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The Solution of Mathteu's Differential Equation.

By Dr JOHN DOOGALL.

(Read 10th March 1916. Received 20th June. 1916.)

The determination of the harmonic functions of elliptic and
hyperbolic cylinders depends on the solution of Mathieu's differ-
ential equation. This equation, it has been remarked by Professor
Whittaker,* is the one which naturally comes up for study after
the hypergeometric equation has been disposed of. Its solution
presents difficulties which do not arise in connection with the
hypergeometric equation or its degenerate cases, and it cannot, I
think, be said that any discussion of the equation has yet been
given with which the student of analysis can rest content. The
treatment given below, though certainly incomplete at some
points, seetns to follow the lines along which a thoroughly successful
theory may be hoped for.

Two independent solutions are obtained in terms of series
which are proved to converge absolutely and uniformly for all
values of the variable. The coefficients of these series are expressed
in the form of multiple series which can in fact be summed in a
finite number of terms involving known functions, but the actual
carrying out of the summations is not effected for the general term.

The equation for the troublesome index with which students of
the equation are familiar is found in an interesting and com-
paratively simple form. Here also the general term is left as a
multiple series, but a method is explained by which this can be
evaluated in terms of simple functions, at the cost indeed of serious
algebraical labour, and the evaluation is actually completed for a
few of the earlier terms.

* Whittaker, Proc. of Fifth International Congress of Mathematicians,
1912, Vol. I., p. 366.

Several papers have recently appeared in our own Proceedings, Vols.
XXXII. and XXXIII. In these papers other references will be found.
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A second form of solution of Mathieu's equation is given in
series involving Bessel functions. I t is remarkable that the
coefficients in these series are the same as in the first or standard
form of the solution. A very valuable feature of the solutions in
Bessel functions is that they exhibit at a glance the asymptotic
character of the solutions for infinite values of the variable.

1. Elliptic cylindrical coordinates a. and ft are connected with
ordinary rectangular coordinates x and y by the equations

x = c cosh a. cos ft, \ . .
y = c sinh a. sin ft, / ^ '

or, in one equation,
x + i y = ccosh (a. + i ft) (2)

The wave equation

becomes

If u (a.) v (ft) is a solution of this equation, we must have

where 82 is a constant.
Since (6) may be derived from (5) by changing a. into i ft, it is

sufficient to deal with (5), which is in effect Mathieu's differential
equation.

The problem attempted in the present paper is the complete
solution of (5) on the supposition that the constants K and s are
given.

2. According to the theory of linear differential equations, a
solution of (5) exists expressible in the form

M = 2 cMe<s"+")«, (7)
«s= — JO

where cn and v are constants to be determined.
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Substitution in (5) gives

- / } c n + i/c2c2(cn_1 + C,1+1) = 0) (8)
or, if cn = ( - l ) » C n , (8)'

,+i + »-i j O » ()
T T /c c

If we write

*«-••, I (10)

this becomes

I t is the treatment of this recurrence equation which constitutes
the distinctive feature of the following analysis.

In (11) the variable n is an integer, but it will be convenient to
deal with the general difference equation

2 2

= ^ w, (12)

in which z is a complex variable.
If wt is any solution of (12), then obviously

e»=«,,,+„ (13)
and (•„ = «,_„_„ (U)

are solutions of (11).
The method of procedure will be as follows.
We shall find a solution of (12), say wl = <f>(z), vanishing when

the real part of z is infinite and positive. Then
<f> (n + p.) = 0, when n = + oo ;

and <j> ( - n - /*) = 0, when n = - oo .
But we can choose p so that the solutions <f> (n + p.) and <f> ( - n - p.)
of (11) are the same except for a constant factor; for the two
solutions <f> (n + /J.) and A <£ ( - n - p) are identical if they are equal
to each other for two consecutive values of n, say ra = 0 and n= 1;
that is, if

and +(p
so that the equation for /* is
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3. We have now to find a solution <f> (z) of the difference
equation

such that <f>(N+ai) -> 0 when JV -> oo , where a and iV are real.
Since <j>(n + fi) is the coefficient of the term of order n in a

power series which we expect to converge rapidly, it is natural to
assume tentatively that in (17) <f>(z + 1) is negligible in comparison
with <j> (z - 1) when the real part of z is great and positive.

Thus, approximately,

*(*-i)~^£-*(*) (18)
an equation of which one solution is

and this satisfies the condition at infinity.
Looking now for a solution of (17) which shall have (19) for its

asymptotic form when R (z), (the real part of z), tends to + oo , we
write in (17)

*<*>-n(.+r)n(-r)*- (20)

and obtain for vz the equation

or, changing z into z + 1,

We shall find a solution of (21) in the form of a series of
ascending powers of A.4, say

v,= l- VA™ + \aAM - \ln-Az
m +... (22)

where the coefficients At
{l), At

m, ... all tend to 0 as R (z) tends
to + oo .*

* It will be found interesting to apply a similar process to the difference
equation for the Bessel function Jz (X), viz.,

(X) = ^ A (X).
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{z-r + 2 (23)

(24)

4. For brevity write

az=-

Then (21) is

From (22)
v.+l-l-\<A£\ + VA$ (25)

so that

From (24), (26), (27), by equating coefficients of the various
powers of A.,

A (1) A (1) — n /9ft \

A ^ — A '2* — & A 'J* (^Q)
A (3) A (3) _ _ A (•!) /^A\

and so on.
A solution of (28) is

and this is easily proved to tend to 0 as B (z) tends to + oo .

Similarly
AW = atAz$ + at+1Az!?> + al+iAzV+ (32)

= a,i («2+o + o,+3 + ai+i + ...) "I

+ «s+2 (<VM + «.+» + ««+e + • • •) I
+ J

and so on.

More formally,

1

" 2 ^ I ^ ' 2+P - ^ V ^ + P + ^ - ^ * +
p = 0 1 ju = 2 1 2 J> —2

OT CO W

4 iii) _ y ,, v „ y „
o ŝ O 1 p ="2 1 2 /) < '̂2

(35)
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5. We shall now show that the repeated series of (35) are
absolutely convergent and that with the definitions (35) of
Az

{1>, Az
m, etc., the series for v. in (22) is absolutely convergent.

Put | a1+ll | - mz+ll (36)
Also put BZ

M for the repeated series obtained from Az
k) by replacing

each a by its modulus.
Thus B^q) is the sum of all the <?-ary products of the quantities

mz, mz+l, mJ+,,...

with the omission of all products in which any two of the suffixes
differ by unity. Thus B^is less than the sum of all the g-ary
products, without restriction, of

mt, mz+1, mz+i,...

and therefore, as is obvious by the Multinomial Theorem, less than

— (rn, + mz+1 + rnt+» +...)«,

which, from the definition (23) of a,, is clearly finite.
Put mz + m:+l + mz+n + ... = M.

Thus /?,<«> < —• M\ (37)
?!

and | Ap \ < ~ M •' (38)

Hence, if we put | A.4 | = L in (22), (39)

< « ZAP

so that the series (22) converges absolutely.
We see now that the repeated series which defines A^ in (35)

may be treated as a multiple series, and the terms taken in any
order.

Again, when E (e) -» + oo , clearly M-> 0, so that v. ~> 1,
and </> (z) as defined by (20) and (22) has actually

U(z-r)

for its asymptotic form as R (z) -> + co .
Finally, in the series (7), when <•„ = ( - 1)" ̂ >(w + /i), the general

term for a large positive n has the asymptotic form

II (n + p + r) II (u + ix - r)
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and the series therefore converges at the upper end, (n -» +00),
absolutely and uniformly for every a..

As for the nature of the convergence at the lower end,
(n -» - 00 ), we have, as explained at the end of § 2,

A.-2n-2yll

asymptotically, and the general term of (7) for a large negative n
has the asymptotic form

/ _ 1)- JM ^fT^ e<*+V> « (42)

so that the convergence is absolute and uniform at this end also.
The convergence at the lower end depends, of course, on /x being

a root of (16). We have now to consider in some detail the
character of the equation for (i.

6. We take, according to the definitions (20), (22), (23), (35),

and consider the function f{z) defined as

f(z)- + {z) + (-z-\)-4>(-z)4>(x+\) (44)
We have, by (17), for every z

* (*+l) + * (*- l ) = ̂ % («),

so that also

2 - r
Eliminate —ry— between these. Thus

A

or

By the definition (44) the right-hand member here i s / ( z - 1) and
also / ( - z).

Hence / ( * ) - / ( • - 1) - / ( - » ) . (45)
and f(z) is an even periodic function of z, with period unity.
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Thus
/(«)=> Lt. f(n + z)

n = - oo

= L t . {<f>(n + z) <f>(-n - z - 1) - </>( -n - z) <j>(n + z + !•)}•• ( ^ )
71= - 00

Now, (20),
A.2*

so that f(z)

"_ A^
™ ' ' ~ E[( — » - a — I + r) II ( — n — a— 1— r) "+* ~"~s—J

A=

(47)

But, (§5), Lt. «_,,_,= Lt. «_„_,_, = ! (48)
H ^ — t o 7 1 = — oo

Also (22), «,1+«=l-AMn<li + AM, ,^ - . . . , (49)
and, as we see by writing n + z for s in (35), and then changing
j»i into Pi - n, AJj.1 differs from A^ only in having n to oo instead
of 0 to oo for the limits of the px summation.

Write Lt. A,,$ = AJ?t (50)
n = -oo

It is easily proved, after the manner of § 5, that this limit is finite,
and that Lt. vu+, may be taken term by term on the right of (49).

n~ -oo

Hence
Lt. «„+,= Lt. vlt+z.

?t=K - CO 7 1 = - 00

Again, n(a : )n(-a ; - l )= - ^ ^ (52)

By using (48), (51), and (52) in (47) we find

/{z) „ 8 i n (* + r) ™ n (* ~ r)* (i _ x̂ .<-> + X'̂ .w - ...) (53)

The equation (16) for fi is f(jt) = 0, so that

r)* ( I - X ' ^ + A ' ^ «-.„)-<). ... (54)
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7. We have still to examine the nature of the functions
A »», A (2», etc. It will be shown that

0 0 , f* 00 , fl

50' f- sin (fi + r) IT sin (/J. - r) ir '

where Fg (r) is a function of r only of the form

Fg (r) = Cq(r) cos 2rTr + S7(r) sin 2rir (56)

where C, (r) and Sv (r) are rational functions of r. The equation
(54) for /J. therefore takes the form

or
cos2/«r = cos 2rir -2A4{Ci(r) cos 2r JT + Sx (r) sin 2rn-})

9 8 o o r ••• (58)

The values of Fx (r) and F2 (r) will be givon explicitly, and a
method explained by which Fq (r) could be found for any assigned
numerical value of q. The process for q = 3 and q = 4 could be
carried out without much trouble, but for higher values of q the
algebraical calculations become more and more laborious.

8. By (35), (50),

A (D — "V n /f$Q J
•"„, „ — Zi an+M> V"*'/

where

which, in partial fractions,
1 1 1 1

_
2 r ( 2 r - l ) n + p + r+l 2 r ( 2 r + l ) n

1 1 1 1+ 2r(2r + l) n + p-r+l 2r(2r-l) n + fx-r + 2 '

But 2 ( n~- T) = "" (c o t fif - c o t <#"r) (60)

{ t ( ) . - cot ( / , - r ) ,} (61)

Hence

= ^

r(2r- l)(2r+l) sin (/J. + r) IT sin (/* - r) TT '

which agrees with (55) and (56).
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9. We have by (35), (50),
CO 00 00 00

•4M ' = 2 2 2 ••• 2 a/i+j,
* f" p K—oo p =»2 p = 2 p = 2 1 1 1 g

1 2 3 q

(62)

In this absolutely convergent multiple series the px summation can
be taken first.

The function of fi summed in (62) has \q simple poles, for 2q of
which fi + r is an integer, and fi-r for the other 2q. If the sum of
the residues of the function at the poles for which ju, - r is an integer
is a-tj, then the sum of the residues at the poles for which /J. + r is an
integer is - <rv, since the sum of all the residues is zero.

Also each residue, and therefore <rq, is independent of pt.
Hence

il:o««> = 7r{cot(/*-r)a--cotOoi + r)ir} 2 2 ••• 2 o\, (63)
1 r- p =2 p =2 p =2

2 3 ,,

Write now At for Ax
 (''> and 2a for the multiple series on the

right of (63), so that 2, is a function of r only.
Thus At = ir {cot (in - r) IT-cot (fx + r) IT] 2g (64)
2,v is therefore the residuo of the function Aq of /x at any one of

the poles for which fi - r is an integer. This suggests the following
method of' turning the difficulty of a direct evaluation of the
multiple series 2V.

10. The tf-ple series in (62) may be regarded (cf. §5) as the sum
of all the q-ary products of the quantities

with the omission of all products containing two consecutive a's.
Hence the coefficient of a^,, in Aq is the remainder when from
Aq_x is subtracted all terms containing one or more of aM+,,_], aM+),,

Consider A,t as a linear function of the independent variables

Then the coefficient of «M+J, in Aq is — —.

For brevity write ta for oM+TC.

13 Vol.34
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Thus

for, in subtracting from Ag-1 the terms containing tfn_:, those con-
taining tn, and those containing tn+l, we are subtracting twice
those which contain the product tn_l tn+i.

We can use (65) as a reduction formula by repeated application

of which —- is finally expressed in terms of Aq_^, Aq_2, ...,Alt and

a certain finite number of the t'& adjacent to t,,, viz.,
<»-,. <»_,+i • • • •» L+, • We take At = 1.

We find

I 4 ( « - i + * . + ' - + 0 A+*
+ {tn

2 + 2 (<„_, + <n+1) «„ + <n_2 <„_, + < _ , ' + <„_, <M+1

+ <»+l
! + ^+l'n+SM,-3+ (66)

'- • • • (67)
where Xr

{n) is a rational integral homogeneous function of

<„_,, <„_+!, ..., <«+r of degree r.

A recurrence formula connecting -X,'"1, XJn), ..., JP9iTit may be
found by applying (67) to the case where all the t'a vanish except
those which appear there explicitly, that is to say, those from
<n-4.fi to <n+,_n the values of At_1, -4g_2, etc., being written down
for this case by inspection from the property stated in the first
sentence of this § 10.

.11. Value of A ^ .

By (64)
At = Amt

('ll = ir{cot(n-r)T--cot(ii. + r)ir}21 (68)

Thus 22 is the residue of A% at the pole fi = r. Now the terms
of Aa which are infinite for p = r are those involving a^_j and
«/»-> • As at (65) the coefficient of a^^ in At is
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Also

Hence
1 A

\ (69)

2r(2r -1) L * " ' '

The functions in square brackets are easily evaluated for JX = r by
expansion in ascending powers of /x - r, the value of Ax being as
given in (61).

We thus find

s = ~ra(2r-l)2(2r+l)2

1 / J_ 1
\ +2r + 27Tl

V 2 r 2 r -

~2j- 2 (2r- l ) (2r+l) 2

2 r 2 (2 r - l ) 2 (2 r+ l )

+ 4r (2r - l)s (2r - 2) ~ 4r (2r + I)2 (2r + 2)

12. Prom (65) explicit expressions in terms of series tLat can
be summed can be derived from At, A%, Ait ... in succession.

Since At is a homogeneous function of q dimensions of the
variables t, we have

ft dA<-> • f 9 ^ ' - U /

2 tn - 1 „ („_, + „ + n+1) }

(^ < n + 1 -^ - \ ...(71)
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Thus

" -"1 ^ K ~~ ^ l>i ~ * w SM
 Cn+1

= (2^-2C-22«,,^+1 (72)

3A:t = A£tn - 2{<H(«1_1 + tn + <„+,)(S<,,-*«_,-<»-«M+1)} + 2 <„_, <» K+i

or ^ = J (2 t,,y - 12<„ 2 C - 2 <„ 2 <„«,,+] + J 2 if
2 ( '

and so on without difficulty.
These formulae are obviously analogous to the expressions for

the coefficients of a rational integral equation in terms of sums of
powers of the roots, to which in fact they reduce if we take
every alternate ttl to be zero.

All such summations as those of (72), (73) are easily effected
by the partial fraction method of § 8 in terms of cot (ft - r) w,
cot (ji + r) 7r and their successive /.(.-derivatives, the coefficients being
rational functions of r.

In the above the summations are all from n= - x> to n = oo.
The same formulae (72), (73), etc., still hold when the n-summation
is taken from a finite value of n to n — oo ; we have only to suppose
all the variables t,, to be zero when n is less than this finite
number. The formulae therefore hold when instead of Ap we take
the function AJP) of § 4 ; tu being there azf/,, and the n-summations
from 0 to oo .

We thus see that the functions A!p) are all expressible in finite
terms by means of \p functions (Gauss' function ^(x) being

— log II (a:)), and their successive derivatives.
ax

13. A modification of the method just explained leads to a
proof of (56). From (67)

qAq = A^ 2 tn + A,_2 2 (<„ X <tn + A,_2 2 (<„ X <»)) +. . . - .

By expressing tn .A',.'"' in partial fractions we find 2 {t,, Xr
w) as a

linear function of cot (/J. - r) TT, cot (/* + r) -K and of the first r
/^.-derivatives of these. Moreover, since the sum of the residues
of tn Xr

("' is zero, the coefficients of cot (/* - r) n and cot (/* + r) ir
are equal but of opposite sign.
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Now the pth /^-derivative of cot (/i + a) it is a function of \>. of the
form {1+cot2(/^ + a) 7r} multiplied by a rational integral function
of cot (fi + a) IT of degree p — 1.

Write x = cot (/J. - r) ir, ">
y = cot (/* + r) ir. / ^ '

Thus (74) becomes

qAq = Aq_1C1(x-y)
+ A,_, {(*= + 1 ) Po(«) + (2/2 + 1) <?„ (2/) + C2 (x - y)}
+ Aq_3{(x*+l)P1(x) + (y*+l)Q1(y) + C3(x-y)} {

'*) + (f + 1) «»-3 (y) + C,-i (* - V)}

where i*,, (x), Qn (y) are rational integral functions of x, y
respectively of degree n, the coefficients in which are functions of
r, and Cn is a function of r only.

Also by (64) AH has the form Bn (x - y), where Btt = ir 2n is a
function of r only.

Thus
0=-qB,(x-y)

(x - y)} \. (77)
+
+ {(a? + 1) P9_2 («) + (f + 1) ^ _ 3 (2/) + C,(x -

Here the rational integral function of x and y on the right is
not necessarily identically zero, for x and !/ are not independent.
In fact,

cot 2r 7r = cot
xy+1

= x-y'

sothat *»/ - (a; - y) cot 2r TT + 1 = 0 (78)

Thus all we can infer is that the right of (77) is divisible by

xy -(x-y) cot 2rir + l.

It will still be so divisible after we subtract

{xy -(x-y)cot2r7r + l} {P,,_2 (x) + Q,_2 (y)}

from its last line, which then becomes

{x - y) [xPtJ_2 (x) - yQq_, (y) + {Pv_2 (x) + Qq_2 (y)} cot 2r IT + C,].
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The modified right of (77) is then divisible by x - y, and the
quotient is still divisible by xy -{x- y) cot 2r ir + 1; in fact, it is
identically zero, since it is the sum of a function of x alone and a
function of y alone.

In the identically null quotient put x = y = i, and we get

or, say,
Bg = C,(r) cot 2rir + Sq(r) (79)

Thus Aq = Bq {cot (p. - r ) i r -cot

_Cg(r)cos2r7r + ^ ( r ) s i n 2 r ^
sin (/* - r) ir sin (yu + r) 7T '

which proves (55) and (56).

14. Summary of fundamental results.

In the preceding paragraphs we have defined a solution of
Mathieu's equation

^ - ; + (£KVcosh2<x-«2)M = 0, (81)

say, u = J(v, s, KC,a), (82)

where J {v, s, K C, <X)= 2 ( - !)»«£ (n + Jv) e
{2n + ")a, (83)

« = - 00

::;:}where, if
\KC--

the function <f> (*) is defined as

f1 ^ " ^ . » - * * - + . . . } , ... (85)

in which

^("= £ £ 2 - 2 % , «*+*,+*, - a'+P>+P,+...+P,> - (86>
Pl = Op,=2p,=2 p,=2

a n d a* = (z + r+l)(z + r + 2)(z-r + l)(z-r+2) ( 8 7 )

If JV-A., (88)

the equation for /J, is
*0»)*( - /* - l ) -* ( - /* )*0*+l ) -O, (89)

which reduces to the form
sin 0* + r)*-sin (p-»•)«• {1 - ^ 0 0

( % + A8^^' M - ...} =0, ... (90)
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where A <«> differs from A to) as defined by (86) only in having the

^-summation from pt = - oo to pi = oo .
It is proved that

A ,,, _ C, (r) cos 2r IT + g, (r) sin 2r *•
00. M sin (/i - r) IT sin (/n + r) ir * '

where Cq (r) and Sq (r) are rational functions of r. These are found
explicitly for r = l and r = 2 , and a process is explained by which
they may be calculated for any assigned value of q.

The equation for v is
cos vir = cos sw - 2 (£ KC)* { Ci (Js) cos SJT + Sx (|s) sin STT } \

+ 2 (i KC)8 {C8 (J s) cos SJT + ,S2 (Js) sin sir} h (92)

If v, be any one value of v, the solution of this equation is
v = 2N±v0 (93)

where N is any integer.
But obviously (93) does not give more than two distinct

solutions, say from v = v0 and v = -v0, for in (83) increase of
v by 2 and diminution of n by 1 only changes the sign of the
function.

Further, when v0 is an integer, v0 and - v0 differ by twice an
integer, and the solutions coincide. A second solution for this
case may be found by a well-known process. We prefer to define
it, however, in connection with another form into which the
solution of Mathieu's equation may be put, a form which has
important advantages, and to which we now proceed.

15. Solutions of Mathieu's equation in terms of series of Bessel
functions.

In (5) write temporarily ^KC = k, and the equation becomes

»a)M = 0 (94)

(95)

where J denotes the ordinary Bessel function,

then -r-f +(&e-m-n*)Jn = Q, (96)

and - r -^ + ^e - 2 0 1 -t2) J. = 0 (97)
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Hence

J^ (Jn Jt) + (*• e2a + *» e-sa - n2 -1*) Jn J,

act. da.

Thus

^ j (Jn J,) + (A2 e2« + *• e-"-a - 8s) Jn Jt

= - 2A2 Jn' Jt' + (n5 + t* - *5)
Now,

so that
Also

n
(
 n - 1 n + 1 ' ! •

A.T' T' — ( T T

2w

. (98),

• (99)

(100)

(101)

(102)

(100) and (102) being fundamental formulae in Bessel functions,
so that

- p r J» J>
From (101) and (103)

Hence the right-hand member of (99)

Put t — n + v and try in (94)

u= £ CnJn^Kce-a)Jn+v(iKcea)

We require by (105)

£ C\, [{(2n + v)2 - s2} /; lJ( - i*« c2 (Jn_, Jt_, + Jn+l

(103)

(104)

(105)

(106)

= 0.

(107)
In this series the coefficient of Jn Jt will vanish if

C>1{(2n + v)2-*2}=}KV(Cn

which is the same as (9).
(108)
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Thus we may take CB = <£(» + £v), with v as before.

The series

2 *(n + Jv ) J n aK C e - f l ) J n + ),(iKce
a) (109)

n— -oo

can be seen in a moment to be absolutely and uniformly convergent.
It therefore defines a solution of Mathieu's equation.

16. Since the function (109) is the product of eva by a uniform
function of eta, this solution must be a constant multiple of the
solution J(y, 8, K c, a.) defined in (83), say,

2 <t,(n + lv)Jn(1£Kce-a)Jn+lifacea) = CJ(v,s,Kc,a.). (110)

The constant C may be determined by assigning any special value
to a, say a. = 0. This leads to a complicated expression for C, and
it turns out that we get the value of C in a much simpler form by
considering the limiting forms of the two sides of (110) as £(a.)
tends to + oo .* I t is convenient to keep the imaginary part of
a. constant, and such that ^Kcea is a positive pure imaginary,
sav> *y> with phase £ir.

Then in (109)

( I l l )
for any fixed n, where the symbol = means " is asymptotically
equal to."

Also since </_, = ( - 1)" «/„, the value of the other J factor in the
general term of (109) is small if n differs from 0, and its order of
smallness increases by 1 as n increases by 1 numerically. The
most important term of (109) is therefore that for rt = O. If we
assume that it is more important than the sum of all the other
terms, it follows that the asymptotic form of (109) is

* The prooess of determining the limiting forms of functions defined by
series with general terms so complicated as those of (110) is, of course,
delioate and difficult, and although I believe the conclusions stated in the
remaining part of the paper to be true, I am far from claiming that I give
adequate proof of them.
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On the other side of (110) consider now the asymptotic form of
J(v, ts, KC, a.).

In (83) the term of order n, when n is large and positive,

=("

, (since II (n + d) ± n II (n)),

and this is just the nih term in the expansion of Jv (ty).
From this it is not difficult to deduce that, with a. as supposed

just before (111).

J(v, a, KC, o.)~Jr (iy).

Hence C=<f>(^v), (113)

and (110) becomes, for all values of a,
1 °°

...(114)
It may be noted as remarkable that while the function on the

left here and therefore that on the right also only changes in
sign when v is increased by a multiple of 2, the general term on
the right is completely altered when this change is made, and we
have really an infinite number of different series of the type on the
right of (114), all equal in value, and all equal to the solution
J(v, s, KC, a.) of Mathieu's equation.

17. Besides the solutions J(±v, s, KC,OL) it is obvious from
equation (5) itself that there are two other solutions

J( ±v, 8, KC, - a).

The relations of these to the former solutions are easily determined.

Thus

J(y, 8, KC, -<*.)= 2 <£('

or, changing n into - n,
00

= 2 *(
71— _ oo

>(-HB=2-J
(§ 2 near 15),

https://doi.org/10.1017/S0013091500037561 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500037561


so that
J(v, s, KC, - a ) °

195

18. We can now (cf. end of § 14) define a solution of Mathieu's
equation, analogous to the Bessel function of the second kind,
which will always be distinct from J(v, s, KC, a.).

In (114) write - v for v, and change the sign of n.
Thus
«7(-v, *, KC, a.)

*&$*-••>'-.-.*••••>

Multiply (114)by «-•»»•, subtract from (116),and finally multiply

by jr^—• Thus2 sin vw

2 sin vir
{J(-v,s, KC, a.)-«-|I"r J(v, 8, KC, a.)}

. ... (117)

The Bessel function of the second kind Gm (z) is defined as

By analogy, take as definition

G(v, 8, KC, a-) = -—: {J( - v, 8, KC, a.) - e ~ " " r J(v, 8, KC, ot)} .

Then (117) is
00

n = - c

Cf. with (114).

19. I t need scarcely be said that the really striking feature of
the series on the right of (114) and (120) is that, although they are
highly convergent analytical series, they serve the purpose, usually
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achieved by the use of asymptotic series, of determining to any
required order of approximation the forms of the functions
J(v, 8, K c, a.) and G (v, s, K C, a.) as R (a.) tends to + <x>. In each
case the term for n = 0 is of lower order in the infinitesimal e ~ °
than any other term, and may be taken as giving the asymptotic
value of the function. Moreover, by using the analytical ascending
power expansion of Jn(^Kee~a) and the.asymptotic expansions of
Jn+if(^Kcea) and &n + y (J/cce°), and collecting the terms of one

and the same order, we obtain asymptotic expansions not involving
Bessel functions and involving the constant v only in a very simple
way, since the functions <j> must drop out in virtue of the difference
equation connecting them.

It is also easy to find the asymptotic forms of the solutions J
and G for B (a.) tending to — oo by making use of equation (115).

The asymptotic solutions referred to in this article have been
given by Maclaurin (Trans. Camb. Phil. Soc, Vol. 17, 1899) and
Marshall (Amer. Journ. Math., Vol. 31, 1909).

These writers do not succeed in finding the exact numerical
relationships between the various asymptotic solutions. These are
easily found by the theory just briefly sketched. But a fuller
treatment of these and other asymptotic expansions must be left
over for the present.
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