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Introduction. Let F(z, u) denote 

(1) un + un-1F1(z) + ... + Fn(z), 

where Fi(z),. . . , Fn(z) are rational functions of z with complex coefficients. 
We shall speak of F (s, u) = 0 as the fundamental algebraic equation and shall 
adopt z as the independent variable and u as the dependent, except in § 4, 
where we use x and y instead of them, and where it is understood that x and y 
are connected birationally with z and u. We shall say that the fundamental 
equation is reducible in the field obtained by adjoining z to the totality of 
complex numbers, provided F(z, u) is the product of two factors H(zy u) and 
K(z, u) of the same form as itself and beginning with the terms uh and uk of 
positive degrees. If no such factorization of F(zy u) exists, we shall say that the 
fundamental equation is irreducible in the stated field. Nothing is lost by ex­
cluding the case where F(z, u) has repeated factors. 

The form of the Riemann-Roch Theorem [8, Chap. 19, §5, I] in which z is 
adopted as the independent variable is 

(2) N(T) + § L I > = N(f) + § £ ! > . 

In § 4 we shall show that the theorem has invariant character, in the sense 
that it continues to hold when any rational function of (z, u), say x, is used as a 
substitute for z in playing the role of independent variable, provided x is non-
constant for each of the irreducible equations contained within the fundamental 
algebraic equation. 

In the meantime, it is necessary to state what is meant by the various items 
appearing in (2). We shall speak of an order basis (r) or a divisor A. A given 
individual order r refers to a given w-branch at a given s-value. The z-value is 
the primary thing, since it alone is responsible for the division of the expansions 
of a rational function of (z, u) into cycles. The only point in mentioning u derives 
from the fact that its expansions are certainly all different, and so it is easy to 
recognize from them what the cycle distribution is. If the ^-branch belongs to a 
w-cycle made up of v branches altogether, then the order r must refer to each of 
these ^-branches and must be a multiple of 1/v. The totality of all individual 
orders r taken for all w-branches at all z-values is the order basis (r) , where it 
must be understood that only a finite number of the individual orders r are 
different from zero. Our concern is with rational functions of (z, u) taking orders 
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for all ^-branches at all z-values equal to or greater than the corresponding orders 
in (r ). Such rational functions of (z, u) are said to be built on the order basis 
(r ). The number of linearly independent rational functions of (z, u) built on 
the order basis (r ) is denoted by N(r ), or dimension (^4), which is positive except 
in the case where 0 is the only rational function of (z, u) built on the order basis 
(r) . The sum JZX) rv of all the individual orders r making up the order basis (r) 
is, of course, an integer and is denoted by — n(A). The primary element of the 
summation is r, which refers to a ^-branch at a z-value, while the secondary 
element is rv, which refers to a w-cycle at a z-value. These secondary elements 
rv are then summed for all ^-cycles at all z-values. Thus far, we have indicated 
what is meant by the (r) side of (2), namely 

(3) N(r) + i E I > , 

which we shall denote by RR (r ) and refer to as the Riemann-Roch expression 
for the order basis (r). As far as the (f) side of (2) is concerned, it is only neces­
sary to state how (f ) is derived from (r). Order bases (r) and (f) are said to be 
complementary, to the level of a rational function S(z, u) not identically zero 
for any ^-branch at any z-value, provided 

(4) r + f = a - 1 + 1/v 

for all ^-branches at all finite z-values, while 

(5) r + r = a + l + l/v 

for all ^-branches at the infinite z-value, where (0-) is the order basis composed 
of the exact orders of S(z, u) for all w-branches at all z-values. The value of the 
(f) side of (2) is the same for all such rational functions S(zyu)y since both 
iY^f) and 5ZX) fv are the same. A first important special choice of S(z, u) is the 
function dF(z, u)/du. Since F(z, u), has no repeated factors, the function 
dF(z, u)/du supplies an order basis, to be denoted by (/*). This is the choice of 
S(z, u) that will be made in §§ 1, 2, 3. It owes its importance to its presence in 
the Lagrange Interpolation Formula for reducing a rational function R(z, u), 
as given by 

(6) Z U(z,u)/d-^) £&«2. 
i \ ÔU /u^Ui U — Ui 

A second important special choice of S(z, u) is a function which is a constant 
different from zero for all of the irreducible equations making up F (s, u) = 0. 
It supplies by its orders the order basis (0). This is the choice of S(z, u) to be 
made use of in § 4. It identifies the order basis (f) with the divisor W/A, where 
W is the divisor equivalent to the order basis made up of orders — 1 + 1/v for 
all ^-branches at all finite s-values, and orders 1 + 1/v for all w-branches at 
the infinite s-value. A natural source of each of these individual orders is well 
known. Indeed, for an individual w-branch at an individual z-value the indivi­
dual order presents itself as the least order we can permit a rational function of 
(z, u) to have there, if, on multiplying the function by dz and integrating the 
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resulting differential, we insist on the integral being finite there. We shall write 
(2) from here on in the form 

(7) RR(T) = RR(r). 

In [7], formula (7) was established directly for assigned complementary 
order bases (r ) and (f ). In [2] and [4], the issue turned on the result of depressing 
(r) to (t) and correspondingly raising (f) to (t) until a stage was reached when 
N(t) became known and N(t) became zero. The present paper treats both com­
plementary order bases ( r) and (f ) in the same general way. Indeed, we shall 
show in § 1 how to pass from complementary order bases ( r ) and (f) to com­
plementary order bases (t) and (t) in such a way that we can count on the 
equations 

N(t) = N(ï) = 0 and RR(t) - RR(f) = RR(r) - RR(f) 

holding. The resulting combination of complementary order bases (t) and (t) 
is called the 0-0 case. In § 2, we shall obtain a lower bound for the value of 
N(T) and make use of it in § 3, in combination with the results of § 1, to complete 
the proof of the Riemann-Roch Theorem and set up a new form of the Unit 
Theorem equivalent to it. 

1. The 0-0 case. We have already indicated in the introduction what we 
aim to do in this section. Given complementary order bases ( r ) and (f), it is to 
find complementary ordeç bases (t) and (t) such that 

N(t) = N(t) = 0 and RR(f) - RRÇt) = RR(T) - RR(f). 

There is nothing to do if N(r) = N(f) = 0. We may suppose, therefore, that 
N(r) and N(f) are not both 0, and we shall show that a finite number of appli­
cations of a certain typical process gives us the complementary order bases 
(t) and (t) that we are after. It will be enough to describe the first application 
of the process. Taking N(T) to be positive, let us select a ^-branch at some 
z-value so that the corresponding order r of the order basis (r ) is taken by some 
of the rational functions of (z, u) built on the order basis (r) . Suppose the 
w-branch selected belongs to a u-cyc\e of v branches. Let us replace each of these 
orders r as they appear in the order basis (r) by r + 1/v to get a new order basis 
differing from the original order basis (r ) only in respect of the ^-branch selected 
and the remaining ^-branches of the same w-cycle, and then simply by being 
1/v greater. The Riemann-Roch expression for the new order basis is, therefore, 
less than RR(T) by J, seeing that its first term is less than N(T) by 1, while its 
second term is greater than è ] C £ TP by | . We can be certain that the Riemann-
Roch expression for the order basis complementary to the new order basis is 
less than RR(f) by \, if we can satisfy ourselves that its first term is exactly 
iV(r), while its second term is \ less than \ Y-/5L ^v- It is clear that the latter of 
these statements is true. We shall now show that the former one is also. There 
is no rational function of (z, u) built on the order basis complementary to the 
new order basis but not built on the order basis (f). For if so, let it be multi-
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plied by a rational function of (z, u) built on the order basis (r) but taking the 
exact order r for the ^-branch selected at the z-value, and let the product be 
divided by dF(z, u)/du. It is clear that this would give us a rational function of 
(z, u) whose order for the w-branch selected would be — 1, or 1, according as 
the z-value was finite, or infinite. Indeed, this would be the case for all the 
other ^-branches in the same w-cycle as well. In short, we should end up by 
having a rational function of (z, u) with only a single residue, which we know 
to be impossible. To sum up, we can say that complementary order bases (r) 
and (r) were replaced by a new order basis and its complementary order basis, 
and that N(r), N(f), and RR(r) - RR(T) were replaced by N(T) - 1 , iV(f), 
and RR(T) — RR(f). Hence, after a finite number of applications of the typical 
process described above we arrive at complementary order bases (t) and (t) 
with the properties: 

N(t) = N(f) = 0 and RR(t) - RR(t) = RR(r) - RR(r), 

as required in the 0-0 case. 

2. A lower bound for N(T). The result of the present section contrasts with 
that of § 1 as positive with negative, in the sense that it derives from adopting 
a degree of generality which the functions involved succeed in reaching, whereas 
in § 1 a degree of generality presented itself which was never attained by any of 
the functions involved. In particular, we aim to show that 

(8) N(r)>n + ZZci. 

The fundamental exponents (a) derive from the order basis (r) and from the 
use of u as dependent variable. Indeed, the derivation takes place locally, that 
is for each z-value taken by itself. In other words, (a) derives from (r), where 
the single brackets in each case refer to the individual z-value we wish to con­
sider. In particular, let (r) be the part of (r) that refers to the individual z-value 
z = a. Moreover, let 

(9) Wn-i(ZjU), . . . , zv0(z,u) 

be a local function basis for all the rational functions of (z, u) built on (r), or, 
in other words, let all these rational functions of (z, u) be just those of the form 

P„_iO)w„_iO,w) + . • . + Po(z)wo(z,u), 

where Pn^1(z)1 . . . ,Po(z) are rational functions of z regular at z = a. Indeed, 
the local function basis in (9) may be normalized so that the functions in order 
may be of degrees n — 1, . . . , 0 in u, and, furthermore, so that the leading 
coefficient is just a power of z — a in each case. This makes the functions in (9) 
start off with the terms 

y J ( ^ - a ) - " , ' • • , ( 2 - f l ) a o , 

which puts in evidence the local fundamental exponents 

(11) aw_i, . . . ,ao, 
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which we denote collectively by (a). When the infinite z-value is chosen instead 
of z = a as the individual z-value, the corresponding discussion applies, with, 
however, 1/z replacing z — a as element. 

It is natural to exhibit a local function basis (9) as a matrix. Each row of the 
matrix has as elements the coefficients of wn _ 1 , . . . , 1 for any one of the functions 
in (9), while each column has as elements the coefficients of the functions in (9) 
for any one of un~l, . . . , 1. By considering the matrices of equivalent local 
function bases corresponding to a local order basis (r), it is proven in [4] that 

(12) 2> + Z a = \ E (u - 1 + l/v)v, 

which, on being quoted for all 2-values simultaneously and the results totalled 
up, enables us to write (8) in the form 

(13) N(r) > n - L L TV - \ L L (" ~ I)-

For convenience of proof, however, (8) is to be preferred to (13). 
We shall first show that the proof of (8) may be reduced to the case where u 

is without poles for all finite z-values. Given an order basis (r) , let (a) denote 
the fundamental exponents resulting from the use of u as dependent variable. 
When u{z — a) is used as dependent variable instead of u, the fundamental 
exponents remain the same as before, except for the finite z-value z — a and the 
infinite js-value. For z — a they have to be increased by n — 1, . . . , 0 over 
what they were originally, whereas for the infinite z-value they have to be 
decreased by these same amounts. In other words, the total XX) a is n ° t changed. 
Hence, the adoption oî u(z — a) as dependent variable instead of u produces 
no change in either side of (8). We can say, therefore, that if (8) is valid in 
either case, so is it in the other as well. It suffices, therefore, to prove (8) on the 
assumption that u is without poles for all finite z-values, since the preceding 
argument can be applied until a dependent variable is obtained whose only 
poles are at the infinite z-value. 

Most of the simplification involved in dealing with the case where u is without 
poles for all finite z-values takes place at the local level and is due to special 
properties of the normalized function basis in (9) corresponding to the local 
order basis (r) for the z-value z = a. These properties, which will be found fully 
discussed in [4], are first that an_i, . . . , ao are monotone decreasing, and second 
that when Wi(z, u) in (9) is normalized and written in the form 

{,^ u* + u'-'HUijz) + . • • + Hi(z) 
{ } (z - a)** 

each H)(z) is regular at z = a and may be taken to be a polynomial of degree 
less than at — ajy in which case its form will be unique. In the sequel, we shall 
always make use of the unique polynomial form for H)(z). 

Local function bases corresponding to local order bases at all finite s-values 
as they are involved in (r) can be combined to form a function basis 

(15) Wn-,(z,u), . . . ,W0(z,u) 
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for all rational functions of (z, u) built simultaneously on all the constituent 
local order bases (r) of the order basis (r) at all finite z-values. All but a finite 
number of these local function bases will be un~l, . . . , 1. The exceptions will 
be associated with individual finite s-values z — a, z = b, . . . and will have 
the form of the local function basis in (9), or will be patterned after it, with 
the element z — a being replaced by z — b, . . . . Naturally, this combined 
function basis (15) serves locally just as well as the local function basis 
un~l, . . . , 1 wherever this applies, or as the local function basis in (9), or others 
patterned after it, wherever these apply. This is due to the fact that rational 
functions of (z, u) exist taking simultaneously the precise orders of (r) at all 
finite z-values, which is made possible through the circumstance that we have 
left complete freedom as to orders at the infinite z-value. 

The coefficients of wn_1, . . . , 1 in Wn..i(z, u) are all of fixed orders at the 
infinite z-value. In particular, the order of the coefficient of vOl~x at the infinite 
z-value is YJ&n-i exactly, where the prime implies that the summation ranges 
over all the finite ^-values but does not extend to the infinite z-value. The same 
type of remark applies to each of the remaining functions in (15). The final 
one is that WQ(Z, U) has the exact order S'ao a t the infinite z-value, where the 
prime applies as already stated. 

The rational function of (2, u), 

(16) P B - i ( # B - i ( ^ ) + . . . + Po(z)Wo(z}u)1 

in wThich Pn_i(z), . . . , PoOs) are arbitrary polynomials of suitably limited de­
grees, will serve as a sufficiently general rational function of (JS, U) built simul­
taneously on all the constituent local order bases (r) of the order basis (r) at 
all finite 2-values. This general function (16) can, of course, be converted into 
the general rational function of (z, u) built on the order basis ( r ) by applying 
to it the conditions necessary to insure that it is also built on the constituent 
local order basis (r) of the order basis (r ) at the infinite z-value. We are safe in 
limiting in suitable fashion the degrees of the polynomials Pn-i(z), . . . , Po(z), 
seeing that even the general rational function of (z, u) built on the constituent 
local order basis (r) of the order basis ( r ) a t the infinite 2-value does not contain 
arbitrarily large powers of z. In other words, since the application of the con­
ditions insuring that the function is built on the constituent local order basis 
(r) of the order basis (r) at the infinite z-value will require the coefficients of 
all powers of z beyond a certain degree to vanish, we run no risk in taking them 
to be zero at the start. With this in mind, we shall choose 

(17) i V i ( s ) , . . . , P0(s) 

as arbitrary polynomials of degrees 

f>n-i + H a>n-u . . . 1 $o + £ ao, 

where the dash implies that each summation ranges over all finite s-values but 
does not extend to the infinite z-value. The number of arbitrary constants 
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appearing in (17), or, what is the same thing, in the parent function (16), is 
seen to be 

(18) E H H EE'a, 

where the prime implies that the double summation ranges over all finite 
z-values but does not extend to the infinite z-value. 

Up to the present, we have merely said that the numbers (d) need not be 
chosen arbitrarily large. It is necessary, however, to indicate how we propose 
to limit them. This we shall attend to in two separate stages. 

In the first place, we observe that 

Pn^i(z)Wn-i(z,u), . . . ,Po(z)Wo(z,u) 

are of degrees £n_i, . . . , <50 in z, and, indeed, that these degrees attach to the 
coefficients of 

u1"1 in Pn-i(z)Wn-i{z,u), . . . , u in P0(z)W0(z1u) 

respectively. We wish to be able to write (16) in the form 

(19) z ' — a - x t t / s ) * * - 1 + . . . + z°Qo(l/z), 

in which Qn-i(l/z), . . . , Qo(l/z) are all rational functions of z regular at the 
infinite z-value and all containing arbitrary constants as their initial terms when 
they are expanded in powers of the element 1/z. It is clear that this is achieved 
by insuring that the degree in z in the coefficient of u{ in Pi{z)Wi{zi w), namely, 
du exceeds the degree in z of the coefficient of ul in 

Pn-X(z)Wn-x(z,U) + . . . + Pi+1(z)Wi+1(z,u), 

and this for all the cases i = n — 2, . . . , 0. These inequalities range, therefore, 
from the first of them, namely, that ôw_2 should exceed the degree in z of the 
coefficient of un~'1 in Pn-\{z) Wn-\{z, u) to the last of them, namely, that 50 should 
exceed the degree in z of the coefficient of u° in 

Pn^(z)Wn^(z,u) + . . . + P1(z)W1(z,u). 

Let now the local function basis equivalent to the constituent local order 
basis (r) of the order basis (r ) at the infinite s-value be denoted by 

(20) «C-i ( » , « ) , . . . , w "(»,«). 

This local function basis follows the pattern of the local function basis in (9), 
with, however, 1/z replacing z - a a s element. Let the fundamental exponents 
associated with this local function basis and with the use of u as dependent 
variable be denoted by 

CO CO 

an—1> . . . ,a o-
The form of the general rational function of (z, u) built on the constituent local 
order basis (r) of the order basis (r) at the infinite z-value is, therefore, 

(21) P t i ( l / 2 ) C i ( 2 ^ ) + . • • + Pœo(l/z)w~o(z,u), 
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in which 

Pn-l(l/z), • • • ,Pœo(l/z) 

are all rational functions of z regular at the infinite z-value. We wish to be able 
to write (19), and hence (16) also, in the form (21) and must prepare for it by-
taking account of a second group of inequalities involving the numbers (Ô). 
The identification of (19) with (21) proceeds naturally and simply if we take, 
in the first place, 

di > a°i (i = n — 1, . . . ,0) 

and, in the second place, df greater than the maximum degree in z of the coeffi­
cient of u1, in any of the functions 

n— l — a « — i oo / \ ôi + i—ai + i CO / \ 

z wn-i(z,u), . . . , z Wi+xiz^) 
for i — n — 2, . . . , 0. 

We are now in a position to take the final step in the proof of inequality (8). 
The number of linearly independent conditions involved in identifying (19) 
with (21) is at most 

The proof is based on the fact that (19), even without conditions, can be written 
in the form of (21), except that where the rational functions 

P ^ i ( l / « ) , . . . , P ° 8 ( l / a ; ) 

of (21) are without poles at the infinite z-value the corresponding rational 
functions of (19) can have poles of orders 

£ OO 5 OO 

0n—l — On—it . . . , Oo — a o 

at most. It is these poles that have to be made to disappear in the process of 
identifying (19) with (21). Hence, the number of linearly independent condi­
tions required to effect this disappearance is not more than 

E « ~ E aOT, 
and when it is subtracted from the number in (18) of arbitrary constants in­
volved in (19) at the outset we have left over not less than 

n + J2J2 <* 

arbitrary constants. However, since we have exactly N(T) arbitrary constants 
left over, we must conclude that 

N(T) > n + L E a, 
which is inequality (8). 

3. The Riemann-Roch Theorem and a new form of the Unit Theorem. 
Where (a) is the set of fundamental exponents associated with a local order 
basis (r) at a given z-value and based on the use of u as dependent variable and 
where (à) is the set of fundamental exponents associated with the complemen-
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tary local order basis (f) at the given s-value and based on the use of u as 
dependent variable, it follows from (12) and the corresponding result for (f) 
that 

(22) £ a + E à = 0, 

where the equations relating complementary orders to one another are of the 
form 

T + f = M"~" 1 + 1 /v. 

If, however, the local order basis (f) is exactly 2 more than enough in each of 
its orders to be complementary in the above sense to the local order basis (r), 
the right side of (22) becomes — 2n. But, this is precisely what does happen 
when (r) and (f) are local order bases taken from complementary order bases 
(r) and (f ) at the infinite z-value, always supposing that dF (z, u)/du is the level 
function made use of to relate the orders of (r) and (f ). Where (a) and (à) are 
the fundamental exponents associated with complementary order bases (r ) and 
(f), we have, therefore, 

(23) I E a + Z E â = - 2 w . 

Let us now apply inequality (8) to the 0-0 case, or, what is the same thing, 
let us make a joint application of §§ 1 and 2. Beginning with complementary 
order bases (r) and (f ), let us make use of § 1 to obtain complementary order 
bases (t) and (t) which it provides, and let us denote the fundamental exponents 
of ( 0 and (?) by (a) and (ci). Now applying inequality (8) of § 2 to (/) and (J) 
separately, we find that 

(24) JO > " + EE *, 
> n + EE a. 

When the inequalities in (24) are added and the result compared with (23), we 
see that the equality sign applies in both cases in (24). In other words, 

(25) ZH a= - n = ZT, â. 

But, we also have 

(26) EE a + EE tv = \ T,Z (M - i + i/v)v = T,i:à + Y,Y, h, 

as appears from quoting (12) for all the individual constituent local order bases 
of (t) and (t) separately and adding up the results in each case. It follows, 
therefore, from (25) and (26), that 

EE tv = ZZ tv 

and from this, in turn, that 
RR(t) = RR(t). 

Hence, by § 1, we have that 
RR(r) = RR(T), 

which is the statement of the Riemann-Roch Theorem for complementary 
order bases (r) and (f). 
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The new form of the Unit Theorem replaces the inequality (8) by an equation, 
namely by 
(27) N(T) = n + ZZ« + N(?), 

where (a) denotes the fundamental exponents associated with (r) and depending 
on the use of u as dependent variable. We see at once that 

(28) » + I E a = f H r , - | I I r , , 
since each side reduces to 

* Z E « -\EE fi. 

The Unit Theorem says that the difference 

N(T) - N(f) 

is equal to the left side of (28), while the Riemann-Roch Theorem says that it 
equals the right side. The two theorems are, therefore, equivalent. 

The original form of the Unit Theorem was that 

(29) N(T.) - N(r) + N(T) - N(r+) = 1. 

Here (r) and (r) were complementary order bases, and (r_) and (r+) were also. 
It was understood that ( r - ) was obtained from (r) by depressing a single one 
of its individual orders by the minimum amount 1/v, while (f+) was obtained 
from (f) by raising the corresponding one of its individual orders by 1/v. It 
follows from the new form of the Unit Theorem that for a decrease of 1 in any 
cycle order in (r) there is either an increase of 1 in N(T) but no change in 
N(f) or no change in N(T) but a decrease of 1 in N(T), since (12) shows that 
]C]L a increases by 1. In other words, the new form of the Unit Theorem implies 
the original form. But conversely, the original form implies the new form, since 
it certainly implies the Riemann-Roch Theorem, which is equivalent to the 
new form. 

The new form of the Unit Theorem is significant, in that it associates quantities 
(a) determined by considering all z-values one at a time with quantities N(T) 
and N(r) determined by considering all z-values simultaneously. For that 
matter, the same remark applies to the Riemann-Roch Theorem itself, where it 
is (r) instead of (a) which is determined by dealing with all z-values one at a 
time. 

It is clear from (23) that the statement in (27) of the new form of the Unit 
Theorem simply repeats itself when the roles of (r) and (f) are interchanged. 

4. The invariant character of the Riemann-Roch Theorem. If the funda­
mental algebraic equation F(z, u) = 0 is irreducible, and if x is a non-constant 
rational function of (z, u), there is a well-known routine for setting up a rational 
function of (z, u), say y, so that z and u are both expressible as rational functions 
of (x, y)} and, moreover, the algebraic equation obtained by eliminating z and u, 
say G(x, y) = 0, is irreducible. If, however, F(z, u) = 0 is reducible, and if x is 
a non-constant for each of the p irreducible equations making up F(zt u) = 0, 
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it is clear that y can still be found so that the new pair (x, y) are birationally 
equivalent to the original pair (zyu), and, moreover, the algebraic equation 
obtained by eliminating z and u, say G(x, y) = 0, breaks up into p irreducible 
equations. To see this it is only necessary to make use of 

(30) E («M/S) F(z,u) 

as the reduced form of a given rational function R(z, u), where F(z, u) is the 
product of p irreducible factors 

fl(z,u), . . . ,/p(2,«), 

all different from one another. Here the first factor of the typical summand in 
(30) denotes the polynomial in u, with coefficients rational functions of z, 
obtained on reducing 

JAZ>U) 

with respect to the irreducible equation fj(z, u) = 0. That is, (30) is composed 
of p summands, formed as j ranges over 1, . . . , p. Each summand is identically 
0 for p — 1 of the irreducible equations making up F(z, u) = 0 but ordinarily 
is not identically 0 for the particular irreducible equation involved in the re­
duction of its first factor. 

Before we can say that the Riemann-Roch Theorem is invariant, [6, § 25] 
we have to see that it applies to G(x, y) = 0 as much as to F(z, u) = 0. That is 
there is to be no change in the Riemann-Roch expression when we shift from an 
order basis (r) relative to F(z,u) = 0 to the corresponding order basis (t) 
relative to G(x, y) = 0. Besides, when we shift from complementary order bases 
( r ) and (r) relative to F(z,u) = 0 to order bases (/) and (J) relative to 
G(x, y) — 0, this latter pair of order bases is to be complementary relative to 
G(x, y) = 0, the maintenance if the complementary property involving nothing 
beyond a natural change from the function used as level for F(z} u) = 0 to the 
one used as level for G(x, y) = 0. It will be convenient to adopt x as the indepen­
dent variable and y as the dependent variable when we are making use of 
G(x, y) = 0 as the fundamental algebraic equation. 

When we speak of a cycle about a z-value, we shall continue to use v generically 
to denote the number of its branches, and this whether we refer to a finite 
z-value z = a or the infinite z-value as centre. In the same way, when we speak 
of a cycle about an x-value, we shall use œ generically to denote the number of 
its branches, and this whether we refer to a finite x-value x = a or the infinite 
x-value as centre. All types of correspondence between cycles about z-values 
and cycles about x-values are given, to a first approximation, by the following: 
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(z — a)w = K(x — a)", 

(.-«)-=j^y, 
(31) (±)" - x(* - «y, 

In each case K is, to a first approximation, a constant different from zero. 
We shall now verify that the first requirement for the invariance of the 

Riemann-Roch Theorem is met. In the first case of (31), let a rational function 
have order r = \/v for each of the v branches of the cycle in question about the 
finite 2-value z = a. This same rational function will have order t = X/co for 
each of the co branches of the cycle in question about the finite x-value x = a. 
In other words, from r = \/v for each of the v branches of the cycle in question 
about the finite s-value z = a we deduce t = X/co for each of the co branches of 
the cycle in question about the finite x-value x = a, and we observe that 
TV = /co. The same type of discussion applies to the remaining cases of (31). An 
order basis (r) relative to F(z, u) = 0 converts, therefore, into an order basis 
(/) relative to G(x, y) = 0, and, besides, 

Furthermore, on account of the birationality connecting the pairs (z, u) and 
(a;, y) with one another, we see that N(T ) relative to F(z, u) = 0 is the same thing 
as N(t) relative to G(x, y) = 0. That is, the first requirement is met, since 
RR (r ) relative to F(z, u) — 0 has the same value as RR (t ) relative to G(x, y) = 0. 

We must still see that the second requirement for the invariance of the 
Riemann-Roch Theorem is also met. Let us suppose that order bases (r) and 
(f) are complementary relative to F {z,u) = 0, to the level of a function 5 (z, u), 
which is a constant different from zero for each of the p irreducible equations 
making up F(z,u) = 0, which p non-zero constants may be chosen to range all 
the way from being all the same to being all different. We wish to show that 
order bases (t) and (t) are complementary relative to G(x, y) = 0 to the level 
of the function S(z, u)dx/dz. A direct verification of this can be easily made. 
(Cf.[5, Chap. 2, § 5].) In the first case of (31) let r = \/v and f = - 1 + 
(1 — \)/v be the individual orders taken from (r) and (r) for the cycle in ques­
tion about the finite z-value z = a. Then 

t = — and t = H , 
CO CO 0) 

while the order of dx/dz is 1 — v/ca, all relative to the cycle in question about the 
finite x-value x = a. In other words, 

t + t = ( l - - ) - l + ~ , 
\ CO/ CO 
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which means that t and t have the complementary property for the cycle in 
question about the finite x-value x = a to the level of the function S(z, u)dx/dz. 
The same sort of verification can be given for the remaining cases of (31). That 
is, the second requirement for the invariance of the Riemann-Roch Theorem 
is also met. 
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