
Appendix B

Probability

This appendix summarizes the probabilistic notions that are most important in
the book. Although many readers will not need to be reminded of the basic
definitions, they might still refer to it to check some easy probabilistic state-
ments whose proof we have included here to avoid disrupting the arguments in
the main part of the book. For convergence in law, we will refer mostly to the
book of Billingsley [10] and, for random series and similar topics, to that of Li
and Queffélec [83].

B.1 The Riesz Representation Theorem

Let X be a locally compact topological space (such as Rd for d � 1). We recall
that Radon measures on X are certain measures for which compact subsets
of X have finite measure, and which satisfy some regularity property (the latter
requirement being unnecessary if any open set in X is a countable union of
compact sets, as is the case of R for instance).

The Riesz representation theorem interprets Radon measures in terms of
the corresponding integration functional. It can be taken as a definition (and it
is indeed the definition in Bourbaki’s theory of integration [17]); for a proof
in the usual context where measures are defined “set-theoretically,” see, for
example, [106, Th 2.14].

Theorem B.1.1 Let X be a locally compact topological space and Cc(X) the
space of compactly supported continuous functions on X. For any linear form
λ : Cc(X) → C such that λ(f ) � 0 if f � 0, there exists a unique Radon
measure μ on X such that

λ(f ) =
∫

X
f dμ

for all f ∈ Cc(X).

171

https://doi.org/10.1017/9781108888226.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.010


172 Appendix B

Let k � 1 be an integer. If X = Rk (or an open set in Rk), then Radon
measures can be identified by the integration of much more regular functions.
For instance, we have the following (see, e.g., [28, Th. 3.18]):

Proposition B.1.2 Let C∞c (Rk) be the space of smooth compactly-supported
functions on R. For any linear form λ : C∞c (Rk) → C such that λ(f ) � 0
if f � 0, there exists a unique Radon measure μ on Rk such that

λ(f ) =
∫

Rk
f dμ

for all f ∈ C∞c (Rk).

Remark B.1.3 When applying either form of the Riesz representation theo-
rem, we may wish to identify whether the measure μ obtained from the linear
form λ is a probability measure on X or not. This is the case if and only

sup
f∈Cc(X)
0�f�1

λ(f ) = 1,

(see, e.g., [17, Ch. 4, § 1, no8]) where, in the setting of Proposition B.1.2, we
may also restrict f to be smooth.

Moreover, if a positive linear form λ : Cc(X) → C admits an extension to
a linear form λ : Cb(X) → C, where Cb(X) is the space of continuous and
bounded functions on X, which is still positive (so λ(f ) � 0 if f ∈ Cb(X)
is non-negative), then the measure μ associated to λ is a probability measure
if and only if λ(1) = 1, where 1 on the left is the constant function. (This is
natural enough, but it is not entirely obvious; the underlying reason is that the
positivity implies that

|λ(f )| � ‖f ‖∞λ(1)
where ‖f ‖∞ is the supremum norm for a bounded continuous function, so
that λ is a continuous linear form on the Banach space Cb(X).)

B.2 Support of a Measure

Let M be a topological space. If M is either second countable (i.e., there is
basis of open sets that is countable) or compact, then any Borel measure μ on
M has a well-defined closed support, denoted supp(μ), which is characterized
by either of the following properties: (1) it is the complement of the largest
open set U, with respect to inclusion, such that μ(U) = 0; or (2) it is the set of
those x ∈ M such that, for any open neighborhood U of x, we have μ(U) > 0.
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B.2 Support of a Measure 173

If X is a random variable with values in M, we will say that the support of
X is the support of the law of X, which is a probability measure on M.

We need the following elementary property of the support of a measure:

Lemma B.2.1 Let M and N be topological spaces that are each either second
countable or compact. Letμ be a probability measure on M, and let f : M −→
N be a continuous map. The support of f∗(μ) is the closure of f (supp(μ)).

We recall that given a probability measure μ on M and a continuous map
f : M→N, the image measure f∗(μ) is defined by

f∗(μ)(A) = μ(f−1(A))

for a measurable set A ⊂ N, and it satisfies∫
N
ϕ(x)d(f∗μ)(x) =

∫
M
ϕ(f (y))dμ(y)

for ϕ � 0 and measurable, or ϕ ◦ f integrable with respect to μ.

Proof First, if y = f (x) for some x ∈ supp(μ), and if U is an open
neighborhood of y, then we can find an open neighborhood V ⊂ M of x
such that f (V) ⊂ U. Then (f∗μ)(U) � μ(V) > 0. This shows that y
belongs to the support of f∗μ. Since the support is closed, we deduce that
f (supp(μ)) ⊂ supp(f∗μ).

For the converse, let y ∈ N be in the support of f∗μ. For any open
neighborhood U of y, we have μ(f−1(U)) = (f∗μ)(U) > 0. This implies
that f−1(U)∩ supp(μ) is not empty, and since U is arbitrary, that y belongs to
the closure of f (supp(μ)).

Recall that a family (Xi )i∈I of random variables, each taking possibly values
in a different metric space Mi , is independent if, for any finite subset J ⊂ I,
the joint distribution of (Xj )j∈J is the measure on

∏
Mj which is the product

measure of the laws of the Xj .

Lemma B.2.2 Let X = (Xi )i∈I be a finite family of random variables with
values in a topological space M that is compact or second countable. Viewed
as a random variable taking values in MI, we have

supp(X) =
∏
i∈I

supp(Xi ).

Proof If x = (xi) ∈ MI, then an open neighborhood U of x contains a product
set
∏

Ui , where Ui is an open neighborhood of xi in M. Then we have

P(X ∈ U) � P(X ∈
∏
i

Ui ) =
∏
i

P(Xi ∈ Ui )
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by independence. If xi ∈ supp(Xi ) for each i, then this is > 0, and hence
x ∈ supp(X).

Conversely, if x ∈ supp(X), then for any j ∈ I, and any open neighborhood
U of xj , the set

V = {y = (yi)i∈I ∈ MI | yj ∈ U} ⊂ MI

is an open neighborhood of x. Hence we have P(X ∈ V) > 0, and since
P(X ∈ V) = P(Xi ∈ U), it follows that xj is in the support of Xj .

B.3 Convergence in Law

Let M be a metric space. We view it as given with the Borel σ -algebra
generated by open sets, and we denote by Cb(M) the Banach space of bounded
complex-valued continuous functions on M, with the norm

‖f ‖∞ = sup
x∈M

|f (x)|.

Given a sequence (μn) of probability measures on M, and a probability
measure μ on M, one says that μn converges weakly to μ if and only if, for
any bounded and continuous function f : M −→ R, we have∫

M
f (x)dμn(x) −→

∫
M
f (x)dμ(x). (B.1)

If (�,�, P) is a probability space and (Xn)n�1 is a sequence of M-valued
random variables, and if X is an M-valued random variable, then one says that
(Xn) converges in law to X if and only if the measures Xn(P) converge weakly
to X(P). If μ is a probability measure on M, then we will also say that Xn
converges to μ if the measures Xn(P) converge weakly to μ.

The probabilistic versions of (B.1) in those cases is that

E(f (Xn)) −→ E(f (X)) =
∫

M
f dμ (B.2)

for all functions f ∈ Cb(M).

Remark B.3.1 If M = R, convergence in law is often introduced in terms
of the distribution function FX(x) = P(X � x) of a real-valued random
variable X. Precisely, it is classical (see, e.g., [9, Th. 25.8]) that a a sequence
of real-valued random variables (XN) converges in law to a random variable X
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B.3 Convergence in Law 175

if and only if FXm(x) → FX(x) for all x ∈ R such that FX is continuous
at x (which is true for all but at most countably many x, namely, all x such
that P(X = x) = 0).

The definition immediately implies the following very useful fact, which we
state in probabilistic language (we will refer to it as the composition principle).

Proposition B.3.2 Let M be a metric space. Let (Xn) be a sequence of M-
valued random variables such that Xn converges in law to a random variable
X. For any metric space N and any continuous function ϕ : M → N, the N-
valued random variables ϕ ◦ Xn converge in law to ϕ ◦ X.

Proof For any continuous and bounded function f : N −→ C, the composite
f ◦ ϕ is bounded and continuous on M, and therefore convergence in law
implies that

E(f (ϕ(Xn))) −→ E(f (ϕ(X))).

By definition, this formula, valid for all f , means that ϕ(Xn) converges in law
to ϕ(X).

Checking the condition (B.2) for all f ∈ Cb(M)may be difficult. A number
of convenient criteria, and properties, of convergence in law are related to
weakening this requirement to only certain “test functions” f , which may be
more regular, or have special properties. We will discuss some of these in the
next sections.

One often important consequence of convergence in law is a simple relation
with the support of the limit of a sequence of random variables.

Lemma B.3.3 Let M be a second countable or compact topological space.
Let (Xn) be a sequence of M-valued random variables, defined on some
probability spaces �n. Assume that (Xn) converges in law to some random
variable X, and let N ⊂ M be the support of the law of X.

(1) For any x ∈ N and for any open neighborhood U of x, we have

lim inf
n→+∞P(Xn ∈ U) > 0,

and in particular there exists some n � 1 and some ω ∈ �n such that
Xn(ω) ∈ U.

(2) For any x ∈ M not belonging to N, there exists an open neighborhood
U of x such that

lim sup
n→+∞

P(Xn ∈ U) = 0.
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Proof For (1), a standard equivalent form of convergence in law is that, for any
open set U ⊂ M, we

lim inf
n→+∞P(Xn ∈ U) � P(X ∈ U)

(see [10, Th. 2.1, (i) and (iv)]). If x ∈ N and U is an open neighborhood of x,
then by definition we have P(X ∈ U) > 0, and therefore

lim inf
n→+∞P(Xn ∈ U) > 0.

For (2), if x ∈ M is not in N, there exists an open neighborhood V of x such
that P(X ∈ V) = 0. For some δ > 0, this neighborhood contains the closed
ball C of radius δ around f , and by [10, Th. 2.1., (i) and (iii)], we have

0 � lim sup
p→+∞

P(Xn ∈ C) � P(X ∈ C) = 0,

hence the second assertion with U the open ball of radius δ.

Another useful relation between support and convergence in law is the
following:

Corollary B.3.4 Let M be a second countable or compact topological space.
Let (Xn) be a sequence of M-valued random variables, defined on some
probability spaces�n such that (Xn) converges in law to a random variable X.
Let g be a continuous function on M such that g(Xn) converges in probability
to zero; that is, we have

lim
n→+∞Pn(|g(Xn)| > δ) = 0

for all δ > 0. The support of X is then contained in the zero set of g.

Proof Let N be the support of X. Suppose that there exists x ∈ N such
that |g(x)| = δ > 0. Since the set of all y ∈ M such that |g(y)| > δ is an
open neighborhood of x, we have

lim inf
n→+∞P(|g(Xn)| > δ) > 0

by the previous lemma; this contradicts the assumption, which implies that

lim
n→+∞P(|g(Xn)| > δ) = 0.

Remark B.3.5 Another proof is that it is well known (and elementary) that
convergence in probability implies convergence in law, so in the situation of the
corollary, the sequence (g(Xn)) converges to 0 in law. Since it also converges
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B.4 Perturbation and Convergence in Law 177

to g(X) by composition, we have P(g(X) �= 0) = 0, which precisely means
that the support of X is contained in the zero set of g.

We also recall an important definition that is a property of weak-
compactness for a family of probability measures (or random variables).

Definition B.3.6 (Tightness) Let M be a complete separable metric space. Let
(μi)i∈I be a family of probability measures on M. One says that (μi) is tight if
for any ε > 0, there exists a compact subset K ⊂ M such that μi(K) � 1 − ε
for all i ∈ I.

It is a non-obvious fact that a single probability measure on a complete
separable metric space is tight (see [10, Th. 1.3]).

B.4 Perturbation and Convergence in Law

As we suggested in Section 1.2, we will often prove convergence in law of
the sequences of random variables that interest us by showing that they are
obtained by “perturbation” of other sequences that are more accessible. In this
section, we explain how to handle some of these perturbations.

A very useful tool for this purpose is the following property, which is a
first example of reducing the proof of convergence in law to more regular test
functions than all bounded continuous functions.

Let M be a metric space, with distance d . Recall that a continuous function
f : M→C is said to be a Lipschitz function if there exists a real number C � 0
such that

|f (x)− f (y)| � Cd(x,y)

for all (x,y) ∈ M×M. We then say that C is a Lipschitz constant for f (it is,
of course, not unique).

Proposition B.4.1 Let M be a complete separable metric space. Let (Xn) be a
sequence of M-valued random variables, and μ a probability measure on M.
Then Xn converges in law to μ if and only if we have

E(f (Xn))→
∫

M
f (x)dμ(x)

for all bounded Lipschitz functions f : M −→ C.

In other words, it is enough to prove the convergence property (B.2) for
Lipschitz test functions.
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Proof A classical argument shows that convergence in law of (Xn) to μ is
equivalent to

μ(F) � lim sup
n→+∞

P(Xn ∈ F) (B.3)

for all closed subsets F of M (see, e.g., [10, Th. 2.1, (iii)]).
However, the proof that convergence in law implies this property uses only

Lipschitz test functions f (see, e.g., [10, (ii)⇒(iii), p. 16, and (1.1), p. 8],
where it is only stated that the relevant functions f are uniformly continuous,
but this is shown by checking that they are Lipschitz). Hence the assumption
that (B.2) holds for Lipschitz functions implies (B.3) for all closed subsets F,
and consequently it implies convergence in law.

We can now deduce various corollaries concerning perturbation of
sequences that converge in law.

The first result along these lines is quite standard, and the second is a bit
more ad hoc but will be convenient in Chapter 6.

Corollary B.4.2 Let M be a separable Banach space. Let (Xn) and (Yn)
be sequences of M-valued random variables. Assume that the sequence (Xn)
converges in law to a random variable X.

If the sequence (Yn) converges in probability to 0, or if (Yn) converges
to 0 in Lp for some fixed p � 1, with the possibility that p = +∞, then the
sequence (Xn + Yn)n converges in law to X in M.

Proof Let f : M −→ C be a bounded Lipschitz continuous function, and C a
Lipschitz constant of f . For any n, we have

|E(f (Xn + Yn))− E(f (X))| � |E(f (Xn + Yn))− E(f (Xn))|
+ |E(f (Xn))− E(f (X))|. (B.4)

First assume that (Yn) converges to 0 in Lp, and that p < +∞. Then we
obtain

|E(f (Xn + Yn))− E(f (X))| � C E(|Yn|)+ |E(f (Xn))− E(f (X))|
� C E(|Yn|p)1/p + |E(f (Xn))− E(f (X))|

which converges to 0, hence (Xn + Yn) converges in law to X. If p = +∞, a
similar argument, left to the reader, applies.

Suppose now that (Yn) converges to 0 in probability. Let ε > 0. For n large
enough, the second term in (B.4) is � ε since Xn converges in law to X. For
the first, we fix another parameter δ > 0 and write
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B.4 Perturbation and Convergence in Law 179

|E(f (Xn + Yn))− E(f (Xn))| � Cδ + 2‖f ‖∞ P(|Yn| > δ)
by separating the integral depending on whether |Yn| � δ or not. Take δ =
C−1ε, so the first term here is � ε. Then since (Yn) converges in probability
to 0, we have

2‖f ‖∞ P(|Yn| > δ) � ε
for all n large enough, and therefore

|E(f (Xn + Yn))− E(f (X))| � 3ε

for all n large enough. The result now follows from Proposition B.4.1.

Here is the second variant, where we do not attempt to optimize the
assumptions.

Corollary B.4.3 Let m � 1 be an integer. Let (Xn) and (Yn) be sequences
of Rm-valued random variables, let (αn) be a sequence in Rm and (βn) a
sequence of real numbers. Assume

(1) the sequence (Xn) converges in law to a random variable X, and ‖Xn‖
is bounded by a constant N � 0, independent of n;

(2) for all n, we have ‖Yn‖ � βn;
(3) we have αn→ (1, . . . ,1) and βn→ 0 as n→+∞.
Then the sequence (αn ·Xn+Yn)n converges in law to X in Rm, where here

· denotes the componentwise product of vectors.1

Proof We begin as in the previous corollary. Let f : Rm −→ C be a bounded
Lipschitz continuous function, and C its Lipschitz constant. For any n, we now
have

|E(f (αn ·Xn+Yn))−E(f (X))| � |E(f (αn ·Xn+Yn))−E(f (αn ·Xn))|
+ |E(f (αn·Xn))−E(f (Xn))| + |E(f (Xn))−E(f (X))|.

The last term tends to 0 since Xn converges in law to X. The second is at most

C|αn − (1, . . . ,1)‖E(‖Xn‖) � CN‖αn − (1, . . . ,1)‖ → 0,

and the first is at most

C E(‖Yn‖) � Cβn→ 0.

The result now follows from Proposition B.4.1.

1 I.e., we have (a1, . . . ,am) · (b1, . . . ,bm) = (a1b1, . . . ,ambm).
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The last instance of perturbations is slightly different. It amounts, in
practice, to using some “auxiliary parameter m” to approximate a sequence
of random variables; when the error in such an approximation is suitably
small, and the approximations converge in law for each fixed m, we obtain
convergence in law.

Proposition B.4.4 Let M be a finite-dimensional Banach space. Let (Xn)n�1

and (Xn,m)n�m�1 be M-valued random variables. Define En,m = Xn −Xn,m.
Assume that

(1) for each m � 1, the random variables (Xn,m)n�m converge in law to a
random variable Ym;

(2) we have

lim
m→+∞ lim sup

n→+∞
E(‖En,m‖) = 0.

Then the sequences (Xn) and (Ym) converge in law as n→ +∞ and have
the same limit distribution.

The second assumption means in practice that

E(‖En,m‖) � f (n,m)
where f (n,m)→ 0 as m tends to +∞, uniformly for n � m.

A statement of this kind can be found also, for instance, in [10, Th. 3.2], but
the latter assumes that it is already known that (Ym) converges in law.

Proof We begin by proving that (Xn) converges in law. Let f : M −→ R be a
bounded Lipschitz continuous function, and C a Lipschitz constant for f . For
any n � 1 and any m � n, we have

|E(f (Xn))− E(f (Xn,m))| � C E(‖En,m‖),
hence

E(f (Xn,m))− C E(‖En,m‖) � E(f (Xn)) � E(f (Xn,m))+ C E(‖En,m‖).
Fix first m � 1. By the first assumption, the expectations E(f (Xn,m))

converge to E(f (Ym)) as n → +∞. Then these inequalities imply that we
have

lim sup
n→+∞

E(f (Xn))− lim inf
n→+∞E(f (Xn)) � 2C lim sup

n→+∞
E(‖En,m‖)

(because any limit of a convergent subsequence of E(f (Xn)) will lie in an
interval of length at most the right-hand side). Letting m go to infinity, the
second assumption allows us to conclude that
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lim sup
n→+∞

E(f (Xn))− lim inf
n→+∞E(f (Xn)) = 0,

so that the sequence (E(f (Xn)))n�1 converges.
Now consider the map μ defined on bounded Lipschitz functions on M by

μ(f ) = lim
n→+∞E(f (Xn)).

It is elementary that μ is linear and that it is positive (in the sense that
if f � 0, we have μ(f ) � 0) and satisfies μ(1) = 1. By the Riesz
representation theorem (see Proposition B.1.2 and Remark B.1.3, noting that
a finite-dimensional Banach space is locally compact), it follows that μ “is” a
probability measure on M. It is then tautological that (Xn) converges in law to
a random vector X with probability law μ by Proposition B.4.1.

It remains to prove that the sequence (Ym) also converges in law with
limit X. We again consider the Lipschitz function f , with Lipschitz constant C,
and write

|E(f (Xn))− E(f (Xn,m))| � C E(‖En,m‖).
For a fixed m, we let n → +∞. Since we have proved that (Xn) converges
to X, we deduce by the first assumption that

|E(f (X))− E(f (Ym))| � C lim sup
n→+∞

E(‖En,m‖).

Since the right-hand side converges to 0 by the second assumption, we
conclude that

E(f (Ym))→ E(f (X))

and, finally, that (Ym) converges to X.

Remark B.4.5 If one knows that Yn converges in law, one also obtains
convergence in law (by a straightforward adaptation of the previous argument)
if Assumption (2) of the proposition is replaced by

lim
m→+∞ lim sup

n→+∞
P(‖En,m‖ > δ) = 0 (B.5)

for any δ > 0; see again [10, Th. 3.2].

Remark B.4.6 Although we have stated all results in the case where the
random variables are defined on the same probability space, the proofs do not
rely on this fact, and the statements apply also if they are defined on spaces
depending on n, with obvious adaptations of the assumptions. For instance,
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in the last statement, we can take Xn and Xn,m to be defined on a space �n
(independent of m) and the second assumption means that

lim
m→+∞ lim sup

n→+∞
En(|En,m|) = 0.

B.5 Convergence in Law in a Finite-Dimensional
Vector Space

We will use two important criteria for convergence in law for random variables
with values in a finite-dimensional real vector space V, which both amount
to testing (B.1) for a restricted set of functions. Another important criterion
applies to variables with values in a compact topological group and is reviewed
in Section B.6.

The first result is valid in all cases and is based on the Fourier transform.
Given an integer m � 1 and a probability measure μ on Rm, recall that the
characteristic function (or Fourier transform) of μ is the function

ϕμ : Rm −→ C

defined by

ϕμ(t) =
∫

Rm
eit ·xdμ(x),

where t · x = t1x1 + · · · + tmxm is the standard inner product. This is a
continuous bounded function on Rm. For a random vector X with values in
Rm, we denote by ϕX the characteristic function of X(P), namely,

ϕX(t) = E(eit ·X).

We state two (obviously equivalent) versions of P. Lévy’s theorem for
convenience:

Theorem B.5.1 (Lévy Criterion) Let m � 1 be an integer.
(1) Let (μn) be a sequence of probability measures on Rm, and let μ be a

probability measure on Rm. Then (μn) converges weakly to μ if and only if,
for any t ∈ Rm, we have

ϕμn(t) −→ ϕμ(t)

as n→+∞.
(2) Let (�,�, P) be a probability space. Let (Xn)n�1 be Rm-valued random

vectors on �, and let X be an Rm-valued random vector. Then (Xn) converges
in law to X if and only if, for all t ∈ Rm, we have
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E(eit ·Xn) −→ E(eit ·X).

For a proof, see, for example, [9, Th. 26.3] in the case m = 1.

Remark B.5.2 In fact, the precise version of Lévy’s Theorem does not require
to know in advance the limit of the sequence: if a sequence (μn) of probability
measures is such that, for all t ∈ Rm, we have

ϕμn(t) −→ ϕ(t)

for some function ϕ, and if ϕ is continuous at 0, then one can show that ϕ
is the characteristic function of a probability measure μ (and hence that μn
converges weakly to μ); see for instance [9, p. 350, cor. 1]. So, for instance,
it is not necessary to know beforehand that ϕ(t) = e−t2/2 is the characteristic
function of a probability measure in order to prove the Central Limit Theorem
using Lévy’s Criterion.

Lemma B.5.3 Let m� 1 be an integer. Let (Xn)n�1 be a sequence of random
variables with values in Rm on some probability space. Let (βn) be a sequence
of positive real numbers such that βn → 0 as n → +∞. If (Xn) converges
in law to an Rm-valued random variable X, then for any sequence (Yn) of
Rm-valued random variables such that ‖Xn − Yn‖∞ � βn for all n � 1, the
random variables Yn converge to X.

Proof We use Lévy’s criterion. We fix t ∈ Rm and write

E(eit ·Yn)− E(eit ·X) = E(eit ·Yn − eit ·Xn)+ E(eit ·Xn − eit ·X).
By Lévy’s Theorem and our assumption on the convergence of the
sequence (Xn), the second term on the right converges to 0 as n → +∞.
For the first, we can simply apply the dominated convergence theorem to
derive the same conclusion: we have

‖Xn − Yn‖∞ � βn→ 0,

hence

eit ·Yn − eit ·Xn = eit ·Yn(1− eit ·(Xn−Yn)
)→ 0

(pointwise) as n→+∞. Moreover, we have∣∣eit ·Yn − eit ·Xn ∣∣ � 2

for all n � 1. Hence the dominated convergence theorem implies that the
expectation E(eit ·Yn − eit ·Xn) converges to 0.

Lévy’s Theorem applied once more allows us to conclude that (Yn)
converges in law to X, as claimed.
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The second convergence criterion is known as the method of moments. It
is more restrictive than Lévy’s criterion, but is sometimes analytically more
flexible, especially because it is often more manageable when there is no
independence assumptions.

Definition B.5.4 (Mild measure) Let μ be a probability measure on Rm. We
will say that μ is mild2 if the absolute moments

Ma
k(μ) =

∫
Rm
|x1|k1 · · · |xm|kmdμ(x1, . . . ,xm)

exist for all tuples of nonnegative integers k = (k1, . . . ,km) and if there exists
δ > 0 such that the power series∑∑

ki�0

Ma
k(μ)

z
k1
1 · · · zkmm
k1! · · · km!

converges in the region

{(z1, . . . ,zm) ∈ Cm | |zi | � δ}.
If a measure μ is mild, then it follows in particular that the moments

Mk(μ) =
∫

Rm
x
k1
1 · · · xkmm dμ(x1, . . . ,xm)

exist for all k = (k1, . . . ,km) with ki nonnegative integers.
If X is a random variable, we will say as usual that a random vector

X = (X1, . . . ,Xm) is mild if its law X(P) is mild. The moments and absolute
moments are then

Mk(X) = E(Xk1
1 · · ·Xkmm ), and Ma

k(X) = E(|X1|k1 · · · |Xm|km).
We again give two versions of the method of moments for weak conver-

gence when the limit is mild:

Theorem B.5.5 (Method of moments) Let m � 1 be an integer.
(1) Let (μn) be a sequence of probability measures on Rm such that all

moments Mk(μn) exist, and letμ be a probability measure on Rm. Assume that
μ is mild. Then (μn) converges weakly to μ if for anym-tuple k of nonnegative
integers, we have

Mk(μn) −→ Mk(μ)

as n→+∞.

2 There doesn’t seem to be an especially standard name for this notion.
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(2) Let (�,�, P) be a probability space. Let (Xn)n�1 be Rm-valued random
vectors on � such that all moments Mk(Xn) exist, and let Y be an Rm-valued
random vector. Assume that Y is mild. Then (Xn) converges in law to Y if for
any m-tuple k of non-negative integers, we have

E(Xk1
n,1 · · ·Xkmn,m) −→ E(Yk1

1 · · ·Ykmn ).
For a proof (in the casem = 1), see, for instance, [9, Th. 30.2 and Th. 30.1].
This only gives one implication in comparison with the Lévy Criterion. It is

often useful to have a converse, and here is one such statement:

Theorem B.5.6 (Converse of the method of moments) Let (�,�, P) be a
probability space.

Let m � 1 be an integer and let (Xn)n�1 be a sequence of Rm-valued
random vectors on � such that all moments Mk(Xn) exist and such that there
exist constants ck � 0 with

E(|Xn,1|k1 · · · |Xn,m|km) � ck (B.6)

for all n � 1. Assume that Xn converges in law to a random vector Y. Then Y
is mild and for any m-tuple k of nonnegative integers, we have

E(Xk1
n,1 · · ·Xkmn,m) −→ E(Yk1

1 · · ·Ykmn ).
Proof See [9, Th 25.12 and Cor.] for a proof (again for m = 1).

Example B.5.7 This converse applies, in particular, if (Xn) is a sequence of
real-valued random variables given by

Xn = B1 + · · · + Bn
σn

where the variables (Bi )i�1 are independent and satisfy

E(Bi ) = 0, |Bi | � 1, σ 2
n =

n∑
i=1

V(Bi )→+∞ as n→+∞.

Then the Central Limit Theorem (see Theorem B.7.2) implies that the
sequence (Xn) converges in law to a standard Gaussian random variable Y.
Moreover, Xn is bounded (by n/σn), so all its moments exist. We will check
that this sequence satisfies the uniform integrability condition (B.6), from
which we deduce the convergence of moments

lim
n→+∞E(Xkn) = E(Yk)

for all integers k � 0 (the moments of Y are described explicitly in Proposition
B.7.3).
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For any k � 0, there exists a constant Ck � 0 such that

|x|k � Ck(e
x + e−x)

for all x ∈ R. It follows that if we can show that there exists D � 0 such that

E(eXn) � D and E(e−Xn) � D (B.7)

for all n� 1, then we obtain E(|Xn|k)� 2CkD for all n, which gives the desired
conclusion. Note that, since Xn is bounded, these expectations make sense, and
moreover, we may assume that we only consider n large enough so that σn � 1.

To prove (B.7), fix more generally t ∈ [−1,1]. Since the (Bi ) are indepen-
dent random variables, we have

E(etXn) =
n∏
i=1

E
(

exp

(
tBi
σn

))
.

Since we assumed that σn � 1 and |Bi | � 1, we have |tBi/σn| � 1, hence

exp

(
tBi
σn

)
� 1+ tBi

σn
+ t

2B2
i

σ 2
n

(because ex � 1+ x+ x2 for |x| � 1, as can be checked using basic calculus).
We then obtain further

E(etXn) �
n∏
i=1

(
1+ t2

σ 2
n

E(B2
i )

)
since E(Bi ) = 0. Using 1+ x � ex , this leads to

E(etXn) � exp

(
t2

σ 2
n

n∑
i=1

E(B2
i )

)
= exp(t2).

Applying this with t = 1 and t = −1, we get (B.7) with D = e, hence
also (B.6), for all n large enough.

Remark B.5.8 In the case m = 2, one often deals with random variables that
are naturally seen as complex-valued, instead of R2-valued. In that case, it is
sometimes quite useful to use the complex moments

M̃k1,k2(X) = E(Xk1 X̄k2)

of a C-valued random variable instead of Mk1,k2(X). The corresponding
statements are that X is mild if and only if the power series∑∑

k1,k2�0

M̃k1,k2(X)
z
k1
1 z
k2
2

k1! k2!
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converges in a region

{(z1,z2) ∈ C | |z1| � δ, |z2| � δ}
for some δ > 0, and that if X is mild, then (Xn) converges weakly to X if

M̃k1,k2(Xn) −→ M̃k1,k2(X)

for all k1, k2 � 0. Example B.5.7 extends to the complex-valued case.

Example B.5.9 (1) Any bounded random vector is mild. Indeed, if ‖X‖∞ �
B, say, then we get

Ma
k(X) � Bk1+···+km,

and therefore ∑∑
ki�0

Ma
k(μ)

|z1|k1 · · · |zm|km
k1! · · · km!

� eB|z1|+···+B|zm|,

so that the power series converges, in that case, for all z ∈ Cm.
(2) Any Gaussian random vector is mild (see Section B.7).
(3) If X is mild, and Y is another random vector with |Yi | � |Xi | (almost

surely) for all i, then Y is also mild.

B.6 The Weyl Criterion

One important special case of convergence in law is known as equidistribution
in the context of topological groups in particular. We only consider compact
groups here for simplicity. Let G be such a group. Then there exists on G a
unique Borel probability measure μG which is invariant under left (and right)
translations: for any integrable function f : G −→ C and for any fixed g ∈ G,
we have ∫

G
f (gx)dμG(x) =

∫
G
f (xg)dμG(x) =

∫
G
f (x)dμG(x).

This measure is called the (probability) Haar measure on G (see, e.g., [17, VII,
§1, n. 2, th. 1 and prop. 2]).

If a G-valued random variable X is distributed according to μG, one says
that X is uniformly distributed on G.

Example B.6.1 (1) Let G = S1 be the multiplicative group of complex
numbers of modulus 1. This group is isomorphic to R/Z by the isomor-
phism θ �→ e(θ). The measure μG is then identified with the Lebesgue
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measure dθ on R/Z. In other words, for any integrable function f : S1 → C,
we have ∫

S1
f (z)dμG(z) =

∫
R/Z

f (e(θ))dθ =
∫ 1

0
f (e(θ))dθ .

(2) If (Gi )i∈I is any family of compact groups, each with a probability Haar
measure μi , then the (possibly infinite) tensor product⊗

i∈I

μi

is the probability Haar measure μ on the product G of the groups Gi .
Probabilistically, one would interpret this as saying thatμ is the law of a family
(Xi ) of independent random variables, where each Xi is uniformly distributed
on Gi .

(3) Let G be the nonabelian compact group SU2(C), that is,

G =
{(

α β̄

−β ᾱ

)
| α, β ∈ C, |α|2 + |β|2 = 1

}
.

Writing α = a + ib, β = c + id, we can identify G, as a topological space,
with the unit 3-sphere

{(a,b,c,d) ∈ R4 | a2 + b2 + c2 + d2 = 1}
in R4. Then the left multiplication by some element on G is the restriction of a
rotation of R4. Hence the surface (Lebesgue) measure μ0 on the 3-sphere is a
Borel-invariant measure on G. By uniqueness, we see that the probability Haar
measure on G is

μ = 1

2π2
μ0

(since the surface area of the 3-sphere is 2π2).
Consider now the trace Tr : G −→ R, which is given by (a,b,c,d) �→ 2a

in the sphere coordinates. One can show that the direct image Tr∗(μ) is the
so-called Sato–Tate measure

μST = 1

π

√
1− x

2

4
dx,

supported on [−2,2] (for probabilists, this is also a semicircle law); equiva-
lently, if we write the trace as

Tr(g) = 2 cos(θ)
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for a unique θ ∈ [0,π ], then this measure is identified with the measure

2

π
sin2 θdθ

on [0,π ] (for a proof, see, e.g., [18, Ch. 9, p. 58, example]). One obtains from
either description of μST the expectation and variance∫

R
tdμST = 0 and

∫
R
t2dμST = 1. (B.8)

(4) If G is a finite group, then the probability Haar measure is just the
normalized counting measure: for any function f on G, the integral of f is

1

|G|
∑
x∈G

f (x).

For a topological group G, a unitary character χ of G is a continuous
homomorphism

χ : G −→ S1.

The trivial character is the character g �→ 1 of G. The set of all characters of G
is denoted Ĝ. It has a structure of abelian group by multiplication of functions.
If G is locally compact, then Ĝ is a locally compact topological group with
the topology of uniform convergence on compact sets (for this theory, see,
e.g., [19]).

In general, Ĝ may be reduced to the trivial character (this is the case if
G = SL2(R), for instance). Assume now that G is locally compact and abelian.
Then it is a fundamental fact (known as Pontryagin duality; see, e.g., [70, §7.3]
for a survey or [19, II, §1, n. 5, th. 2] for the details) that there are “many”
characters, in a suitable sense. If G is compact, then a simple version of this
assertion is that Ĝ is an orthonormal basis of the space L2(G,μ), where μ is
the probability Haar measure on G.

For an integrable function f ∈ L1(G,μ), its Fourier transform is the
function f̂ : Ĝ −→ C defined by

f̂ (χ) =
∫

G
f (x)χ(x)dμ(x)

for all χ ∈ Ĝ. For a compact commutative group G, and f ∈ L2(G,μ), we
have

f =
∑
χ∈Ĝ

f̂ (χ)χ,
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as a series converging in L2(G,μ). It follows easily that a function f ∈
L1(G,μ) is almost everywhere constant if and only if f̂ (χ) = 0 for all χ �= 1.

The following relation is immediate from the invariance of Haar measure:
for f integrable and any fixed y ∈ G, if we let g(x) = f (xy), then g is well
defined as an integrable function, and

ĝ(χ) =
∫

G
f (xy)χ(x)dμ(x) = χ(y)

∫
G
f (x)χ(x)dμ(x) = χ(y)f̂ (y).

Example B.6.2 (1) The characters of S1 are given by

z �→ zm

for m ∈ Z. Equivalently, the characters of R/Z are given by x �→ e(hx),
where e(z) = exp(2iπz). More generally, the characters of (R/Z)n are of the
form

x = (x1, . . . ,xn) �→ e(h1x1 + · · · + hnxn) = e(h · x)
for some (unique) h ∈ Zn (see, e.g., [19, p. 236, cor. 3]).

(2) If (Gi )i∈I is any family of compact groups, each with the probability
Haar measure μi , then the characters of the product G of the Gi are given in
a unique way as follows: take a finite subset S of I, and for any i ∈ I, pick a
nontrivial character χi of Gi , then define

χ(x) =
∏
i∈S

χi(xi)

for any x = (xi)i∈I in G. Here the trivial character corresponds to S = ∅. See,
for example, [70, Example 5.6.10] for a proof.

In particular, if I is a finite set, this computation shows that the group of
characters of G is isomorphic to the product of the groups of characters of
the Gi and that the isomorphism is such that a family (χi) of characters of the
groups Gi is mapped to the character

(xi) �→
∏
i∈I

χi(xi).

(3) If G is a finite abelian group, then the group Ĝ of characters of G is also
finite, and it is isomorphic to G. This can be seen from the structure theorem
for finite abelian groups, which shows that any finite abelian group is a direct
product of some finite cyclic groups (see, e.g., [103, Th. B-3.13]) combined
with the previous example and the explicit computation of the dual group of a
finite cyclic group Z/qZ for q � 1: an isomorphism from Z/qZ to ̂Z/qZ is
given by sending a (mod q) to the character

x �→ e

(
ax

q

)
,
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which is well defined because replacing a and x by other integers congruent
modulo q does not change the value of e(ax/q).

In this case, one can also prove elementarily that the characters form an
orthonormal basis of the finite-dimensional vector space C(G) of complex-
valued functions on G, which in this case has the inner product

〈f,g〉 = 1

|G|
∑
x∈G

f (x)g(x).

Indeed, one can also reduce to the case of cyclic groups by checking that
there is a unique isomorphism

C(G1)⊗ C(G2)→ C(G1 × G2)

such that a pure tensor f1 ⊗ f2 is mapped to the function (x1,x2) �→
f1(x1)f2(x2). In particular, the characters of G1 × G2 (which belong to
C(G1 × G2)) correspond under this isomorphism to the pure tensors χ1 ⊗ χ2.

In addition, under this isomorphism, we have

〈f1 ⊗ f2,g1 ⊗ g2〉 = 〈f1,g1〉 〈f2,g2〉
for any functions fi and gi on Gi . This implies that if the characters of G1 and
those of G2 form orthornomal bases of their respective spaces of functions,
then so do the characters of G1 × G2.

And in the case of G = Z/qZ, we can simply compute using the explicit
description of the characters χa : x �→ e(ax/q) for a ∈ Z/qZ that

〈χa,χb〉 = 1

q

∑
0�x�q−1

e

(
ax

q

)
e

(
−bx
q

)
,

which is equal to 1 if a = b, and otherwise is

1− e(q(a − b)/q)
1− e((a − b)/q)

by summing a finite geometric sum, and is therefore zero, as we wanted.

The Weyl Criterion is a criterion for a sequence of G-valued random
variables to converge in law to a uniformly distributed random variable on G.
We state it for compact abelian groups only:

Theorem B.6.3 (Weyl’s Criterion) Let G be a compact abelian group. A
sequence (Xn) of G-valued random variables converges in law to a uniformly
distributed random variable on G if and only if, for any nontrivial character χ
of G, we have

lim
n→+∞E(χ(Xn)) −→ 0.
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Remark B.6.4 (1) Note that the orthogonality of characters implies that∫
G
χ(x)dμG(x) = 〈χ,1〉 = 0

for any nontrivial character χ of G. Hence the Weyl Criterion has the same
flavor of Lévy’s Criterion (note that, for any t ∈Rm, the function x �→ eix·t is
a character of Rm).

(2) If G is compact, but not necessarily abelian, there is a version of the Weyl
Criterion using as “test functions” the traces of irreducible finite-dimensional
representations of G (see [70, §5.5] for an account).

The best-known example of application of the Weyl Criterion is to prove
the following equidistribution theorem of Kronecker:

Theorem B.6.5 (Kronecker) Let d � 1 be an integer. Let z be an element
of Rd and let T (resp. T̃) be the closure of the subgroup of (R/Z)d generated
by the class of z (resp. generated by the classes of the elements yz for y ∈ R).

(1) As N →+∞, the probability measures on (R/Z)d defined by

1

N

∑
0�n<N

δnz

converge in law to the probability Haar measure on T.
(2) Let λ denote the Lebesgue measure on R. As X →+∞, the probability

measures μX on (R/Z)d defined by

μX(A) = 1

X
λ({x ∈ [0,X] | xz ∈ A}),

for a measurable subset A of (R/Z)d , converge in law to the probability Haar
measure on T̃.

Proof We only prove the “continuous” version in (2), since the first one is
easier (and better known). First note that each probability measure μX has
support contained in T̃ by definition, so it can be viewed as a measure on T̃.

From the theory of compact abelian groups, we know that any character χ
of T̃ can be extended to a character of (R/Z)d (see, e.g., [19, p. 226, th. 4],
applied to the exact sequence 1 → T̃ → (R/Z)d ), which is therefore of the
form

v �→ e(n · v)
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for some n ∈ Zd (by Example B.6.2, (1)). We then have∫
(R/Z)d

χ(v)dμX(v) = 1

X

∫ X

0
e((x n) · z)dx.

Suppose that χ is a nontrivial character of T̃; since the classes of yz for y ∈
R generate a dense subgroup of T̃, we have then n · z �= 0. Hence∫

(R/Z)d
χ(v)dμX(v) = 1

X

e((X n) · z)− 1

2iπn · z → 0

as X →+∞. We conclude by an application of the Weyl Criterion.

Example B.6.6 In order to apply Theorem B.6.5 in practice, we need to
identify the subgroup T (or T̃). The following special cases are quite often
sufficient (writing z = (z1, . . . ,zd) ∈ Rd ):

1. we have T = (R/Z)d if and only if (1,z1, . . . ,zd) are Q-linearly
independent;

2. we have T̃ = (R/Z)d if and only if (z1, . . . ,zd) are Q-linearly
independent.

For instance, if d = 1, then the first condition means that z = z1 is
irrational, and the second means that z is nonzero.

We check (1), leaving (2) as an exercise. If (1,z1, . . . ,zd) are not Q-linearly
independent, then multiplying a nontrivial linear dependency relation with a
suitable nonzero integer, we obtain a relation

m0 +
d∑
i=1

mizi = 0,

where mi ∈ Z and not all mi are zero, in fact, not all mi with i � 1 are zero
(since this would also imply that m0 = 0). Then the class of nz modulo Zd is,
for all n ∈ Z, an element of the proper closed subgroup

{x = (x1, . . . ,xd) ∈ (R/Z)d | m1x1 + · · · +mdxd = 0},
which implies that T is also contained in that subgroup, hence is not all
of (R/Z)d .

Conversely, a simple argument is to check that if (1,z1, . . . ,zd) are Q-
linearly independent, then a direct application of the Weyl Criterion proves
that the probability measures

1

N

∑
0�n<N

δnz

https://doi.org/10.1017/9781108888226.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.010


194 Appendix B

converge in law to the probability Haar measure on (R/Z)d (because nontrivial
characters of this group correspond to (mi) ∈ Zd , and the integral against the
measure above is

1

N

N∑
n=1

e((m1z1 + · · · +mdzd)n),

where the real number m1z1 + · · · + mdzd is not an integer by the linear
independence, so that the sum tends to 0 by summing a finite geometric series).

B.7 Gaussian Random Variables

By definition, a random vector X with values in Rm is called a (centered)
Gaussian vector if there exists a nonnegative quadratic form Q on Rm such
that the characteristic function ϕX of X is of the form

ϕX(t) = e−Q(t)/2

for t ∈ Rm. The quadratic form can be recovered from X by the relation

Q(t1, . . . ,tm) =
∑

1�i,j�m
ai,j ti tj,

with ai,j = E(XiXj ), and the (symmetric) matrix (ai,j )1�i,j�m is called the
correlation matrix of X. The components Xi of X are independent if and only
if ai,j = 0 if i �= j , that is, if and only if the components of X are orthogonal.

If X is a Gaussian random vector, then X is mild, and in fact∑
k

Mm(X)
t
k1
1 · · · tkmm
k1! · · · km!

= E(et ·X) = eQ(t)/2

for t ∈ Rm, so that the power series converges on all of Cm. The Laplace
transform ψX(z) = E(ez·X) is also defined for all z ∈ Cm, and in fact

E(ez·X) = eQ(z)/2. (B.9)

For m = 1, this means that a random variable is a centered Gaussian if and
only if there exists σ � 0 such that

ϕX(t) = e−σ 2t/2, (B.10)

and in fact we have

E(X2) = V(X) = σ 2.
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If σ = 1, then we say that X is a standard Gaussian random variable (also
sometimes called a standard normal random variable). We then have

P(a < X < b) = 1√
2π

∫ b

a

e−x
2/2dx

for all real numbers a < b.

Exercise B.7.1 We recall a standard proof of the fact that the measure on R
given by

μ = 1√
2π
e−x

2/2dx

is indeed a Gaussian probability measure with variance 1.
(1) Define

ϕ(t) = ϕμ(t) = 1√
2π

∫
R
eitx−x

2/2dx

for t ∈ R. Prove that ϕ is of class C1 on R and satisfies ϕ′(t) = −tϕ(t) for
all t ∈ R and ϕ(0) = 1.

(2) Deduce that ϕ(t) = e−t2/2 for all t ∈ R. [Hint: This is an elementary
argument with ordinary differential equations, but because the order is 1, one
can define g(t) = et

2/2ϕ(t) and check by differentiation that g′(t) = 0 for
all t ∈ R.]

We will use the following simple version of the Central Limit Theorem:

Theorem B.7.2 Let B � 0 be a fixed real number. Let (Xn) be a sequence of
independent real-valued random variables with |Xn| � B for all n. Let

αn = E(Xn) and βn = V(X2
n).

Let σN � 0 be defined by

σ 2
N = β1 + · · · + βN

for N � 1. If σN →+∞ as n→+∞, then the random variables

YN = (X1 − α1)+ · · · + (XN − αN)

σN

converge in law to a standard Gaussian random variable.

Proof Although this is a very simple case of the general Central Limit The-
orem for sums of independent random variables (indeed, even of Lyapunov’s
well-known version), we give a proof using Lévy’s criterion for convenience.
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First of all, we may assume that αn = 0 for all n by replacing Xn by Xn − αn
(up to replacing B by 2B, since |αn| � B).

By independence of the variables (Xn), the characteristic function ϕN of YN

is given by

ϕN(t) = E(eitYN) =
∏

1�n�N

E(eitXn/σN).

Fix t ∈ R. Since tXn/σN is bounded (because t is fixed), we have a Taylor
expansion around 0 of the form

eitXn/σN = 1+ itXn
σN

− t
2X2
n

2σ 2
N

+ O

(
|t |3|Xn|3
σ 3

N

)
,

for 1 � n � N.
Consequently, we obtain

ϕXn

(
t

σN

)
= E(eitXn/σN) = 1− 1

2

(
t

σN

)2

E(X2
n)+ O

(( |t |
σN

)3

E(|Xn|3)
)

.

Observe that with our assumption, we have

E(|Xn|3) � B E(X2
n) = Bβn.

Moreover, for N large enough (depending on t , but t is fixed), the modulus of

−1

2

(
t

σN

)2

E(X2
n)+ O

(( |t |
σN

)3

E(|Xn|3)
)

is less than 1, so that we can use Proposition A.2.2 and deduce that

ϕN(t) = exp

(
N∑
n=1

log E(eitXn/σN)

)

= exp

(
− t2

2σN

N∑
n=1

βn + O

(
B|t |3
σ 3

N

N∑
n=1

βn

))

= exp

(
− t

2

2
+ O

(
B|t |3
σN

))
−→ exp(−t2/2)

as N →+∞; we conclude, then, by Lévy’s Criterion and (B.10).

If one uses directly the method of moments to get convergence in law to a
Gaussian random variable, it is useful to know the values of their moments.
We only state the one-dimensional and the simplest complex case:
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Proposition B.7.3 (1) Let X be a real-valued Gaussian random variable with
expectation 0 and variance σ 2. For k � 0, we have

E(Xk) =
{

0 if k is odd,

σ k k!
2k/2(k/2)!

= σk · (1 · 3 · · · · (k − 1)) if k is even.

(1) Let X be a complex-valued Gaussian random variable with covariance
matrix (

σ 0
0 σ

)
for some σ > 0. For k � 0 and l � 0, we have

E(XkX̄l ) =
{

0 if k �= l,
σk2kk! if k = l.

Exercise B.7.4 Prove this proposition.

B.8 Sub-Gaussian Random Variables

Gaussian random variables have many remarkable properties. It is a striking
fact that a number of these, especially with respect to integrability properties,
are shared by a much more general class of random variables.

Definition B.8.1 (Sub-Gaussian random variable) Let σ > 0 be a real
number. A real-valued random variable X is σ 2-sub-Gaussian if we have

E(etX) � eσ 2t2/2

for all t ∈ R. A complex-valued random variable X is σ 2-sub-Gaussian if
X = Y+ iZ with Y and Z real-valued σ 2-sub-Gaussian random variables.

If X is a real σ 2-sub-Gaussian random variable, then we obtain immediately
good Gaussian-type upper bounds for the tail of the distribution: for any b > 0,
using first a general auxiliary parameter t > 0, we have

P(X > b) � P(etX > ebt ) � E(etX)
ebt

� eσ 2t2/2−bt,

and selecting t = − 1
2b

2/σ 2, we get

P(X > b) � e−
1
2 b

2/σ 2
.
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The right-hand side is a standard upper bound for the probability P(N>b) for
a centered Gaussian random variable N with variance σ 2, so this inequality
justifies the name “sub-Gaussian.”

A Gaussian random variable is sub-Gaussian by (B.9). But there are many
more examples, in particular the random variables described in the next
proposition.

Proposition B.8.2 (1) Let X be a complex-valued random variable andm > 0
a real number such that E(X) = 0 and |X| � m. Then X is m2-sub-Gaussian.

(2) Let X1 and X2 be independent random variables such that Xi is σ 2
i -sub-

Gaussian. Then X1 + X2 is (σ 2
1 + σ 2

2 )-sub-Gaussian.

Proof (1) We may assume that X is real-valued, and by considering m−1X
instead of X, we may assume that |X| � 1, and of course that X is not almost
surely 0. In particular, the Laplace transform ϕ(t) = E(etX) is well defined,
and ϕ(t) > 0 for all t ∈ R. Moreover, it is easy to check that ϕ is smooth on R
with

ϕ′(t) = E(XetX) and ϕ′′(t) = E(X2etX)

(by differentiating under the integral sign) and in particular

ϕ(0) = 1 and ϕ′(0) = E(X) = 0.

We now define f (t) = log(ϕ(t)) − 1
2 t

2. The function f is also smooth and
satisfies f (0) = f ′(0) = 0. Moreover, we compute that

f ′′(t) = ϕ
′′(t)ϕ(t)− ϕ′(t)2 − ϕ(t)2

ϕ(t)2
.

The formula for ϕ′′ and the condition |X| � 1 imply that 0 � ϕ′′(t) � ϕ(t)
for all t ∈ R. Therefore

ϕ′′(t)ϕ(t)− ϕ′(t)2 − ϕ(t)2 � −ϕ′(t)2 � 0,

and hence f ′′(t) � 0 for all t ∈ R. This means that the derivative of f is
decreasing, so that f ′(t) � 0 for t � 0, and f ′(t) � 0 for t � 0. Thus f is
nondecreasing when t � 0 and nonincreasing when t � 0. In particular, we
have f (t) � f (0) = 0 for all t ∈ R, which translates exactly to the condition
E(etX) � et2/2 defining a sub-Gaussian random variable.

(2) Since X1 and X2 are independent and sub-Gaussian, we have

E(et (X1+X2)) = E(etX1)E(etX2) � exp
(

1
2 (σ

2
1 + σ 2

2 )t
2
)

for any t ∈ R.
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Proposition B.8.3 Let σ > 0 be a real number, and let X be a σ 2-sub-
Gaussian random variable, either real or complex-valued. For any integer
k � 0, there exists ck � 0 such that

E(|X|k) � ckσ k .
Proof The random variable Y = σ−1X is 1-sub-Gaussian. As in the proof of
Theorem B.5.6 (2), we observe that there exists ck � 0 such that

|Y|k � ck(eXk + e−Xk ),

and therefore

σ−k E(|X|k) = E(|Y|k) � ck(e1/2 + e−1/2),

which gives the result.

Remark B.8.4 A more precise argument leads to specific values of ck . For
instance, if X is real-valued, one can show that the inequality holds with ck =
k2k/2�(k/2).

B.9 Poisson Random Variables

Let λ > 0 be a real number. A random variable X is said to have a Poisson
distribution with parameter λ ∈ [0,+∞[ if and only if it is integral-valued and
if, for any integer k � 0, we have

P(X = k) = e−λ λ
k

k!
.

One checks immediately that

E(X) = λ and V(X) = λ
and that the characteristic function of X is

ϕX(t) = e−λ
∑
k�0

eikt
λk

k!
= exp(λ(eit − 1)). (B.11)

Proposition B.9.1 Let (λn) be a sequence of real numbers such that λn →
+∞ as n→+∞. Then

Xn − λn√
λn

converges in law to a standard Gaussian random variable.
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Proof Use the Lévy Criterion: the characteristic function ϕn of Xn is given by

ϕn(t) = E(eit (Xn−λn)/
√
λn) = exp

(
−it
√
λn + λn(eit/

√
λn − 1)

)
for t ∈ R, by (B.11). Since

− it√
λn
+ λn(eit/

√
λn − 1) = it

√
λn + λn

(
it√
λn
− t2

2λn
+ O

(
|t |3
λ

3/2
n

))

= − t
2

2
+ O

(
|t |3
λ

1/2
n

)
,

we obtain ϕn(t) → exp(−t2/2), which is the characteristic function of a
standard Gaussian random variable.

B.10 Random Series

We will need some fairly elementary results on certain random series, espe-
cially concerning almost sure convergence. We first have a well-known
sufficient criterion of Kolmogorov for convergence in the case of independent
summands:

Theorem B.10.1 (Kolmogorov) Let (Xn)n�1 be a sequence of independent
complex-valued random variables such that both series∑

n�1

E(Xn), (B.12)

∑
n�1

V(Xn) (B.13)

converge. Then the series ∑
n�1

Xn

converges almost surely, and hence also in law. Moreover, its sum X is square
integrable and has expectation

∑
E(Xn).

Proof By replacing Xn with Xn−E(Xn), we reduce to the case where E(Xn) =
0 for all n. Assuming that this is the case, we will prove that the series
converges almost surely by checking that the sequence of partial sums

SN =
∑

1�n�N

Xn
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is almost surely a Cauchy sequence. For this purpose, denote

YN,M = sup
1�k�M

|SN+k − SN|

for N, M � 1. For fixed N, YN,M is an increasing sequence of random
variables; we denote by YN = supk�1 |SN+k − SN| its limit. Because of the
estimate

|SN+k − SN+l | � |SN+k − SN| + |SN+l − SN| � 2YN

for N � 1 and k, l � 1, we have

{(SN)N�1 is not Cauchy} =
⋃
k�1

⋂
N�1

⋃
k�1

⋃
l�1

{|SN+k − SN+l | > 2−k}

⊂
⋃
k�1

⋂
N�1

{YN > 2−k−1}.

It is therefore sufficient to prove that

P
( ⋂

N�1

{YN > 2−k−1}
)
= 0

for each k � 1, or what amounts to the same thing, to prove that for any ε > 0,
we have

lim
N→+∞

P(YN > ε) = 0

(which means that YN converges to 0 in probability).
We begin by estimating P(YN,M > ε). If YN,M was defined as SN+M − SN

(without the sup over k � M), this would be easy using the Markov inequality.
To handle it, we use Kolmogorov’s Maximal Inequality (see Lemma B.10.3):
since the (Xn)N+1�n�N+M are independent, this shows that for any ε > 0, we
have

P(YN,M > ε) = P
(

sup
k�M

∣∣∣∣ ∑
1�n�k

XN+n
∣∣∣∣ > ε) � 1

ε2

N+M∑
n=N+1

V(Xn).

Letting M →+∞, we obtain

P(YN > ε) �
1

ε2

∑
n�N+1

V(Xn).

From the assumption on the convergence of the series of variance, this tends to
0 as N → +∞, which shows that the partial sums converge almost surely as
claimed.
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Now let X =∑Xn be the sum of the series, defined almost surely. For N �
1 and M � 1, we have

‖SM+N − SN‖2
L2 = E

⎛⎜⎝
∣∣∣∣∣∣

N+M∑
n=N+1

Xn

∣∣∣∣∣∣
2
⎞⎟⎠ = N+M∑

n=N+1

E(|Xn|2) =
N+M∑
n=N+1

V(Xn).

The assumption that (B.13) converges therefore implies that (SN)N�1 is
a Cauchy sequence in L2, hence converges. Its limit necessarily coincides
(almost surely) with the sum X, which shows that X is square-integrable. It
follows that it is integrable and that its expectation can be computed as the
sum of E(Xn).

Remark B.10.2 (1) This result is a special case of Kolmogorov’s Three
Series Theorem, which gives a necessary and sufficient condition for almost
sure convergence of a series of independent complex random variables (Xn);
namely, it is enough that for some c > 0, and necessary that for all c > 0, the
series ∑

n

P(|Xn| > c),
∑
n

E(Xcn),
∑
n

V(Xcn)

converge, where Xcn = Xn if |Xn| � c and Xcn = 0 otherwise (see, e.g., [9, Th.
22.8] for the full proof, or try to reduce it to the previous case).

(2) It is worth mentioning two further results for context: (1) the event
“the series converges” is an asymptotic event, in the sense that it doesn’t
depend on any finite number of the random variables – Kolmogorov’s Zero–
One Law then shows that this event can only have probability 0 or 1 – and
(2) a theorem of P. Lévy shows that, again for independent summands, the
almost sure convergence is equivalent to convergence in law or to convergence
in probability. For proofs and discussion of these facts, see, for instance, [83,
§0.III].

Here is Kolmogorov’s maximal inequality:

Lemma B.10.3 Let M � 1 be an integer, Y1, . . . , YM independent complex
random variables in L2 with E(Yn) = 0 for all n. Then for any ε > 0, we have

P
(

sup
1�k�M

|Y1 + · · · + Yk| > ε
)
� 1

ε2

M∑
n=1

V(Yn).

Proof Let

Sn = Y1 + · · · + Yn
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for 1 � n � M. We define a random variable T with values in [0, +∞] by
T = ∞ if |Sn| � ε for all n � M, and otherwise

T = inf{n � M | |Sn| > ε}.
We then have{

sup
1�k�M

|Y1 + · · · + Yk| > ε
}
=

⋃
1�n�M

{T = n},

and the union is disjoint. In particular, we get

P
(

sup
1�k�M

|Sk| > ε
)
=

M∑
n=1

P(T = n).

We now note that |Sn|2 � ε2 on the event {T = n}, so that we can also write

P
(

sup
1�k�M

|Sk| > ε
)
� 1

ε2

M∑
n=1

E(|Sn|21{T=n}). (B.14)

We claim next that

E(|Sn|21{T=n}) � E(|SM|21{T=n}) (B.15)

for all n � M.
Indeed, if we write SM = Sn + Rn, the independence assumption shows

that Rn is independent of (X1, . . . ,Xn) and in particular is independent
of the indicator function of the event {T = n}, which only depends on
X1, . . . ,Xn. Moreover, we have E(Rn)= 0. Now, taking the modulus square
in the definition and multiplying by this indicator function, we get

|SM|21{T=n} = |Sn|21{T=n} + SnRn1{T=n} + SnRn1{T=n} + |Rn|21{T=n}.

Taking then the expectation, and using the positivity of the last term, this gives

E(|SM|21{T=n}) � E(|Sn|21{T=n})+ E(SnRn1{T=n})+ E(SnRn1{T=n}).

But, by independence, we have

E(SnRn1{T=n}) = E(Sn1{T=n})E(Rn) = 0,

and similarly, E(SnRn1{T=n}) = 0. Thus we get the bound (B.15).
Using this in (B.14), this gives

P
(

sup
1�k�M

|Sk| > ε
)
� 1

ε2

M∑
n=1

E(|SM|21{T=n}) �
1

ε2
E(|SM|2)

by positivity once again.
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Exercise B.10.4 Deduce from Kolmogorov’s Theorem the nontrivial direction
of the Borel–Cantelli Lemma: if (An)n�1 is a sequence of independent events
such that ∑

n�1

P(An) = +∞,

then an element of the underlying probability space belongs almost surely to
infinitely many of the sets An.

The second result we need is more subtle. It concerns similar series, but
without the independence assumption, which is replaced by an orthogonality
condition.

Theorem B.10.5 (Menshov–Rademacher) Let (Xn) be a sequence of
complex-valued random variables such that E(Xn) = 0 and

E(XnXm) =
{

0 if n �= m,
1 if n = m.

Let (an) be any sequence of complex numbers such that∑
n�1

|an|2(log n)2 < +∞.

Then the series ∑
n�1

anXn

converges almost surely, and hence also in law.

Remark B.10.6 Consider the probability space � = R/Z with the Lebesgue
measure and the random variables Xn(t) = e(nt) for n ∈ Z. One easily
sees (adapting to double-sided sequences and symmetric partial sums) that
Theorem B.10.5 implies that the series∑

n∈Z

ane(nt)

converges almost everywhere (with respect to Lebesgue measure), provided∑
n∈Z

|an|2(log |n|)2 < +∞.

This may be proved more directly (see, e.g., [121, III, th. 4.4]) using properties
of Fourier series, but it is far from obvious. Note that, in this case, a very
famous theorem of Carleson shows that the condition may be replaced with
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∑ |an|2 < +∞. On the other hand, Menshov proved that Theorem B.10.5
cannot in general be relaxed in this way: for general orthonormal sequences,
the term (log n)2 cannot be replaced by any positive function f (n) such that
f (n) = o((log n)2), even for R/Z.

We begin with a lemma that will play an auxiliary role similar to Kol-
mogorov’s inequality.

Lemma B.10.7 Let (X1, . . . ,XN) be orthonormal random variables,
(a1, . . . ,aN) be complex numbers, and Sk = a1X1+· · ·+akXk for 1 � k � N.
We have

E
(

max
1�k�N

|Sk|2
)� (log N)2

N∑
n=1

|an|2,

where the implied constant is absolute.

Proof The basic ingredient is a simple combinatorial property, which we
present a bit abstractly. We claim that there exists a family J of discrete
intervals

I = {nI, . . . ,mI − 1}, mI − nI � 1,

for I ∈ J, with the following two properties:
(1) any interval 1 � n � M with M � N is the disjoint union of � log N

intervals I ∈ J;
(2) an integer n with 1 � n � N belongs to� log N intervals in J;

and in both cases the implied constant is independent of N.
To see this, let n � 1 be such that 2n−1 � N � 2n (so that n� log N), and

consider for instance the family J of dyadic intervals

Ii,j = {n | 1 � n � N and i2j � n < (i + 1)2j }
for 0 � j � n and 1 � i � 2n−j . (The proofs of both properties in this case
are left to the reader.)

Now, having fixed such a collection of intervals, we denote by T the smallest
integer between 1 and N such that

max
1�k�N

|Sk| = |ST|.

By our first property of the intervals J, we can write

ST =
∑

I

S̃I,
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where I runs over a set of� log N disjoint intervals in J and

S̃I =
∑
n∈I

anXn

is the corresponding partial sum. By the Cauchy–Schwarz inequality, and the
first property again, we get

|ST|2 � (log N)
∑

I

|S̃I|2 � (log N)
∑
I∈J
|S̃I|2.

Taking the expectation and using orthonormality, we derive

E
(

max
1�k�N

|Sk|2
) = E(|ST|2)� (log N)

∑
I∈J

E(|S̃I|2)

= (log N)
∑
I∈J

∑
n∈I

|an|2 � (log N)2
∑

1�n�N

|an|2

by the second property of the intervals J.

Proof of Theorem B.10.5 If the factor (log N)2 in Lemma B.10.7 was replaced
by (log n)2 inside the sum, we would proceed just like the deduction of
Theorem B.10.1 from Lemma B.10.3. Since this is not the case, a slightly
different argument is needed.

We define

Sn = a1X1 + · · · + anXn
for n � 1. For j � 0, we also define the dyadic sum

S̃j =
∑

2j�n<2j+1

anXn = S2j+1−1 − S2j .

We first note that the series

T =
∑
j�0

(j + 1)2|S̃j |2

converges almost surely. Indeed, since it is a series of nonnegative terms, it
suffices to show that E(T) < +∞. But we have

E(T) =
∑
j�0

(j + 1)2 E(|S̃j |2)

=
∑
j�0

(j + 1)2
∑

2j�n<2j+1

|an|2 �
∑
n�1

|an|2(log 2n)2 < +∞

by orthonormality and by the assumption of the theorem.
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Next, we observe that for j � 0 and k � 0, we have

|S2j+k − S2j | �
j+k−1∑
i=j

|S̃i | �
( ∑
j�i<j+k

1

(i + 1)2

)1/2

|T|1/2 �
( |T|
j + 1

)1/2

by the Cauchy–Schwarz inequality. We conclude that the sequence (S2j ) is
almost surely a Cauchy sequence and hence converges almost surely to a
random variable S.

Finally, to prove that (Sn) converges almost surely to S, we observe that for
any n � 1, and j � 0 such that 2j � n < 2j+1, we have

|Sn − S2j | � Mj = max
2j<k�2j+1

∣∣∣∣∣∣
k∑

m=2j

anXn

∣∣∣∣∣∣ . (B.16)

Lemma B.10.7 implies that

E
(∑
j�0

M2
j

)
=
∑
j�0

E(M2
j )�

∑
n�1

(log 2n)2|an|2 < +∞,

which means in particular that Mj tends to 0 as j → +∞ almost surely.
From (B.16) and the convergence of (S2j )j to S, we deduce that (Sn) converges
almost surely to S. This finishes the proof.

We will also use information on the support of the distribution of a random
series with independent summands.

Proposition B.10.8 Let B be a separable Banach space. Let (Xn)n�1 be a
sequence of independent B-valued random variables such that the series X =∑

Xn converges almost surely.3 The support of the law of X is the closure
of the set of all convergent series of the form

∑
xn, where xn belongs to the

support of the law of Xn for all n � 1.

Proof For N � 1, we write

SN =
N∑
n=1

Xn, RN = X− SN.

The variables SN and RN are independent.
First, we observe that Lemmas B.2.1 and B.2.2 imply that the support of

SN is the closure of the set of elements x1 + · · · + xN with xn ∈ supp(Xn) for
1 � n � N (apply Lemma B.2.1 to the law of (X1, . . . ,XN) on BN, which has

3 Recall that by the result of P. Lévy mentioned in Remark B.10.2, this is in fact equivalent to
convergence in law.
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support the product of the supp(Xn) by Lemma B.2.2, and to the addition map
BN → B).

We first prove that all convergent series
∑
xn with xn ∈ supp(Xn) belong

to the support of X, hence the closure of this set is contained in the support of
X, as claimed. Thus let x =∑ xn be of this type. Let ε > 0 be fixed.

For all N large enough, we have∥∥∥∥∑
n>N

xn

∥∥∥∥ < ε,
and it follows that x1 + · · · + xN, which belongs to the support of SN as first
remarked also belongs to the open ball Uε of radius ε around x. Hence

P(SN ∈ Uε) > 0

for all N large enough (Uε is an open neighborhood of some element in the
support of SN).

Now the almost sure convergence implies (by the dominated convergence
theorem, for instance) that P(‖RN‖ > ε)→ 0 as N →+∞. Therefore, taking
N suitably large, we get

P(‖X− x‖ < 2ε) � P(‖SN − x‖ < ε and ‖RN‖ < ε)
= P(‖SN − x‖ < ε)P(‖RN‖ < ε) > 0

(by independence). Since ε is arbitrary, this shows that x ∈ supp(X), as
claimed.

Conversely, let x ∈ supp(X). For any ε > 0, we have

P
(∥∥∥∥∑

n�1

Xn − x
∥∥∥∥ < ε) > 0.

Since, for any n0 � 1, we have

P
(∥∥∥∥∑

n�1

Xn − x
∥∥∥∥ < ε and Xn0 /∈ supp(Xn0)

)
= 0,

this means in fact that

P
(∥∥∥∥∑

n�1

Xn − x
∥∥∥∥ < ε and Xn ∈ supp(Xn) for all n

)
> 0.

In particular, we can find xn ∈ supp(Xn) such that the series
∑
xn converges

and ∥∥∥∥∑
n�1

xn − x
∥∥∥∥ < ε,
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and hence x belongs to the closure of the set of convergent series
∑
xn with

xn in the support of Xn for all n.

B.11 Some Probability in Banach Spaces

We consider in this section some facts about probability in a (complex) Banach
space V. Most are relatively elementary. For simplicity, we will always assume
that V is separable (so that, in particular, Borel measures on V have a well-
defined support).

The first result concerns series ∑
n

Xn

where (Xn) is a sequence of symmetric random variables, which means that for
any N � 1, and for any choice (ε1, . . . ,εN) of signs εn ∈ {−1,1} for
1 � n � N, the random vectors

(X1, . . . ,XN) and (ε1X1, . . . ,εNXN)

have the same distribution.
Symmetric random variables have remarkable properties. For instance, we

have:

Proposition B.11.1 (Lévy) Let V be a separable Banach space with norm ‖·‖,
and (Xn) a sequence of V-valued random variables. Assume that the sequence
(Xn) is symmetric. Let

SN = X1 + · · · + XN

for N � 1. For N � 1 and ε > 0, we have

P( max
1�n�N

‖SN‖ > ε) � 2 P(‖SN‖ > ε).

This result is known as Lévy’s reflection principle and can be compared with
Kolmogorov’s maximal inequality (Lemma B.10.3).

Proof (1) Similarly to the proof of Lemma B.10.3, we define a random variable
T by T = ∞ if ‖Sn‖ � ε for all n � N, and otherwise

T = inf{n � N | ‖Sn‖ > ε}.
Assume T = k and consider the random variables

X′n = Xn for 1 � n � k, X′n = −Xn for k + 1 � n � N.
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By assumption, the sequence (X′n)1�n�N has the same distribution as
(Xn)1�n�N. Let S′n denote the partial sums of the sequence (X′n), and T′ the
analogue of T for the sequence (X′n). The event {T′ = k} is the same as {T = k}
since X′n = Xn for n � k. On the other hand, we have

S′N = X1 + · · · + Xk − Xk+1 − · · · − XN = 2Sk − SN.

Therefore

P(‖SN‖>ε and T=k)=P(‖S′N‖>ε and T′ =k)=P(‖2Sk−SN‖>ε and T=k).
By the triangle inequality we have

{T = k} ⊂ {‖SN‖ > ε and T = k} ∪ {‖2Sk − SN‖ > ε and T = k}.
We deduce

P( max
1�n�N

‖Sn‖ > ε) =
N∑
k=1

P(T = k)

�
N∑
k=1

P(‖SN‖ > ε and T = k)

+
N∑
k=1

P(‖2Sn − SK‖ > ε and T = k)

= 2 P(‖SN‖ > ε).

We now consider the special case where the Banach space V is C([0,1]),
the space of complex-valued continuous functions on [0,1] with the norm

‖f ‖∞ = sup
t∈[0,1]

|f (t)|.

For a C([0,1])-valued random variable X and any fixed t ∈ [0,1], we will
denote by X(t) the complex-valued random variable that is the value of the
random function X at t , that is, X(t) = et ◦ X, where et : C([0,1]) −→ C is
the evaluation at t .

Definition B.11.2 (Convergence of finite distributions) Let (Xn) be a
sequence of C([0,1])-valued random variables, and let X be a C([0,1])-valued
random variable. One says that (Xn) converges to X in the sense of finite
distributions if and only if, for all integers k � 1, and for all

0 � t1 < · · · < tk � 1,

the random vectors (Xn(t1), . . . ,Xn(tk)) converge in law to (X(t1), . . . ,X(tk)),
in the sense of convergence in law in Ck .
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One sufficient condition for convergence of finite distributions is the
following:

Lemma B.11.3 Let (Xn) be a sequence of C([0,1])-valued random variables,
and let X be a C([0,1])-valued random variable, all defined on the same
probability space. Assume that, for any t ∈ [0,1], the random variables
(Xn(t)) converge in L1 to X(t). Then (Xn) converges to X in the sense of finite
distributions.

Proof Fix k � 1 and

0 � t1 < · · · < tk � 1.

Let ϕ be a Lipschitz function on Ck (given the distance associated to the norm

‖(z1, . . . ,zk)‖ =
∑
i

|zi |,

for instance) with Lipschitz constant C � 0. Then we have∣∣E(ϕ(Xn(t1), . . . ,Xn(tk)))− E(ϕ(X(t1), . . . ,X(tk)))
∣∣

� C
k∑
i=1

E(|Xn(ti)− X(ti)|),

which tends to 0 as n → +∞ by our assumption. Hence Proposition B.4.1
shows that (Xn(t1), . . . ,Xn(tk)) converges in law to (X(t1), . . . ,X(tk)). This
proves the lemma.

Convergence in finite distributions is a necessary condition for
convergence in law of (Xn) to X, but it is not sufficient: a simple
example (see [10, Example 2.5]) consists in taking the random variable
Xn to be the constant random variable equal to the function fn that is
piecewise linear on [0,1/n], [1/n,1/(2n)] and [1/(2n),1], and such that
0 �→ 0, 1/n �→ 1, 1/(2n) �→ 0 and 1 �→ 0. Then it is elementary that
Xn converges to the constant zero random variable in the sense of finite
distributions, but that Xn does not converge in law to 0 (because fn does not
converge uniformly to 0).

Nevertheless, under the additional condition of tightness of the sequence of
random variables (see Definition B.3.6), the convergence of finite distributions
implies convergence in law.

Theorem B.11.4 Let (Xn) be a sequence of C([0,1])-valued random vari-
ables, and let X be a C([0,1])-valued random variable. Suppose that (Xn)
converges to X in the sense of finite distributions. Then (Xn) converges in law
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to X in the sense of C([0,1])-valued random variables if and only if (Xn) is
tight.

For a proof, see, for example, [10, Th. 7.1]. The key ingredient is
Prokhorov’s Theorem (see [10, Th. 5.1]), which states that a tight family of
random variables is relatively compact in the space P of probability measures
on C([0,1]), given the topology of convergence in law. To see how this implies
the result, we note that convergence in the sense of finite distributions of a
sequence implies at least that it has at most one limit in P (because probability
measures on C([0,1]) are uniquely determined by the family of their finite
distributions; see [10, Ex. 1.3]). Suppose now that there exists a continuous
bounded function f on C([0,1]) such that

E(f (Xn))

does not converge to E(f (X)). Then there exists δ > 0 and some subsequence
(Xnk ) that satisfies |E(f (Xnk ) − f (X))| � δ for all k. This subsequence also
converges to X in the sense of finite distributions and by relative compactness
admits a further subsequence that converges in law; but the limit of that further
subsequence must then be X, which contradicts the inequality above.

Remark B.11.5 For certain purposes, it is important to observe that this proof
of convergence in law is indirect and does not give quantitative estimates.

We will also use a variant of this result involving Fourier series. A minor
issue is that we wish to consider functions f on [0,1] that are not necessarily
periodic, in the sense that f (0)might differ from f (1). However, we will have
f (0) = 0. To account for this, we use the identity function in addition to the
periodic exponentials to represent continuous functions with f (0) = 0.

We denote by C0([0,1]) the subspace of C([0,1]) of functions vanishing at
0. We denote by e0 the function e0(t) = t , and for h �= 0, we put eh(t) = e(ht).
We denote further by C0(Z) the Banach space of complex-valued functions on
Z converging to 0 at infinity with the sup norm. We define a continuous linear
map FT: C([0,1]) → C0(Z) by mapping f to the sequence (f̃ (h))h∈Z of its
Fourier coefficients, where f̃ (0) = f (1) and for h �= 0 we have

f̃ (h) =
∫ 1

0
(f (t)− tf (1))e(−ht)dt =

∫ 1

0
(f − f (1)e0)e−h.

We want to relate convergence in law in C0([0,1]) with convergence, in law
or in the sense of finite distributions, of these “Fourier coefficients” in C0(Z).
Here convergence of finite distributions of a sequence (Xn) of C0(Z)-valued

https://doi.org/10.1017/9781108888226.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781108888226.010


B.11 Some Probability in Banach Spaces 213

random variables to X means that for any H � 1, the vectors (Xn,h)|h|�H

converge in law to (Xh)|h|�H, in the sense of convergence in law in C2H+1.
First, since FT is continuous, Proposition B.3.2 gives immediately

Lemma B.11.6 If (Xn)n is a sequence of C0([0,1])-valued random variables
that converges in law to a random variable X, then FT(Xn) converges in law
to FT(X).

Next, we check that the Fourier coefficients determine the law of a
C0([0,1])-valued random variable (this is the analogue of [10, Ex. 1.3]).

Lemma B.11.7 If X and Y are C0([0,1])-valued random variables and if
FT(X) and FT(Y) have the same finite distributions, then X and Y have the
same law.

Proof For f ∈C0([0,1]), the function g(t) = f (t) − tf (1) extends to a 1-
periodic continuous function on R. By Féjer’s Theorem on the uniform con-
vergence of Cesàro means of Fourier series of continuous periodic functions
(see, e.g, [121, III, Th. 3.4]), we have

f (t)− tf (1) = lim
H→+∞

∑
|h|�H

(
1− |h|

H

)
f̃ (h)e(ht)

uniformly for t ∈ [0,1]. Evaluating at t = 0, where the left-hand side vanishes,
we deduce that

f = lim
H→+∞

CH(f ),

where

CH(f ) = f (1)e0 +
∑
|h|�H
h�=0

(
1− |h|

H

)
f̃ (h)(eh − 1).

Note that CH(f ) ∈ C0([0,1]).
We now claim that CH(X) converges to X as C0([0,1])-valued random

variables. Indeed, let ϕ be a bounded continuous function on C0([0,1]), say,
with |ϕ| � M. By the above, we have ϕ(CH(X)) → ϕ(X) as H → +∞
pointwise on C0([0,1]). Since |ϕ(CH(X))| � M, which is integrable on
the underlying probability space, Lebesgue’s dominated convergence theorem
implies that E(ϕ(CH(X)))→ E(ϕ(X)). This proves the claim.

In view of the definition of CH(f ), which only involves finitely many
Fourier coefficients, the equality of finite distributions of FT(X) and FT(Y)
implies by composition that for any H � 1, the C0([0,1])-valued random
variables CH(X) and CH(Y) have the same law. Since we have seen that CH(X)
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converges in law to X and that CH(Y) converges in law to Y, it follows that X
and Y have the same law.

Now comes the convergence criterion:

Proposition B.11.8 Let (Xn) be a sequence of C0([0,1])-valued random
variables, and let X be a C0([0,1])-valued random variable. Suppose that
FT(Xn) converges to FT(X) in the sense of finite distributions. Then (Xn)
converges in law to X in the sense of C0([0,1])-valued random variables if
and only if (Xn) is tight.

Proof It is an elementary general fact that if (Xn) converges in law to X,
then the family (Xn) is tight. We prove the converse assertion. It suffices to
prove that any subsequence of (Xn) has a further subsequence that converges
in law to X (see [10, Th. 2.6]). Because (Xn) is tight, so are any of its
subsequences. By Prokhorov’s Theorem ([10, Th. 5.1]), such a subsequence
therefore contains a further subsequence, say, (Xnk )k�1, that converges in
law to some probability measure Y. By Lemma B.11.6, the sequence of
Fourier coefficients FT(Xnk ) converges in law to FT(Y). On the other hand,
this sequence converges to FT(X) in the sense of finite distributions, by
assumption. Hence FT(X) and FT(Y) have the same finite distributions, which
implies that X and Y have the same law by Lemma B.11.7.

Remark B.11.9 The example that was already mentioned before Theorem
B.11.4 (namely, [10, Ex. 2.5]) also shows that the convergence of FT(Xn) to
FT(X) in the sense of finite distributions is not sufficient to conclude that (Xn)
converges in law to X. Indeed, the sequence (Xn) in that example does not
converge in law in C([0,1]), but for n � 1, the (constant) random variable Xn
satisfies Xn(1) = 0, and by direct computation, the Fourier coefficients (are
constant and) satisfy also |X̃n(h)| � n−1 for all h �= 0, which implies that
FT(Xn) converges in law to the constant random variable equal to 0 ∈ C0(Z).

In applications, we need some criteria to detect tightness. One such criterion
is due to Kolmogorov:

Proposition B.11.10 (Kolmogorov’s tightness criterion) Let (Xn) be a
sequence of C([0,1])-valued random variables. If there exist real numbers
α > 0, δ > 0, and C � 0 such that, for any real numbers 0 � s < t � 1 and
any n � 1, we have

E(|Xn(t)− Xn(s)|α) � C|t − s|1+δ, (B.17)

then (Xn) is tight.
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See, for instance, [81, Th. I.7] for a proof. The statement does not hold if
the exponent 1+ δ is replaced by 1.

In fact, for some applications (as in [79]), one needs a variant where the
single bound (B.17) is replaced by different ones depending on the size of |t−s|
relative to n. Such a result does not seem to follow formally from Proposition
B.11.10, because the left-hand side in the inequality is not monotonic in terms
of α (in contrast with the right-hand side, which is monotonic since |t−s| � 1).
We state a result of this type and sketch the proof for completeness.

Proposition B.11.11 (Kolmogorov’s tightness criterion, 2) Let (Xn) be
a sequence of C([0,1])-valued random variables. Suppose that there exist
positive real numbers

α1,α2,α3, β2 < β1, δ, C

such that for any real numbers 0 � s < t � 1 and any n � 1, we have

E(|Xn(t)− Xn(s)|α1) � C|t − s|1+δ if 0 � |t − s| � n−β1, (B.18)

E(|Xn(t)− Xn(s)|α2) � C|t − s|1+δ if n−β1 � |t − s| � n−β2, (B.19)

E(|Xn(t)− Xn(s)|α3) � C|t − s|1+δ if n−β2 � |t − s| � 1. (B.20)

Then (Xn) is tight.

Sketch of proof For n � 1, let Dn ⊂ [0,1] be the set of dyadic rational numbers
with denominator 2n. For δ > 0, let

ω(Xn,δ) = sup{|Xn(t)− Xn(s)| | s,t ∈ [0,1], |t − s| � δ}

denote the modulus of continuity of Xn, and for n � 1 and k � 0, let

ξn,k = sup{|Xn(t)− Xn(s)| | s,t ∈ Dk, |s − t | = 2−k}.

We observe that for any α > 0, we have

E(ξαn,k) �
∑
s,t∈Dk
|t−s|=2−k

E(|Xn(t)− Xn(s)|α).

As in [60, p. 269], the key step is to prove that

lim
m→+∞ lim sup

n→+∞
P(ω(Xn,2−m) > η) = 0

for any η > 0 (the conclusion is then derived from this fact combined with
the Ascoli–Arzela Theorem characterizing compact subsets of C([0,1])). It is
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convenient here to use the notation min(a,b) = a ∧ b. For fixed m and n, we
then write

P(ω(Xn,2−m) > η) � P( sup
|t−s|�2−m∧n−β1

|Xn(t)− Xn(s)| > η)

+ P( sup
2−m∧n−β1<|t−s|�2−m∧n−β2

|Xn(t)− Xn(s)| > η)

+ P( sup
2−m∧n−β2<|t−s|�2−m

|Xn(t)− Xn(s)| > η)

(because, for a continuous function f on [0,1], if |f (t) − f (s)| > η

for some (s,t) such that |t − s| � 2−m, then there exist some dyadic
rational numbers (s′,t ′), necessarily with denominator 2n with n � m, such
that |f (t ′)− f (s′)| > η). Using (B.18), the first term is

�
∑
k�m

2−k�n−β1

E(ξα1
n,k)

ηα1
� C

ηα1

∑
k�m

2k2−k(1+δ) � C

ηα1

1

1− 2−δ
,

and similarly, using (B.19), the second (resp. using (B.20), the third) is

�
∑
k�m

β2 log2(n)�k�β1 log2(n)

E(ξα2
n,k)

ηα2
� C

ηα2

∑
k�m

2k2−k(1+δ) � C

ηα2

1

1− 2−δ

(resp. � Cη−α3(1− 2−δ)−1). The result follows.

We will also use the following inequality of Talagrand, which gives a
type of sub-Gaussian behavior of sums of random variable in Banach spaces,
extending standard properties of real or complex-valued random variables.

Theorem B.11.12 (Talagrand) Let V be a separable real Banach space and
V′ its dual. Let (Xn)n�1 be a sequence of independent real-valued random
variables with |Xn| � 1 almost surely, and let (vn)n�1 be a sequence of
elements of V. Assume that the series

∑
Xnvn converges almost surely in V.

Let m � 0 be a median of ∥∥∥∥∑
n�1

Xnvn

∥∥∥∥.

Let σ � 0 be the real number such that

σ 2 = sup
λ∈V′‖λ‖�1

∑
n�1

|λ(vn)|2.
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For any real number t > 0, we have

P
(∥∥∥∥∑

n�1

Xnvn

∥∥∥∥ � tσ +m) � 4 exp

(
− t2

16

)
.

We recall that a median m of a real-valued random variable X is any real
number such that

P(X � m) � 1

2
and P(X � m) � 1

2
.

A median always exists. If X is integrable, then Chebychev’s inequality

P(X � t) � E(|X|)
t

(B.21)

shows that m � 2 E(|X|).
Proof This follows easily from [114, Th. 13.2], which concerns finite sums,
by passing to the limit.

The application of this inequality will be the following, which is (in the case
V = R) partly a simple variant of a result of Montgomery-Smith [88].

Proposition B.11.13 Let V be a separable real or complex Banach space and
V′ its dual. Let (Xn)n�1 be a sequence of independent random variables with
|Xn| � 1 almost surely, which are either real- or complex-valued depending
on the base field. Let (vn)n�1 be a sequence of elements of V. Assume that the
series

∑
Xnvn converges almost surely in V, and let X be its sum.

(1) Assume that∑
n�N

‖vn‖ � log(N),
∑
n>N

‖vn‖2 � 1

N
(B.22)

for all N � 1. There exists a constant c > 0 such that for any A > 0, we have

P(‖X‖ > A) � c exp(− exp(c−1A)).

(2) Assume that V is a real Banach space, that (Xn) is symmetric,
identically distributed, and real-valued, and that there exists λ ∈ V′ of norm 1
such that ∑

n�N

|λ(vn)| � log(N) (B.23)

for N � 1. Then there exists a constant c′ > 0 such that for any A > 0, we
have

c−1 exp(− exp(cA)) � P (|λ(X)| > A) � P (‖X‖ > A) .
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Proof We begin with (1), and we first check that we may assume that V is a
real Banach space and that the random variables Xn are real-valued. To see
this, if V is a complex Banach space, we view it as a real Banach space VR

(by restricting scalar multiplication), and we write Xn = Yn + iZn where Yn
and Zn are real-valued random variables. Then X = Y+ iZ where

Y =
∑
n�1

Ynvn and Z =
∑
n�1

Znvn

are both almost surely convergent series in VR with independent real coeffi-
cients of absolute value � 1. We then have

P (‖X‖>A)�P
(
‖Y‖> 1

2 A or ‖Z‖> 1
2 A
)
�P

(
‖Y‖> 1

2 A
)
+ P

(
‖Z‖> 1

2 A
)

for any A> 0, by the triangle inequality. Since the assumptions (B.22) hold
independently of whether V is viewed as a real or complex Banach space,
we deduce that if (1) holds in the real case, then it also does for complex
coefficients.

We now assume that V is a real Banach space. The idea is that if V
was simply equal to R, then the series X would be a sub-Gaussian random
variable, and standard estimates would give a sub-Gaussian upper bound for
P(|X|>A), of the type exp(−cA2). Such a bound would be essentially sharp
for a Gaussian series. But although this is already quite strong, it is far from
the truth here; intuitively, this is because, in the Gaussian case, the lower bound
for the probability arises from the small but non-zero probability that a single
summand (distributed like a Gaussian) might be very large. This cannot happen
for the series X, because each Xn is absolutely bounded.

The actual proof “interpolates” between the sub-Gaussian behavior (given
by Talagrand’s inequality, when the Banach space is infinite-dimensional) and
the boundedness of the coefficients (Xn) of the first few steps. This principle
goes back (at least) to Montgomery-Smith [88] and has relations with the
theory of interpolation of Banach spaces.

Fix an auxiliary parameter s � 1. We write X = X� + X�, where

X� =
∑

1�n�s2
Xnvn and X� =

∑
n>s2

Xnvn.

Let m be a median of the real random variable ‖X�‖. Then, for any α > 0 and
β > 0, we have

P(‖X‖ � α + β +m) � P(‖X�‖ � α)+ P(‖X�‖ � m+ β),
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by the triangle inequality. We pick

α = 8
∑

1�n�s2
‖vn‖

so that by the assumption |Xn| � 1, we have

P(‖X�‖ � α) = 0.

Then we take β = sσ , where σ � 0 is such that

σ 2 = sup
‖λ‖�1

∑
n>s2

|λ(vn)|2,

where λ runs over the elements of norm � 1 of the dual space V′. By
Talagrand’s Inequality (Theorem B.11.12), we have

P(‖X�‖ � m+ β) � 4 exp

(
− s

2

8

)
.

Hence, for all s � 1, we have

P(‖X‖ � α + β +m) � 4 exp

(
− s

2

8

)
.

We now select s as large as possible so that m+ α + β � A. By Chebychev’s
inequality (B.21), we have

m � 2 E(‖X�‖) � 2
∑

1�h�s2

‖vn‖

so that

m+ α �
∑

1�n�s2
‖vn‖ � log(2s) (B.24)

for any s � 1 by (B.22). Moreover, for any linear form λ with ‖λ‖ � 1, we
have ∑

n>s2

|λ(vn)|2 �
∑
n>s2

‖vn‖2 � 1

s2

so that σ � s−1 and β = sσ � 1. It follows that

m+ α + β � c log(cs) (B.25)

for some constant c � 1 and all s � 1. We finally select s so that c log(cs) =
A, that is,

s = 1

c
exp

(
A

c

)
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(assuming, as we may, that A is large enough so that s � 1) and deduce that

P(‖X‖ � A) � 4 exp

(
− s

2

8

)
= 4 exp

(
− 1

8c2
exp

(
A

c

))
.

This gives the desired upper bound.
We now prove (2). Replacing the vectors vn by the real numbers λ(vn)

(recall that (2) is a statement for real Banach spaces and random variables),
we may assume that V = R. Let α > 0 be such that∑

n�N

|λ(vn)| � α log(N)

for N � 1, and let βn be a median of |Xn|. We then derive

P(|X| > A) � P
(

Xn � βn for 1 � n � e(αβ)−1A and
∑

n>eA/(αβ)

vnXn � 0
)

.

Since the random variables (Xn) are independent, this leads to

P(|X| > A) �
(1

4

)�exp(A/(αβ))�
P
( ∑
n>eA/(αβ)

vnXn � 0
)

.

Furthermore, since each Xn is symmetric, so is the sum∑
n>eA/(αβ)

vnXn,

which means that it has probability � 1/2 to be � 0. Therefore we have

P(|X| > A) � 1

8
e−(log 4) exp(A/(αβ)).

This is of the right form asymptotically, and thus the proof is completed.

Remark B.11.14 (1) The typical example where the proposition applies is
when ‖vn‖ is comparable to 1/n.

(2) Many variations along these lines are possible. For instance, in Chapter
3, we encounter the situation where the vector vn is zero unless n = p is a
prime p, in which case

‖vp‖ = 1

pσ

for some real number σ such that 1/2 < σ < 1. In that case, we have∑
n�N

‖vn‖ � N1−σ

log N
,

∑
n>N

‖vn‖2 � 1

N2σ−1

1

log N

for N � 2 (by the Prime Number Theorem) instead of (B.22), and the
adaptation of the arguments in the proof of the proposition lead to
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P(‖X‖ > A) � c exp
(
−cA1/(1−σ)(log A)1/(2(1−σ))

)
.

(Indeed, check that (B.25) gives here

m+ α + β � s2(1−σ)
√

log s
,

and we take

s = A1/(2(1−σ))(log A)1/(4(1−σ))

in the final application of Talagrand’s inequality.)
On the other hand, in Chapter 5, we have a case where (up to re-indexing),

the assumptions (B.22) and (B.23) are replaced by∑
n�N

‖vn‖ � (log N)2 and
∑
n>N

‖vn‖2 � log N

N
.

Then we obtain by the same argument the estimates

P(‖X‖ > A) � c exp(− exp(c−1A1/2)),

c−1 exp(− exp(cA1/2)) � P(|λ(X)| > A) � P(‖X‖ > A)

for some real number c > 0.
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