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Abstract

This paper provides an asymptotic estimate for the expected number of K -level crossings of the random
trigonometric polynomial g\ cos x + gi cos 2x +... + gn cos nx where gj (j = 1, 2, . . . , n) are dependent
normally distributed random variables with mean zero and variance one. The two cases of p)r, the
correlation coefriecient between the y'-th and r-th coefficients, being either (i) constant, or (ii) pu~rl

j zfi r, 0 < p < 1, are considered. It is shown that the previous result for p1T — 0 still remains valid for
both cases.
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1. Introduction

Suppose that g\(co), giiaS), • • •, £„(&>) is a sequence of random variables defined on a
probability space (Q, A, P), each normally distributed with mathematical expectation
zero and variance one, and that NniK(a, b) = N(a, b) is the number of real roots of
the equation T(6) = K where

(1.1) T(9) = Tn(0, a>) =

Dunnage [2] has shown that in the case of independent coefficients in the interval
0 < 0 < In all save a certain exceptional set of equations T(6) = 0 have 2n/V3 +
0{n11//3(logn)3/13} roots, when n is large. The measure of his exceptional set does
not exceed (log«)~'. For K ^ 0 such that K = o(V«) Farahmand [3] and [4]
has shown that the mathematical expectation of N(0, 2n), denoted by EN(0,2n), is
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40 K. Farahmand [2]

asymptotic to 2«/V3- Here we consider the effect of coefficients being dependent
on EN(a,b). We show that the above asymptotic formula persists whenever the
correlation coefficient between any two coefficients gj and gr, denoted by pJr is either
(i) constant, or (ii) pl;"r|y ^ r, 0 < p < 1. For the case of K = 0 the same result has
been obtained separately by Sambandham [8] and Renganathan and Sambandham [5].
We prove the following results in this paper.

THEOREM 1. If the coefficients of T(x) in (1.1) are normally distributed random
variables with mean zero, variance one and pjr, the correlation coefficients between
j-th and r-th coefficients, are either (i) constant, or (ii) ply~r|y ^ r, 0 < p < 1, then
for all sufficiently large n and any constant K, the expected number of real roots of
the equation T(0) = K satisfies

EN(0, 2n) = 2n/V3 + O(ny4) if K = O(«3/8)

and
EN(0, In) = 2n/V3 + o(n) if K = o

2. Preliminary Analysis

Let
n n

A2 = Y, cos2 j6, B2 = J2 f sin2 j6
7=1 7=1

and
n

C = V^ j sin jO cos j9.
y=i

By using the expected number of level crossings given by Cram6r and Leadbetter [1,
page 285] for the equation T(9) — K we can obtain

n n

2

(2.1)
where

(2.2) a = var{r(6>)} = A2 + J2J2pJr cosje cosr9>

(2.3) p = var{r'(0)} = B2 + ^ ^ p y r y r cosy6» sin/-6>,

(2.4) y = Cov{T(0), T\6)} = - C - ^^p ; > y"cos>6» sinr9,
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[3] Level crossings of a random trigonometric polynomial with dependent coefficients 41

A = aP - y2, = (2TT)-1/2 f exp(-y2/2) dy and
J — 00

From (2.1) and since *(?) = 1/2 + (7r)~1/2erf(? />/2) we have the extension of the
Kac-Rice formula [5]

fb

EN(a /
f

,b)= /
Ja

cb

+(V2/TT) / |/s:y|a
(2.5) =Ix(a,b) + I2(a,b),

say.
Let S(6) = sin(2n + 1)0/ sinO then the terms A2, B2 and C appearing in (2.5) can

all be written as a function of S(6) as follows. Since

n

(2.6) S(0) = 1 + 2 ^ cos 2j8,
j=i

we have
n

(2.7) A2 = (1/2) 5^(1 + Cos2y0) = n/2 + (1/4){S(0) - 1}.
7 = 1

Also since from (2.6)
n n

S'\0) = - 8 J^ J2 cos 2j8 = 4 J2 72(2 sin2 y0 - 1),

we have
(2.8) B2 = n(n + l)(2n "

From (2.7) we also obtain

C = (- l /2)-^(A2) = (-1/8)5' (6).

As they will be required later, we define

D = Y^ cos j9 and E = Y^ j sin y'0.
7 = 1 7=1

From (2.6) we can show that

(2.9) D = (l/2){S(0/2) - 1}
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and
(2.10) E = (-1/4)S'(8).

As S(8) occurs frequently, we collect together some related inequalities. From (2.6)
it is obvious that as n -> oo,

SM(0) = O(nv+X)

uniformly in 8. Stricter inequalities can be obtained by confining 8 to the intervals
€ < 6 < n — e and i + e<8<2rt — e, where e is any positive constant smaller than
it. Then, since \S(9)\ < 1/sine, we can obtain

S(8) = O(l/€).

Also
S'(8) - (In + l)cos(2n + 1)9/sin6-cotOS(9) = O(n/e)

and

S"(9) = -{In + l)2S(9) - (2n + I)cos6»cos(2« + l)6»shT26>

= O(n2/€).

These together with (2.7) - (2.10) give

(2.11) A2 = n/2+ 0(1/e),

(2.12) B2 = n3/6+O(n2/€),

(2.13) C = O(n/e),

(2.14) D = O(\/€) and

(2.15) E = O(n/€).

3. Proof of the Theorem

We shall divide the roots of T(9) — K = 0 into two groups: (i) those lying in the
intervals (0, e), (n — e,n + e) and (2n — e, lit), and (ii) those lying in the intervals
(e, it — €) and (n + e,2n — e). For the roots of type (i) which, it so happens, are
negligible, we need some modification to apply Dunnage's [2] approach. Those roots
which make a significant contribution to the final result are of type (ii) and their
expected number is found by using the Kac-Rice formula (2.5). The choice of e is
important. It must not be too large, so that we can deal easily with type (i) roots; but
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if it is too small the approximation for type (ii) will become inadequate. We will see
e — n~l/4 is sufficient for both requirements.

First we consider the case of pjr = p (constant). From (2.2), (2.11) and (2.14) We
have

a = A2 + p / / cos j6 cos rO = A2 + p

2

cos j9\ + 2 ^ c o s JO

(3.1) = (1 - p)A2 + pD2 = n(l - p)/2 + 0{€~2).

Similarly from (2.3), (2.4) and (2.12) we can obtain

(3.2) /3 = «3(1 - p)/6 + O(nV 2 ) , and

(3.3) y = O(«e-2).

Hence from (3.1M3.3) we have

(3.4) A = n 4 ( l -p ) 2 / 12+0(n 3 < r 2 ) .

So from (2.5) and (3.1)-(3.4) we can write

(3.5) 7,(6, n -€) = (nV3){l + O(e)}exp{-2K2/n(l - p) + O(^2/«2e2)}

and
(3.6) 72(€, n - e) = O(/i:3«-3/2e-2).

Hence for tf = O(n3/8) from (2.5), (3.5) and (3.6) we have

(3.7) EN(e,n -e) = n,

and for K =

(3.8) EN(€,Jt-e) = n,

Now we turn to the intervals (0, e), (n —e,n + e) and (27r — e, 2^), and we show
that the equation has a negligible expected number of real roots in these intervals. By
periodicity, the expected number of real roots in (0, e) and (2n — e, 2n) is the same
as the expected number in (—e, e). We shall therefore confine ourselves to this last
interval; the interval (jt — e, n + e) can be treated in exactly the same way to give
the same result. The idea, due to Dunnage [2], is to consider the random integral
function T(z, co) — K of the complex variable z. The number of real roots between
±e does not exceed the number in the circle \z\ < e. Let N(r) = N(r,a>, K) denote
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the number of real roots of T(z, co) — K = 0 in \z\ < r. Assuming that 7(0) ^ K
then by Jensen's theorem [9, page 125] or [7, page 332] we have

(3.9) yV(e)log2< (2nyx / \og\{T(2zei9,co) - K)/{T{Q) - K)dd.

Let A2 = n + pn(n — 1); then, by standard probability theory, the distribution
function of T(O, co) = Yl"=i Sji00) is

G(x) = (2nA2yl/2 I exp(-t2/2A2)dt,
J—oo

from which, for any positive v, we can see that | T(0, co) — K \ > e~v except for sample
functions in an a>-set of measure not exceeding

fK+e
(3.10) 21/2

fK+e'"

exp(-t2/2A2) dt <2(2nA2rl/2e-\
JK-e*

Also since | cos(2nee'*)| < 2e2nf we have

(3.11) \T(2eew)\ < 2e2ne(\gl\ + |g 2 | + . . . + \gn\) < 2ne2nf nrnx \8j\

where the maximum is taken over 1 < j < n. The distribution function of \gt \ is

2/n f exp(-t2/2) dt x > 0
JoF(x) = •

0 x < 0.

Now if max \gj | > nev then \gj | > ne" for at least one value of j < n, so that

Prob(max |g,| > nev) < > Prob(|g,| > nev) < «Prob(|gi| > ne")

/•OO

(3.12) = ny/2~Jn I exp{-t2/2) dt ~ y/2/n exp(-v - n2e2il/2)
one*

for all sufficiently large n. Therefore from (3.11) and (3.12) except for sample
functions in an <y-set of measure not exceeding (2/n)l/2 exp(—v — n2e2v/2),

(3.13) \T(2eew) - K\ < |«2exp(2«e + v) - K\.

Combining (3.10) with (3.13) and since for both K = 6>(«3/8) and K = o(Jn)

\n2exp(2ne + v) - K\ < 2n2exp(2ne + v).
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for all 6 we get

(3.14) \{T(2€eie, co) - K}/{T(0, co) - K}\ < 2«2exp(2ne + 2v)

except for sample functions in an &>-set of measure not exceeding

2(2nA2yl/2e-v + (2/7r)1/2exp(-v - flV"/2).

Therefore from (3.9) and (3.14) we can show that outside the exceptional set

(3.15) N(€) < (Iog2 + 21ogn + 2ne

Since e = n'l/4 from (3.15) and for all sufficiently large n

(3.16) Prob{N(€) > 3«e + 2v] < 2 (2TTA 2 ) - 1 / V V

+(2 /7r ) 1 / 2 exp( -v-nV72) .

Let n be the integer part of 3*/n. Then from (3.16) and for n sufficiently large we
have

EN(e) =

< n + 2(2nA2y1/2Y/^
i/2 + (2/^)1/2 ^exp{-y/2 - «V/2}

7>i y>i

(3.17) = O(nV4).

This gives an upper bound for the number of real roots of T(9) in the interval (—e, e),
which together with (3.6) and (3.7) completes proof of the theorem for the case of
Pjr = P.

Now we consider the case of pjr = /o'-'"r|, j ^ r, 0 < p < 1. To avoid repetition we
only point out the adjustment necessary in the calculation of a, fi, y. Fore < 0 < n—€
from (2.14) we have

^ ^ y D2 =

which together with (2.2) and (2.11) gives

(3.18) a = A2 + J2J2pU~rl cos J9 cosr9 =n/2+O(€-2).
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Similarly, since from (2.14) and (2.15)

jrpu~r] sin j6sinrO < £l = O(n2e-2)

and
pl;"r | sin# sinr# < DE =

we obtain
(3.19) p = n3/6

and
(3.20) y = O(n2e-2).

Now (3.18H3.20) are sufficient for obtaining (3.7) and (3.8). For the intervals
(0, e), (n — €, n +e) and (2n — e, 2n) the same argument remains valid if we replace
A2 in (3.10) by

E E ^ '
Then since A2 < A2 from (3.17) we can obtain EN(e), which completes the proof
of the theorem for the case pjr = p l ;" r | .
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