), a(y)t) and so

rn(«r)] = [h(ut), a(yt)]

), <r(y)f\ = t*(M), cr(j)]t

The proof is complete.
(5.31) Remark. As in (4.9) the section cr gives rise to cocycle 5 on YxT to G such
that the map (a,y)-*^ao-(y): GxY^>X is a. bitransformation group isomorphism.
(Recall S(y, t)a(yt) = o-(y)t (ye Y, te T.) The cocycle 5 may be used to define an
action of T on S x Y viz:

(v, y)t = (8{y, t)~\ yt) (veS,yeY,te T).
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Denote this flow by S xs Y. Now it is easy to check that the diagram

SxGxsY—*—> SxX

SxY > S x X
S G

is commutative and that / is an isomorphism. Here <p(v,a,y) = (a~1{v),y)
(ve S, aeG, ye Y ) , K is t h e c a n o n i c a l m a p a n d f(v, y) = [v, o-(y)] (ve S, ye Y ) .

(5.32) Notation. In addition to the other assumptions made in this section the
following will be in force: si will denote a T-invariant subalgebra of °U with
3><^sl = sl and M_ the set of finitely generated T-& submodules M of % with

(5.33) LEMMA. Let MeM. Then there exists a compact group K, a cocycle rj on YxT
to K, a closed subgroup H of K and a T-subalgebra 3) of si with M<^<& and |SS|
isomorphic to K/ H xvY.

Proof. As in (5.31) we shall identify GxsY with X and SxsY with SxaX. The
assumptions on si suffice to justify replacing U by \si\ in (5.20). This provides a
homeomorphism y of \sl\ into Sxs Y.

Let s0 be a fixed element of S, IJJ:GXS Y^ SXSY be such that il/(a, y) = (a(s0), y)
(aeG, ye Y), <p :SxsY-> Y be such that <p{s,y) = y, and W = im y. Then \\>, tp are
epimorphisms and <pijj is the projection onto Y.

Now let v = m^y^1. Then v is an ergodic, T-invariant supported measure on W
such that m = vtp^1 (notice that cp ° y is the canonical map of | ^ | onto Y.).

The measure i^on W<^ SxsY can be lifted to a T-invariant measure on GxsY
since the latter is a compact group extension of S x s Y.

The preceding paragraphs verify the conditions of theorem (4.16) with G xs Y = X,
SxsY= E and the other symbols identical. Lemma (5.3) now follows from (4.16).

(5.34) Remark With the notation as in (5.33) C(E/HxsY) = 38 c si. In general
C(E xs Y) need not be contained in si. However by enlarging °U if necessary we
may (and do) assume that C(E xs Y)<= % for all such group extensions.

(5.35) L E M M A . Let ( % | i e J) be a family of T-subalgebras of°U such that |^,| is a
group extension of 2F (ie I). Then |V %\ is also a group extension of 9.

Proof. Let Gt be a compact group, St a cocycle on YxT to Gt, II,:!^,!-* Y the
canonical map and t/̂ : | c€l,\ -» Gt such that «//, x IT,- is an isomorphism of 1̂ ,1 onto
G,xtlY (iel).

Set 0 = 1 1 ; ^ and S(y, t) = (Sl(y,t)\ie I). Then S is a cocycle on YxT to G.
Let K,,: C/->|%| ( ie / ) and K : U-> Y be the canonical maps and <p : U^ Gxs Y be
s u c h t h a t (p(u) = ((if/iKiu\ieI), K(U)) (ue U).

Then it is immediate that <p is a homeomorphism, <p(U) projects onto Y, and
that m<p~l is a T-invariant ergodic measure supported on <p(U). Consequently by
the results of § 4, <p(U) is a compact group extension of Y.
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Since <p(u) = <p(v) if and only if *,-(") = K,-(D) ( i e / ) , <p*C(<p(L/)) = V %. The
proof is complete.

(5.36) THEOREM. Let M be the smallest STm closed T-subalgebra of °U containing
yj{M | M e M}. Then there exists a T-subalgebra !£, a compact group G, a closed
subgroup SofG and a cocycle p on YxTtoG such that \3?\ = G/SxYand SE = si.

Proof. For each M e M let Sft{M) be as in (5.33) and <£(M) the corresponding group
extension C(E xs Y). Then V ^(M) is a group extension of Y by (5.35) and it is
immediate that

\\/ ®(M)\ = G/S x Y

for some closed subgroup S of G where |V c€(̂ M.)| = G x p Y.
Set 2=y ®(M). Then M^g^&^d (JieM) implies that ^ =
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