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TH E problem of turbulence in the protoplanetary 
cloud is of importance for planetary cosmogony. 

Chaotic macroscopic motions probably existed in the 
cloud during its formation. Further evolution of the 
cloud depended to a great extent upon whether these 
original motions damped in a short time, or turbulence 
supported by some source of energy existed during 
planet formation. According to Kuiper and Fessenkov's 
hypotheses, massive protoplanets formed as a result 
of gravitational instability and turned into planets 
after the dissipation of light elements. Large-scale 
turbulent motions with mean velocities exceeding the 
thermal velocities of atoms and molecules would 
prevent, however, gravitational instability in the cloud, 
even if its mass was of the order of the mass of the sun. 
According to Edgeworth and to Gurevitch and Lebedin-
sky the planets grew gradually from small condensations 
formed in a flattened dust disk with a mass equal to 
that of the present planetary system. But even small 
scale turbulent motions would prevent extreme flat-
tening of the disk necessary in this case for gravita-
tional instability. The problem of turbulence is also 
connected with the problem of present distribution of 
angular momentum between the sun and planets, as 
large-scale turbulence produces redistribution of matter 
and of angular momentum in the cloud. 

The hypothesis of the presence of large-scale turbul-
ence in the protoplanetary cloud was introduced by 
von Weizsäcker. 1 But Weizsäckers arguments do not 
prove its existence. The Reynolds number is very large 
for the cloud (about 10 1 0). But for a rotating medium 
the Reynolds number cannot be considered as a criterion 
of turbulence. Weizsäcker regards turbulence as a 
result of convective instability. But he uses the criterion 
of convection for nonrotating media, which is inapplic-
able in the case of the rotating cloud. The problem 
therefore needs further study. 

In order to reveal the main features of motions in a 
flat protoplanetary cloud, one can use the results of 
investigations of fluid motion between two rotating 
coaxial cylinders. Rayleigh, 2 Taylor, 3 and Synge 4 

proved that such a motion of an incompressible fluid 
is stable if the angular momentum increases outwards : 
d(car2)/dr>0. This condition had to be satisfied for the 
protoplanetary cloud. If we neglect the pressure 
gradient in the cloud and its own gravitation as com-
pared with the gravitation of the sun, the angular 

1 C. F. von Weizsäcker, Ζ . Naturforch. 3a, 524 (1948). 
2 Lord Rayleigh, Proc. Roy. Soc. (London) A93, 148 (1916). 
3 G . J. Taylor, Phil. Trans. Roy. Soc. (London) A223, 289 

(1923); Proc. Roy. Soc. (London) 135 685 (1932). 
4 J . L. Synge, Trans. Roy. Soc. Canada, 27, iii, 1 (1933); 

Proc. Roy. Soc. (London) 167, 250 (1938). 

momentum will be proportional to \Jr. Then this 
condition becomes identical with the condition of 
stability of circular orbits well known in stellar 
dynamics. But the condition was obtained for an 
incompressible fluid and does not take into account the 
possibility of convection. On the other hand,Weizsäcker, 
using the criterion of convection, left out of account the 
condition of stability of circular orbits. These two 
conditions were combined in the paper by Safronov and 
E. L. Rouscol. 6 The condition of convection for a flat 
rotating cloud (cylindrical rotation) was found to be : 
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and (œr2)2=GMr+ (r^dp/pdr). When considering small 
disturbances, it is possible to approximate smooth 
functions ρ and Τ for small intervals of r by power 
functions 

p~Ta\ T~r~a*. (2) 

The condition of convection is then reduced to 

2 - (τ - ΙΑ) (ai+a2) > GM/rRT. (3) 

The protoplanetary cloud being largely an H I region, 
one can take as maximum value of Τ on the right-hand 
side of the inequality (3) the temperature of a blackbody 
in a transparent cloud, Γ 0 « 3 0 0 ( Γ ο β ) ~ * , where rae is 
the distance from the sun in a.u. Then 

(GM/RTr)>350rae-*, (4) 

and the condition of convection (3) is not satisfied for 
any acceptable values of a\ and ai. Hence, the undis-
turbed protoplanetary cloud is stable with respect to 
small disturbances and convection could not arise in it 
at any admissible values of temperature and of density 
gradients. 

The possibility of large-scale turbulence over a long 
time scale is open to serious objections from energetic 
considerations. Solar radiation entering the flat cloud 
is insufficient to support turbulence. Gravitational 
energy of the parts of the cloud approaching the sun 
suffices only for a short time. Weizsäcker^ value of the 
mean turbulent velocity of about one tenth of the 
orbital velocity leads to a time of disintegration of the 
cloud of about 10 3 years, while 10 8 years are needed for 
the planet formation according to Weizsäcker himself. 

6 V . S. Safronov and E. L. Rouscol, Compt. rend. acad. sei. 
U.R.S.S. 108, 413 (1956); Problems Cosmogony (Moscow) 5, 22 
(1957). 

1023 

https://doi.org/10.1017/S007418090022682X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090022682X


1024 V . S . S A F R O N O V 

It seems probable that the ratio of the mean turbulent 
velocity to the orbital velocity, and the ratio of the 
mixing length to the distance from the sun, are of the 
same order of magnitude. Chandrasekhar and ter Haar 6 

have obtained /=0.62r from the law of planetary dis-
tances and take the value of the turbulent velocity to 
be slightly higher than one-half of the orbital velocity. 
Karman's formula 7 for the mixing length in a rotat-
ing medium leads to a still higher value, namely, 
/=2&r~0.8r . Under these conditions the time of dis-
integration of the cloud is less than 102 years and 
formation of the planets is impossible. Large-scale 
turbulent motions, if such existed at the initial stage 
of the evolution, had to damp rapidly. According to 
the energetic considerations only motions of a scale a 
thousand times less than follows from Karman's for-
mula could exist for a long time. 

It is of interest to investigate the problem of the 
transfer of matter and angular momentum during the 
existence of turbulence in the cloud. According to 
Weizsäcker, turbulent friction diminished the angular 
momentum of the rapidly rotating inner parts of the 
cloud, which therefore approached the sun. The outer 
parts acquired the momentum and went away from the 
sun. Weizsäcker uses shearing stresses depending on the 
gradient of angular velocity : 

τΤΦ=ψ(άω/οΙτ). (5) 

But this tensor of molecular viscosity stresses is valid, 
strictly speaking, only for the case of small free paths 
and is unfit for large-scale turbulent motions. Prandtl 
found another expression for the stresses as a function 
of the gradient of angular momentum : 

rrip

f = rîr-l(d/dr)(œri). (6) 

Karman 7 gives the same expression (6) without any 
comment on Weizsäckers using expression (5). In the 
solar system, angular velocity decreases with the 
distance from the sun, while the angular momentum 
increases. Hence the direction of the transfer of matter 
and angular momentum in the cloud according to 
Prandtl's and Weizsäcker^ formulas are opposite. 

Taylor 8 believes that the steady value of angular 
momentum in the central region of turbulent flow 
(inner cylinder rotating) found experimentally by him 
and Wattendorf,9 contradicts Prandtl's formula, as the 
latter in this case gives zero shearing stresses and 
would make impossible the transport of angular 
momentum. However, the equilization of angular 
momentum in the main part of the flow agrees with 
Prandtl's expression. The accuracy of the experiment is 
not sufficient to state that the derivative of angular 
momentum is exactly zero. We can only say that the 
derivative is very small, but this conclusion follows 

e S . Chandrasekhar and D . ter Haar, Astrophys. J. I l l , 187 
(1950). 

7 T h . von Karman, "Problems of cosmical aerodynamics, , , 

CADO Dayton, Ohio (1951). 
8 G. J. Taylor, Proc. Roy. Soc. (London) 151. 494 (1935). 
9 F. L. Wattendorf, Proc. Roy. Soc. (London) 148, 585 (1935). 

just from Prandtl's formula, if the turbulent viscosity is 
great. The same takes place in the rectilinear flow in 
tubes. The almost flat velocity profile far from the walls 
of the tube, and its sharp bending near the walls, can 
be explained if we suppose that turbulent viscosity is 
high far from the walls and decreases rapidly when 
approaching the walls (as the first or the second power 
of the distance from the walls, for example). A similar 
suggestion about turbulent viscosity in a rotating flow 
permits one to explain, by using Prandtl's formula, the 
almost constant value of angular momentum far from 
the walls and its sharp fall near the walls. Neither the 
relation (5) resulting from the molecular viscosity 
tensor, nor Taylor's suggestion of vorticity conservation 
explains this peculiarity of turbulent rotational motion. 

Probably Prandtl's formula is not quite accurate, 
because of the semiempirical character of turbulence 
theory. On the ground of a new interpretation of the 
mixing length, Wasiutynsky 1 0 has obtained an expres-
sion for stresses in a more general form. For the case of 
cylindrical rotation, he gives 

pK/d(œr2) 

r dr 
— 2ΡΚφ (7) 

When ΚΦ

Φ=0 (purely radial exchange) one obtains 
Prandtl's formula; with ΚΦ

Φ=Κ/ (isotropy) one 
obtains a formula of molecular viscous stresses with the 
exception that turbulent viscosity enters instead of the 
molecular. He found as condition of nondecreasing 
turbulence for incompressible ideal fluid 

d((ar2) Λβω 
2Κφ*ωτ-Κ/ ^ 0 . 

dr idr 
(8) 

It is not clear whether this generalization is only formal, 
or characterizes the turbulent motion more exactly. 
Nor is it clear which values of the ratio ΚΦ

Φ/Κ/ are 
more probable in the actual turbulent flow. One may 
think that for the rotating system around the gravi-
tating center Κφ

φ<Κ/. It is well known, for example, 
that pecular velocities of stars in radial direction are 
higher than in the direction of rotation. For the 
solar system (ω~τ~%) the turbulence would decrease 
according to this formula, if ΚΦ

Φ<\Κ/. The sign of 
the stresses is then given by Prandtl's formula and 
the transfer of matter and of angular momentum is 
opposite to that found by Weizsäcker. According to 
energetic considerations it seems probable that this 
situation occurred for large-scale turbulence. It might 
be believed that small-scale turbulence would be more 
isotropic. But small-scale turbulence would be incon-
sistent with the theoretical value of mixing length found 
by Karman for a rotating system. It is not clear 
whether such turbulent motions are possible. 

Being only an astronomer the author should like to 
know the opinions of specialists on turbulence about 
these questions. 

1 0 J. Wasiutynski, "Studies in hydrodynamics and structure of 
stars and planets," Oslo, p. 32 (1946). 
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