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Abstract

We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by
two polynomial mappings on Triebel–Lizorkin spaces and Besov spaces when their integral kernels are
given by functions Ω ∈ H1(Sn−1) ∪ L(log+ L)1/2(Sn−1). Our main results represent improvements as well
as natural extensions of many previously known results.
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1. Introduction

It is well known that the Marcinkiewicz integral operator is the most typical
representative of the Littlewood–Paley g-function and Lp bounds, for these operators
play a key role in the study of smoothness properties of functions and behavior
of integral transformations, such as Poisson integrals, singular integrals and, more
generally, singular Radon transforms. In recent years, the investigation on the bounds
for Marcinkiewicz integral operators on Triebel–Lizorkin spaces and Besov spaces has
attracted the attention of many authors (see [19, 29–31] for example). In this paper we
focus on this topic. More precisely, we will establish the bounds for Marcinkiewicz
integral operators associated to surfaces of revolution generated by two polynomial
mappings on the above function spaces under the rather weak size conditions on the
integral kernels.
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Let Rn (n ≥ 2) be the n-dimensional Euclidean space. For α ∈ R, 0 < p, q ≤
∞ (p , ∞), we define the homogeneous Triebel–Lizorkin spaces Ḟ p,q

α (Rn) and
homogeneous Besov spaces Ḃp,q

α (Rn) by

Ḟ p,q
α (Rn) :=

{
f ∈ S′(Rn) : ‖ f ‖Ḟ p,q

α (Rn) =

∥∥∥∥∥(∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥∥∥

Lp(Rn)
<∞

}
(1.1)

and

Ḃp,q
α (Rn) :=

{
f ∈ S′(Rn) : ‖ f ‖Ḃp,q

α (Rn) =

(∑
i∈Z

2−iαq‖Ψi ∗ f ‖qLp(Rn)

)1/q
<∞

}
, (1.2)

where S′(Rn) denotes the tempered distribution class on Rn, Ψ̂i(ξ) = φ(2iξ) for i ∈ Z
and φ ∈ C∞c (Rn) satisfies these conditions: 0 ≤ φ(x) ≤ 1; supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2};
φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. It is well known that Ḟ p,2

0 (Rn) = Lp(Rn) for 1 < p <∞
and

Ḟ p,p
α (Rn) = Ḃp,p

α (Rn) ∀α ∈ R and 1 < p <∞. (1.3)

See [14, 15, 27] for more properties of Ḟ p,q
α (Rn) and Ḃp,q

α (Rn). The inhomogeneous
versions of Triebel–Lizorkin spaces and Besov spaces, which are denoted by F p,q

α (Rn)
and Bp,q

α (Rn), respectively, are obtained by adding the term ‖Θ ∗ f ‖Lp(Rn) to the right-
hand side of (1.1) or (1.2) with

∑
i∈Z replaced by

∑
i≥1, where Θ ∈ S(Rn), supp(Θ̂) ⊂

{ξ ∈ Rn : |ξ| ≤ 2}, Θ̂(x) > c > 0 if |x| ≤ 5/3. The following properties are well known
(see [14] or [15], for example): for any 1 < p, q <∞ and α > 0,

F p,q
α (Rn) ∼ Ḟ p,q

α (Rn) ∩ Lp(Rn) and ‖ f ‖F p,q
α (Rn) ∼ ‖ f ‖Ḟ p,q

α (Rn) + ‖ f ‖Lp(Rn); (1.4)

Bp,q
α (Rn) ∼ Ḃp,q

α (Rn) ∩ Lp(Rn) and ‖ f ‖Bp,q
α (Rn) ∼ ‖ f ‖Ḃp,q

α (Rn) + ‖ f ‖Lp(Rn). (1.5)

Let Sn−1 be the unit sphere in Rn equipped with the induced Lebesgue measure
dσ. Let d,m ≥ 1 and ΓΦ,Ψ = {(Φ(y),Ψ(|y|)) : y ∈ Rn} be surfaces generated by two
suitable mappings Φ : Rn → Rd and Ψ : [0,∞)→ Rm. Suppose Ω ∈ L1(Sn−1) satisfies
the cancellation condition ∫

Sn−1
Ω(u) dσ(u) = 0. (1.6)

For a complex number ρ = τ + iϑ (τ, ϑ ∈ R with τ > 0), we define the parametric
Marcinkiewicz integral operator Mh,Ω,Φ,Ψ,ρ along the surface ΓΦ,Ψ by

Mh,Ω,Φ,Ψ,ρ f (u, v) =

(∫ ∞

0

∣∣∣∣∣ 1
tρ

∫
|y|≤t

h(|y|)Ω(y′)
|y|n−ρ

f (u − Φ(y), v − Ψ(|y|)) dy
∣∣∣∣∣2 dt

t

)1/2
, (1.7)

where y′ = y/|y| for any nonzero vector y ∈ Rn, (u, v) ∈ Rd × Rm = Rd+m, f ∈ S(Rd+m)
(the Schwartz class) and h ∈ ∆1(R+). Here ∆γ(R+) for γ > 0 denotes the set of all
measurable functions h defined on R+ := (0,∞) satisfying

‖h‖∆γ(R+) := sup
R>0

(
R−1

∫ R

0
|h(t)|γ dt

)1/γ
<∞.

Note that L∞(R+) = ∆∞(R+) ( ∆γ1 (R+) ( ∆γ2 (R+) for any 0 < γ2 < γ1 <∞.
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When Ψ(t) ≡ (0, . . . , 0) ∈ Rm, the operator Mh,Ω,Φ,Ψ,ρ essentially reduces to the
lower-dimensional Marcinkiewicz integral operator Mh,Ω,Φ,ρ, which is given by

Mh,Ω,Φ,ρ f (x) =

(∫ ∞

0

∣∣∣∣∣ 1
tρ

∫
|y|≤t

h(|y|)Ω(y′)
|y|n−ρ

f (x − Φ(y)) dy
∣∣∣∣∣2 dt

t

)1/2
.

For the sake of simplicity, we denote Mh,Ω,Φ,ρ = Mh,Ω if n = d, ρ = 1 and Φ(y) = y.
When h(t) ≡ 1, the operator Mh,Ω reduces to the classical Marcinkiewicz integral
operator MΩ. Over the last several years the Lp mapping properties of MΩ have been
studied by many authors. For example, see [8] for the case Ω ∈ H1(Sn−1) (the Hardy
space on the unit sphere; see [6, 26]), [1] for the case Ω ∈ L(log+ L)1/2(Sn−1), [3] for
the case Ω ∈ B(0,−1/2)

q (Sn−1) (the Block space generated by q-block), [5] for the case
Ω ∈Fβ(Sn−1) (the Grafakos–Stefanov function class; see [16]). For relevant results on
parametric Marcinkiewicz integral operator Mh,Ω,ρ and other integral operators with
rough kernels, we refer the readers to [10, 17, 18, 21, 24], among others. Recently,
the investigation of the boundedness of the Marcinkiewicz integral operator on the
Triebel–Lizorkin spaces has also attracted the attention of many authors. In 2009,
Zhang and Chen [30] proved that MΩ is bounded on the F p,q

α (Rn) for 0 < α < 1
and 1 < p, q < ∞ if Ω ∈ H1(Sn−1). Later on, the above authors [31] showed that
Mh,Ω is bounded on F p,q

α (Rn) for 0 < α < 1 and 1 + (n + 1)/(n + 2 − 1/r) < p, q <
2 + (1 − 1/r)/(n + 1) if Ω ∈ Lr(Sn−1) for some r > 1 and h ∈ L∞(R+). Very recently,
Yabuta [29] investigated the Triebel–Lizorkin space boundedness of Marcinkiewicz
integrals associated to certain surfaces under the integral kernels given by
Ω ∈ H1(Sn−1) ∪ L(log+ L)1/2(Sn−1) and h ∈ ∆γ(R+) for some γ > 1.

We notice that the following inclusion relations are valid:

L(log+ L)β1 (Sn−1) ( L(log+ L)β2 (Sn−1) ∀β1 > β2 > 0;⋃
q>1

Lq(Sn−1) ( L(log+ L)β(Sn−1) ( H1(Sn−1) ∀β ≥ 1;

L(log+ L)β(Sn−1) * H1(Sn−1) * L(log+ L)β(Sn−1) ∀0 < β < 1;⋃
q>1

Lq(Sn−1) (
⋂
β>1

Fβ(Sn−1) * L log+ L(Sn−1);⋂
β>1

Fβ(Sn−1) * H1(Sn−1) *
⋃
β>1

Fβ(Sn−1);

B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(log+ L)1+v(Sn−1) ∀q > 1, v > −1. (1.8)

When ρ = m = 1, h(t) ≡ 1, d = n and Φ(y) = y, the operator Mh,Ω,Φ,Ψ,ρ becomes
the classical Marcinkiewicz integral operator associated to surfaces of revolution
ΓΨ = {(y,Ψ(|y|)) : y ∈ Rn}, denoted by MΩ,Ψ. In 2002, Ding et al. [9] proved that
MΩ,Ψ is bounded on Lp(Rn+1) provided that Ω ∈ H1(Sn−1) and the following maximal
operator

MΨg(u, v) = sup
k∈Z

2−k
∫ 2k+1

2k
|g(u − s, v − Ψ(s))| ds
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is bounded on Lp(R2) for 1 < p < ∞. Subsequently, Fan and Sato [13] gave an
improvement of the above result. For relevant results on the operator MΩ,Ψ we refer
the readers to [11, 28].

In this paper we aim to establish some new results concerning the Triebel–Lizorkin
space boundedness for parametric Marcinkiewicz integral operators associated to
certain surfaces of revolution. Before establishing our main results, let us introduce
some notation. We denote by An the class of polynomials of n variables with real
coefficients. For N ≥ 1, let An,N be the collection of polynomials in An which have
degrees not exceeding N, and let Vn,N be the collection of polynomials in An,N which
are homogeneous of degree N.

Our main results can be formulated as follows.

Theorem 1.1. Let Ψ(y) = Q(ϕ(|y|)) with Q = (Q1, . . . ,Qm) ∈ (A1)m and ϕ ∈ F, where
F is the set of all positive increasing C1(R+) functions φ such that tφ′(t) ≥ Cφφ(t) and
φ(2t) ≤ cφφ(t) for all t > 0 and some Cφ, cφ > 0. Let Ω ∈ L(log+ L)1/2(Sn−1) satisfy (1.6)
and h ∈ ∆γ(R+) for some γ > 1. Suppose that one of the following conditions holds:

(i) n = d, Φ(y) = P(ϕ(|y|))
⊗

y with P = (P1, . . . , Pn) ∈ (A1)n;
(ii) Φ(y) = P(ϕ(|y|)y′) with P = (P1, . . . , Pd) ∈ (An)d.

Then for α ∈ (0, 1) and (1/p, 1/q) ∈Rγ, there exists a constant C > 0 such that

‖Mh,Ω,Φ,Ψ,ρ f ‖Ḟ p,q
α (Rd+m) ≤ C‖Ω‖L(log+ L)1/2(Sn−1)‖ f ‖Ḟ p,q

α (Rd+m),

where Rγ is the set of all interiors of the convex hull of three squares ( 1
2 ,

1
2 +

1/max{2, γ′})2, ( 1
2 − 1/max{2, γ′}, 1

2 )2 and (1/2γ, 1 − 1/2γ)2. The constant C =

Cρ,n,d,p,q,ϕ,α,max1≤l≤d deg(Pl),deg(Q) is independent of the coefficients of Pi and Q j for 1 ≤
i ≤ d and 1 ≤ j ≤ m.

Theorem 1.2. Let ϕ ∈ F, Φ(y) = P(ϕ(|y|)y′) with P = (P1, . . . , Pd) ∈ (An)d and
Ψ(y) = Q(ϕ(|y|)) with Q = (Q1, . . . ,Qm) ∈ (A1)m. Suppose that Ω ∈ H1(Sn−1) satisfies
(1.6) and h ∈ ∆γ(R+) for some γ > 1. Then for α ∈ (0, 1) and (1/p, 1/q) ∈Rγ, there
exists a constant C > 0 such that

‖Mh,Ω,Φ,Ψ,ρ f ‖Ḟ p,q
α (Rd+m) ≤ C‖Ω‖H1(Sn−1)‖ f ‖Ḟ p,q

α (Rd+m),

where Rγ is given as in Theorem 1.1 and C = Cρ,n,d,p,q,ϕ,α,deg(P),deg(Q) is independent
of the coefficients of Pi and Q j for 1 ≤ i ≤ d and 1 ≤ j ≤ m.

Remark 1.3. Some remarks follow.

(i) Note that Rγ2 (Rγ1 for γ1 > γ2 > 1 and R∞ = (0,1)2. It follows that the operator
Mh,Ω,Φ,Ψ,ρ is bounded on Ḟ p,q

α (Rd+m) for α ∈ (0, 1) and 1 < p, q < ∞ if Ω,Φ,Ψ
are given as in Theorems 1.1 or 1.2 and h ∈ L∞(R+).

(ii) There are some model examples for the class F, such as tα (α > 0),
tβ ln(1 + t) (β ≥ 1), t ln ln(e + t), real-valued polynomials P on R with positive
coefficients and P(0) = 0 and so on. It was shown in [22] that for any ϕ ∈ F there
exists Bϕ > 1 such that ϕ(2t) ≥ Bϕϕ(t).
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(iii) By employing methods as in the proof of [4, Theorem 2.3] and using some
estimates about Fourier transform of measures appeared in the proofs of
Theorems 1.1–1.2, one can obtain that Mh,Ω,Φ,Ψ,ρ is bounded on Lp(Rd+m) for
|1/p − 1/2| < min{1/2, 1/γ′} if h,Ω,Φ,Ψ are given as in Theorems 1.1 or 1.2.

(iv) We remark that the corresponding results on singular integrals along surfaces
of revolution have been established by us in [20]. Moreover, the questions
concerning the Ḟ p,q

α (Rd+m) and Ḃp,q
α (Rd+m) bounds for Mh,Ω,Φ,Ψ,ρ with Φ,Ψ being

as in Theorem 1.1 and Ω ∈Fβ(Sn−1) have been answered by us in [19].
(v) It should be also pointed out that Theorem 1.2 also holds for Ω ∈⋃

1<r<∞ B(0,−1/2)
r (Sn−1) by (1.8) and Theorem 1.1.

Observe that

|∆ζ(Mh,Ω,Φ,Ψ,ρ f )(x)| ≤ |Mh,Ω,Φ,Ψ,ρ∆ζ( f )(x)| ∀x, ζ ∈ Rd+m. (1.9)

Combining (1.9) with (iii) of Remark 1.3 and [19, Theorem 4.1] yields the following
theorem.

Theorem 1.4. Under the same conditions as in Theorems 1.1 and 1.2, these operators
are bounded on Ḃp,q

α (Rd+m) for |1/p − 1/2| < min{1/2, 1/γ′}.

By the properties (1.4) and (1.5), (iii) of Remark 1.3 and Theorems 1.1 to 1.4, we
get the following results immediately.

Theorem 1.5. Under the same conditions as in Theorems 1.1 to 1.4, these operators
are bounded on F p,q

α (Rd+m) and Bp,q
α (Rd+m).

Remark 1.6. It should be pointed out that our main results are new, even in the special
case ρ = 1, h(t) ≡ 1, n = d, m = 1 and Φ(y) = y or Ψ(|y|) = |y|.

The paper is organized as follows. Section 2 is devoted to presenting some auxiliary
lemmas. In Section 3 we shall prove Theorem 1.1. The proof of Theorem 1.2 will be
given in Section 4. It should be pointed out that the main method employed in this
paper is a combination of ideas and arguments from [2, 12, 19, 29]. Particularly, in
proving Theorem 1.1, the key decomposition of L(log+ L)1/2(Sn−1) following from [2]
will be needed. On the other hand, Theorem 1.2 is proved by applying some ideas
and techniques following from [12]. Throughout the paper, we denote by p′ the
conjugate index of p, which satisfies 1/p + 1/p′ = 1. The letter C or c, sometimes
with certain parameters, will stand for positive constants: not necessarily the same
one at each occurrence, but independent of the essential variables. In what follows,
we set Rd = {ξ ∈ Rd : 1/2 < |ξ| ≤ 1}. Let 4ζ( f ) be the difference of f for an arbitrary
function f defined on Rd and ζ ∈ Rd, that is, 4ζ( f )(x) = f (x + ζ) − f (x). We also use
the conventions

∑
j∈∅ a j = 0 and

∏
j∈∅ a j = 1.
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2. Preliminary lemmas

Let us begin with the following lemma of van der Corput type.

Lemma 2.1 [25]. Let l ∈ N\{0}, µ1, . . . , µl ∈ R, and d1, . . . , dl be distinct positive real
numbers. Let ψ ∈ C1([0, 1]). Then there exists a constant C > 0 independent of
µ1, . . . , µl such that∣∣∣∣∣∫ τ

δ

ei(µ1td1 +···+µltdl )ψ(t) dt
∣∣∣∣∣≤ C|µ1|

−ε
(
|ψ(τ)| +

∫ τ

δ

|ψ′(t)| dt
)

holds for 0 ≤ δ < τ ≤ 1 and ε = min{1/d1, 1/l}.

The following results are two vector-valued norm inequalities of maximal operators.

Lemma 2.2 [19]. Let M(d) be the Hardy–Littlewood maximal operator on Rd and
MP denote the Hardy–Littlewood maximal operator supported by polynomial
mappings P defined by MP f (x) = supr>0 (1/rn)

∫
|y|≤r | f (x −P(y))| dy, where P =

(P1, P2, . . . , Pd) ∈ (An)d.

(i) For 1 < p, q, r <∞, it holds that∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|M(d)g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C
∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥(∑
k∈Z

|g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

.

(ii) For 1 < p, q, r <∞, it holds that∥∥∥∥∥(∑
j∈Z

‖MP f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C
∥∥∥∥∥(∑

j∈Z

‖ f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

,

where C > 0 is independent of the coefficients of P j for 1 ≤ j ≤ d.

Let h,Ω, ρ be given as in (1.7). For a suitable mapping Γ : Rn → Rd, we define the
measures {σh,Ω,Γ,t}t∈R+

and {|σh,Ω,Γ,t |}t∈R+
respectively by

σ̂h,Ω,Γ,t(x) =
1
tρ

∫
t/2<|y|≤t

e−2πix·Γ(y) h(|y|)Ω(y′)
|y|n−ρ

dy (2.1)

and
̂|σh,Ω,Γ,t |(x) =

1
tρ

∫
t/2<|y|≤t

e−2πix·Γ(y) |h(|y|)Ω(y′)|
|y|n−ρ

dy. (2.2)

The following lemma is a refined estimate of a vector-valued inequality, which plays
a key role in the proofs of our main results.
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Lemma 2.3. Let Γ(y) = (P1(ϕ(|y|))a1(y′), . . . , Pd(ϕ(|y|))ad(y′)) and v ≥ 1, where
(P1, . . . , Pd) ∈ (An)d and ϕ ∈ F. Suppose that Ω ∈ L1(Sn−1) and h ∈ ∆γ(R+) for some
γ > 1. Then for (1/p, 1/q, 1/r) belonging to the interior of the convex hull of three
cubes ( 1

2 , 1/2 + 1/max{2, γ′})3, ( 1
2 − 1/max{2, γ′}, 1

2 )3 and (1/2γ, 1 − 1/2γ)3, there
exists a constant C > 0 such that∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥(∑
k∈Z

∫ 2(k+1)v

2kv
||σh,Ω,Γ,t | ∗ g j,ζ,k|

2 dt
t

)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ Cv1/2‖Ω‖L1(Sn−1)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

, (2.3)

where C > 0 is independent of v, Ω and the coefficients of P j for 1 ≤ j ≤ d.

Proof. Define the maximal operator σ∗h,Ω,Γ( f )(x) = supt>0 ||σh,Ω,Γ,t | ∗ f (x)|. We first
show that∥∥∥∥∥(∑

j∈Z

‖σ∗h,Ω,Γ( f j,ζ)‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥∥∥(∑
j∈Z

‖ f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

(2.4)

for any γ′ < p, q, r <∞. By a change of variable and Hölder’s inequality,

||σh,Ω,Γ,t | ∗ f (x)| ≤
∫ t

t/2

∫
Sn−1
| f (x − Γ(rθ))||Ω(θ)| dσ(θ)|h(r)|

dr
r

≤C‖Ω‖1/γL1(Sn−1)

(∫
S n−1

∫ t

t/2
| f (x − Γ(rθ))|γ

′ dr
r
|Ω(θ)| dσ(θ)

)1/γ′

. (2.5)

By a change of variable again and the properties of ϕ,∫ t

t/2
| f (x − Γ(rθ))|γ

′ dr
r

=

∫ ϕ(t)

ϕ(t/2)
| f (x − Γ(ϕ−1(s)θ))|γ

′ ds
ϕ−1(s)ϕ′(ϕ−1(s))

≤
1

Cϕ

∫ ϕ(t)

ϕ(t/2)
| f (x − Γ(ϕ−1(s)θ))|γ

′ ds
s

≤C(ϕ)
1
ϕ(t)

∫
|s|≤ϕ(t)

| f (x − Γ(ϕ−1(s)θ))|γ
′

ds,

which together with (2.5) implies that

σ∗h,Ω,Γ( f )(x) ≤C(ϕ)‖Ω‖1/γL1(Sn−1)

(∫
Sn−1

sup
t>0

1
t

∫
|s|≤t
| f (x − Γ(ϕ−1(s)θ))|γ

′

ds|Ω(θ)|dσ(θ)
)1/γ′

.

(2.6)
Note that Γ(ϕ−1(s)θ) = (P1(s)a1(θ), . . . , Pd(s)ad(θ)). Using Minkowski’s inequality
along with (2.6) and invoking (ii) of Lemma 2.2, we get (2.4).
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We now prove (2.3) by considering the following three cases.

Case 1 (1 < γ ≤ ∞). We get from (2.4) that∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥sup
k∈Z

sup
t∈[2kv,2(k+1)v]

||σh,Ω,Γ,t | ∗ g j,ζ,k|

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥σ∗h,Ω,Γ(sup
k∈Z
|g j,ζ,k|

)∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C‖Ω‖L1(Sn−1)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥sup
k∈Z
|g j,ζ,k|

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

(2.7)

for any γ′ < p, q, r < ∞. On the other hand, by duality, Hölder’s inequality, Fubini’s
theorem and (2.4), we have that for 1 < p, q, r < γ, there exists a sequence of positive
functions { f j,ζ} j,ζ with ‖{ f j,ζ}‖Lp′ (Rd ,`q′ (Lr′ (Rd))) = 1 such that∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥∑
k∈Z

∫ 2(k+1)v

2kv
||σh,Ω,Γ,t | ∗ g j,ζ,k|

dt
t

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

=
∑
j∈Z

∫
Rd

∫
Rd

∑
k∈Z

∫ 2(k+1)v

2kv
||σh,Ω,Γ,t | ∗ g j,ζ,k(x)|

dt
t

f j,ζ(x) dζ dx

≤
∑
j∈Z

∫
Rd

∫
Rd

∑
k∈Z

|g j,ζ,k(x)|
∫ 2(k+1)v

2kv
|σh,Ω,Γ,t | ∗ f̃ j,ζ(−x)|

dt
t

dζ dx

≤ v
∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥∑
k∈Z

|g j,ζ,k|

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥σ∗h,Ω,Γ( f̃ j,ζ)
∥∥∥∥∥q′

Lr′ (Rd)

)1/q′∥∥∥∥∥
Lp′ (Rd)

≤ Cv‖Ω‖L1(Sn−1)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥∑
k∈Z

|g j,ζ,k|

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

, (2.8)

where f̃ j,ζ(x) = f j,ζ(−x). Thus, the interpolation between (2.7) and (2.8) yields that
(2.3) holds for (1/p, 1/q, 1/r) belonging to the interior of the cube (1/2γ, 1 − 1/2γ)3.

Case 2 (1 < γ ≤ 2). By Hölder’s inequality,

||σh,Ω,Γ,t | ∗ g j,ζ,k(x)|

≤

∫
t/2<|y|≤t

|g j,ζ,k(x − Γ(y))|
|h(y)Ω(y′)|
|y|n

dy

≤

(∫
t/2<|y|≤t

|g j,ζ,k(x − Γ(y))|2
|h(y)|2−γ|Ω(y′)|

|y|n
dy

)1/2(∫
t/2<|y|≤t

|h(y)|γ|Ω(y′)|
|y|n

dy
)1/2

≤ C‖Ω‖1/2L1(Sn−1)(|σ|h|2−γ ,Ω,Γ,t | ∗ |g j,ζ,k|
2(x))1/2.
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It follows that∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

∫ 2(k+1)v

2kv
||σh,Ω,Γ,t | ∗ g j,ζ,k|

2 dt
t

)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C‖Ω‖1/2L1(Sn−1)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥∑
k∈Z

∫ 2(k+1)v

2kv
|σ|h|2−γ ,Ω,Γ,t | ∗ |g j,ζ,k|

2 dt
t

∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

. (2.9)

Note that |h|2−γ ∈ ∆γ/(2−γ)(R+). Using (2.9) and (2.8) with γ, p, q, r replaced by
γ/(2 − γ), p/2,q/2, r/2, respectively, we have (2.3) for (1/p,1/q,1/r) belonging to the
interior of the cube ( 1

2 − 1/γ′, 1
2 )3. By duality we see that (2.3) holds for (1/p,1/q,1/r)

belonging to the interior of the cube ( 1
2 ,

1
2 + 1/γ′)3. Interpolating these two cases, we

know that (2.3) holds for (1/p, 1/q, 1/r) belonging to the interior of the convex hull
of two cubes ( 1

2 − 1/γ′, 1
2 )3 and ( 1

2 ,
1
2 + 1/γ′)3. Note that in this case the interior of

the cubes (1/2γ, 1 − 1/2γ)3 is contained in the interior of the convex hull of two cubes
( 1

2 − 1/γ′, 1
2 )3 and ( 1

2 ,
1
2 + 1/γ′)3.

Case 3 (γ ≥ 2). Note that ∆γ(R+) ⊂ ∆2(R+) for γ ≥ 2. Interpolation between cases 1
and 2 give us that (2.3) holds for (1/p, 1/q, 1/r) belonging to the interior of the convex
hull of three cubes (1/2γ, 1 − 1/2γ)3, (0, 1

2 )3 and ( 1
2 , 1)3. This completes the proof of

Lemma 2.3. �

The following lemma gives some useful characterizations of Triebel–Lizorkin
spaces and Besov spaces, which come from [29].

Lemma 2.4 [29].

(i) Let 0 < α < 1, 1 < p <∞, 1 < q ≤ ∞ and 1 ≤ r < min{p, q}. Then

‖ f ‖Ḟ p,q
α (Rd) ≈

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

|42−lζ( f )|r dζ
)q/r)1/q∥∥∥∥∥

Lp(Rd)
.

(ii) Let 0 < α < 1, 1 ≤ p <∞, 1 ≤ q ≤ ∞ and 1 ≤ r ≤ p. Then

‖ f ‖Ḃp,q
α (Rd) ≈

(∑
l∈Z

2lqα
∥∥∥∥∥(∫

Rd

|42−lζ( f )|r dζ
)1/r∥∥∥∥∥q

Lp(Rd)

)1/q
.

We end this section by presenting the following lemma, which is the heart of our
proofs.

Lemma 2.5. Let v ≥ 1, Λ ∈ N\{0} and {σs,t : t ∈ R+, 1 ≤ s ≤ Λ} be a family of Borel
measures on Rd. We also denote by |σs,t | the total variation of σs,t. For 1 ≤ s ≤ Λ,
let δs, βs > 0, Ms ∈ N\{0} and Ls : Rd → RMs be linear transformations. Suppose that
ϕ ∈ F and there exist p0, q0 > 1, 1 < r0 < min{p0, q0} and C, A > 0 independent of
v such that the following conditions are satisfied for 1 ≤ s ≤ Λ, t ∈ R+, ξ ∈ Rd and
{gl,ζ,k}l,ζ,k ∈ Lp0 (Rd, `q0 (Lr0 (`2))):

(i) σ0,t = 0;
(ii) |σ̂s,t(ξ) − σ̂s−1,t(ξ)| ≤ CAϕ(t)δs |Ls(ξ)|;
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(iii) |σ̂s,t(ξ)| ≤ CA min{1, ϕ(t)δs |Ls(ξ)|}−βs/v;
(iv) ∥∥∥∥∥(∑

l∈Z

(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv
||σs,t | ∗ gl,ζ,k|

2 dt
t

)1/2
dζ

)q0)1/q0
∥∥∥∥∥

Lp0 (Rd)

≤ CAv1/2
∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|gl,ζ,k|
2
)1/2∥∥∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥∥∥

Lp0 (Rd)
.

Then for α ∈ (0, 1) and (1/p, 1/q) ∈ L1L2\{(1/p0, 1/q0)}, there exists a constant C > 0
independent of A and v such that∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd

(∫ ∞

0
|σΛ,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

≤ CAv1/2‖ f ‖Ḟ p,q
α (Rd), (2.10)

where L1L2 is the line segment from L1 to L2 with L1 = ( 1
2 ,

1
2 ) and L2 = (1/p0, 1/q0).

Proof. For any 1 ≤ s ≤ Λ, let ls = rank(Ls) ≤ min{d, Ms}. By [12, Lemma 6.1], there
are two nonsingular linear transformations Hs : Rls → Rls and Gs : Rd → Rd such that

|Hsπ
d
ls
Gsξ| ≤ |Ls(ξ)| ≤ Ms|Hsπ

d
ls
Gsξ|, (2.11)

where ξ ∈ Rd and πd
ls

is a projection operator from Rd to Rls . We can choose a function
ψ ∈ C∞0 (R) such that ψ(t) ≡ 1 for |t| ≤ 1/2 and ψ(t) ≡ 0 for |t| > 1. For 1 ≤ s ≤ Λ, we
define the family of measures {τs,t}t∈R+

by

τ̂s,t(ξ) = σ̂s,t(ξ)
Λ∏

j=s+1

ψ(|ϕ(t)δ j H jπ
d
l j
G jξ|) − σ̂s−1,t(ξ)

Λ∏
j=s

ψ(|ϕ(t)δ j H jπ
d
l j
G jξ|). (2.12)

Equation (2.12) together with our assumption σ0,t = 0 implies that

σΛ,t =

Λ∑
s=1

τs,t.

It follows that∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∫ ∞

0
|σΛ,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

≤

Λ∑
s=1

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∫ ∞

0
|τs,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

.

Therefore, to prove (2.10), it suffices to show that∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∫ ∞

0
|τs,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

≤ CAv1/2‖ f ‖Ḟ p,q
α (Rd) (2.13)

for any 1 ≤ s ≤ Λ, α ∈ (0, 1) and (1/p, 1/q) ∈ L1L2\{(1/p0, 1/q0)}, where C > 0 is
independent of A, v.

Next we prove (2.13). Fix 0 < α < 1. By straightforward calculations, and our
assumptions (i), (ii), (2.11) and (2.12), we obtain that for any 1 ≤ s ≤ Λ,

|τ̂s,t(ξ)| ≤ CA min{1, ϕ(t)δs |Ls(ξ)|, (ϕ(t)δs |Ls(ξ)|)−βs}1/v. (2.14)
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Since ϕ ∈ F, by (ii) of Remark 1.3 we obtain that there exists Bϕ > 1 such that
ϕ(2t) ≥ Bϕϕ(t) for all t > 0. Fix 1 ≤ s ≤ Λ. Let η0 ∈ C

∞(R) be an even function
satisfying 0 ≤ η0(t) ≤ 1, η0(0) = 1 and η0(t) = 0 for |t| ≥ 1. Set η(ξ) = 1 for |ξ| ≤ 1,
η(ξ) = η0((|ξ| − 1)/(a − 1)), where a = Bvδs

ϕ > 1. Then, η satisfies χ|ξ|≤1(ξ) ≤ η(ξ) ≤
χ|ξ|≤a(ξ) and |∂αη(ξ)| ≤ cα(a − 1)−|α| for ξ ∈ Rd and α ∈ Nd, where cα is independent
of a. Let ak = ϕ(2−kv)−δs . Define the sequence of functions {ψk}k∈Z on Rd by

ψk(ξ) = η(a−1
k+1ξ) − η(a−1

k ξ), ξ ∈ Rd.

Observe that:

(a) supp(ψk) ⊂ {ak ≤ |ξ| ≤ aak+1};
(b) supp(ψk) ∩ supp(ψ j) = ∅ for | j − k| ≥ 2;
(c)

∑
k∈Z ψk(ξ) = 1 for every ξ ∈ Rd\{0}.

Define the function Ψk by Ψ̂k(ξ) = ψk(ξ). It was shown in [29] that∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|Ψk ∗ f j,ζ |
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C
( Bvδs

ϕ

Bvδs
ϕ − 1

)d+2∥∥∥∥∥(∑
j∈Z

‖ f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

.

(2.15)
Since ψk is radial, we shall use the convention ψk(|ξ|) = ψk(ξ) for ζ ∈ Rd. Define the
multiplier operator S k,s on Rd by

Ŝ k,s f (ξ) = ψk(|Hsπ
d
ls
Gsξ|) f̂ (ξ).

We shall prove∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|S k,s f j,ζ |
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C
∥∥∥∥∥(∑

j∈Z

‖ f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

(2.16)

for 1 < p, q, r < ∞, where C > 0 depends only on ϕ and d. Let G−1
s and H−1

s denote
the inverse transforms of linear transformations Gs and Hs, respectively. Define Us
by Us = G−1

s (H−1
s ⊗ δRd−ls ), where δRd−ls denotes the Dirac delta function on Rd−ls .

Obviously, Us is a nonsingular linear transformation on Rd. Let y = (y1, y2) with
y1 = (y1, y2, . . . , yls ) and y2 = (yls+1, yls+2, . . . , yd). One can easily check that

S k,s f (x) = |Us|Ψk ⊗ δRd−ls ∗ f Us (U t
sx), (2.17)

where f Us (ξ) = |Us|
−1 f ((U t

s)
−1ξ) and U t

s denotes the transpose of Us. It follows from
(2.15) and (2.17) that∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥(∑
k∈Z

|S k,s f j,ζ |
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥p

Lp(Rd)

≤

∫
Rd

(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

||Us|Ψk ⊗ δRd−ls ∗ f Us
j,ζ (U t

sx)|2
)1/2∥∥∥∥∥q

Lr(Rd)

)p/q
dx

= |Us|
p−1

∫
Rd

(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|Ψk ⊗ δRd−ls ∗ f Us
j,ζ (y)|2

)1/2∥∥∥∥∥q

Lr(Rd)

)p/q
dy
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= |Us|
p−1

∫
Rd−ls

∫
Rls

(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|[Ψk ∗ f Us
j,ζ (·, y2)](y1)|2

)1/2∥∥∥∥∥q

Lr(Rd)

)p/q
dy1 dy2

≤ C|Us|
p−1

( Bvδs
ϕ

Bvδs
ϕ − 1

)p(d+2) ∫
Rd

(∑
j∈Z

‖ f Us
j,ζ (y)‖qLr(Rd)

)p/q
dy

≤ C
( Bδs

ϕ

Bδs
ϕ − 1

)p(d+2)∥∥∥∥∥(∑
j∈Z

‖ f j,ζ‖
q
Lr(Rd)

)1/q∥∥∥∥∥p

Lp(Rd)

for all 1 < p, q, r <∞, which yields (2.16).
We get by Minkowski’s inequality that∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd

(∫ ∞

0
|τs,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

=

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv

∣∣∣∣∣τs,t ∗
∑
j∈Z

S j−k,s42−lζ( f )
∣∣∣∣∣2 dt

t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

≤
∑
j∈Z

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ S j−k,s42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

.

Define the mixed norm ‖ · ‖Ep,q
α

for measurable functions on Rd × Rd × Z × Z × R+ by

‖g‖Ep,q
α

:=
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd

(∑
k∈Z

∫ ∞

0
|g(x, ζ, l, k, t)|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

.

For any j ∈ Z, let

V j,s( f )(x, ζ, l, k, t) := τs,t ∗ S j−k,s42−lζ( f )(x)χ[2kv,2(k+1)v)(t).

Thus we have∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd)

≤
∑
j∈Z

‖V j,s( f )‖Ep,q
α
.

(2.18)
We want to show that there exists a constant C > 0 independent of v such that

‖V j,s( f )‖Ep0 ,q0
α
≤ CAv1/2‖ f ‖Ḟ p0 ,q0

α (Rd) (2.19)

and
‖V j,s( f )‖E2,2

α
≤ CAv1/2B−c| j|

ϕ ‖ f ‖Ḟ2,2
α (Rd), (2.20)

where c > 0 is independent of v. In fact, by interpolating between (2.19) and (2.20) we
have that for (1/p, 1/q) ∈ L1L2\{(1/p0, 1/q0)}, there exists θ ∈ (0, 1] such that

‖V j,s( f )‖Ep,q
α
≤ CAv1/2B−cθ| j|

ϕ ‖ f ‖Ḟ p,q
α (Rd), (2.21)

where C > 0 is independent of v. Inequality (2.21) together with (2.18) yields (2.13).
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Below we shall prove (2.19) and (2.20). For 1 ≤ s ≤ Λ, let Φs be a radial function
in S(Rls ) defined by Φ̂s(x) = ψ(|x|), where x ∈ Rls and ψ is as in (2.12). Define Js and
Xs by

Js f (x) := f (Gt
s(H

t
s ⊗ idRd−ls )x) and Xs f (x) = sup

k∈Z
sup

t∈[2kv,2(k+1)v]
|Xk,t;s f (x)|,

where

Xk,t;s f (x) = J−1
s ((Φk,t;s ⊗ δRd−ls ) ∗ Js f )(x) and Φk,t;s(x0) = (ϕ(t)γs )−lsΦs(ϕ(t)−γs x0),

where x0 ∈ Rls . One can easily check that

|Xs f (x)| ≤ Cs[J−1
s ◦ (M(ls) ⊗ idRd−ls ) ◦ Js]( f )(x), (2.22)

where x = (x0, x1) ∈ Rls × Rd−ls . Combining (2.22) with (i) of Lemma 2.2 yields that∥∥∥∥∥(∑
l∈Z

∥∥∥∥∥(∑
k∈Z

|Xsgl,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥p

Lp(Rd)

≤ C
∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|[J−1
s ◦ (M(ls) ⊗ idRd−ls ) ◦ Js](gl,ζ,k)|2

)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥p

Lp(Rd)

≤ C|Js|

∫
Rd−ls

∫
Rls

(∑
l∈Z

∥∥∥∥∥(∑
k∈Z

|(M(ls)[(Jsgl,ζ,k(·, x1))](x0)2
)1/2∥∥∥∥∥q

Lr(Rd)

)p/q
dx0 dx1

≤ C
∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|gl,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥p

Lp(Rd)
(2.23)

for any 1 ≤ s ≤ Λ and 1 < p, q, r <∞. Define Xs f = Xs ◦ Xs+1 ◦ · · · ◦ XΛ f for 1 ≤ s ≤
Λ. We get from (2.23) that∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|Xsgl,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

≤ C
∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|gl,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd)

)1/q∥∥∥∥∥
Lp(Rd)

(2.24)
for any 1 ≤ s ≤ Λ and 1 < p, q, r <∞. By the definition of Xk,t;s and (2.12),

τs,t ∗ f = σs,t ∗ (Xk,t;s+1 ◦ Xk,t;s+2 ◦ · · · ◦ Xk,t;Λ f ) −σs−1,t ∗ (Xk,t;s ◦ Xk,t;s+1 ◦ · · · ◦ Xk,t;Λ f ).

It follows that ∫ 2(k+1)v

2kv
|τ1,t ∗ f |2

dt
t
≤

∫ 2(k+1)v

2kv
||σ1,t | ∗ X2 f |2

dt
t

(2.25)

and∫ 2(k+1)v

2kv
|τs,t ∗ f |2

dt
t
≤ 2

(∫ 2(k+1)v

2kv
||σs,t | ∗ Xs+1 f |2

dt
t

+

∫ 2(k+1)v

2kv
||σs−1,t | ∗ Xs f |2

dt
t

)
(2.26)
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for any 2 ≤ s ≤ Λ. From (2.24) to (2.26) and assumption (iv), one can get∥∥∥∥∥(∑
l∈Z

(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ gl,ζ,k|

2 dt
t

)1/2
dζ

)q0)1/q0
∥∥∥∥∥

Lp0 (Rd)

≤ CAv1/2
∥∥∥∥∥(∑

l∈Z

∥∥∥∥∥(∑
k∈Z

|gl,ζ,k|
2
)1/2∥∥∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥∥∥

Lp0 (Rd)
(2.27)

for 1 ≤ s ≤ Λ. Inequality (2.27) together with (2.16) and (i) of Lemma 2.4 implies that

‖V j,s( f )‖Ep0 ,q0
α
≤CAv1/2

∥∥∥∥∥(∑
l∈Z

2lq0α

∥∥∥∥∥(∑
k∈Z

|S j−k,s42−lζ( f )|2
)1/2∥∥∥∥∥q0

Lr0 (Rd)

)1/q0
∥∥∥∥∥

Lp0 (Rd)

≤CAv1/2
∥∥∥∥∥(∑

l∈Z

2lq0α‖42−lζ( f )‖q0
Lr0 (Rd)

)1/q0
∥∥∥∥∥

Lp0 (Rd)

≤CAv1/2‖ f ‖Ḟ p0 ,q0
α (Rd),

which gives (2.19).
On the other hand, by (2.14), Hölder’s inequality, Minkowski’s inequality, Fubini’s

theorem, Plancherel’s theorem and (ii) of Lemma 2.4,

‖V j,s( f )‖2
E2,2
α

=

∫
Rd

∑
l∈Z

22lα
(∫
Rd

(∑
k∈Z

∫ 2(k+1)v

2kv
|τs,t ∗ S j−k,s42−lζ( f )(x)|2

dt
t

)1/2
dζ

)2
dx

≤C
∑
l∈Z

22lα
∫
Rd

∑
k∈Z

∫ 2(k+1)v

2kv

∫
Rd
|τs,t ∗ S j−k,s42−lζ( f )(x)|2 dx

dt
t

dζ

≤C
∑
l∈Z

22lα
∫
Rd

∑
k∈Z

∫
E j−k,s

∫ 2(k+1)v

2kv
|τ̂s,t(x)|2

dt
t
| ̂42−lζ( f )(x)|2 dx dζ

≤CA2vB−2c| j|
ϕ ‖ f ‖2

Ḃ2,2
α (Rd)

, (2.28)

where E j−k,s = {x ∈ Rd : ϕ(2(k− j)v)−δs ≤ |Hsπ
d
ls
Gsξ| ≤ Bvδs

ϕ ϕ(2(k− j−1)v)−δs} and C, c > 0 are
independent of v. Combining (2.28) with (1.3) yields (2.20) and finishes the proof of
Lemma 2.5. �

3. Proof of Theorem 1.1

In this section we shall prove Theorem 1.1. Let Rγ be given as in Theorem 1.1 and
σh,Ω,Γ,t and |σh,Ω,Γ,t | defined as in (2.1) and (2.2), respectively. Employing the notation
in [2], let E0 = {y′ ∈ Sn−1 : |Ω(y′)| < 2} and Eν = {y′ ∈ Sn−1 : 2ν < |Ω(y′)| ≤ 2ν+1} for
ν ∈ N\{0}. Let N(Ω) = {ν ∈ N\{0} : σ(Eν) > 2−4ν} and Ω0 = Ω −

∑
ν∈N(Ω) Ων, where

Ων = ΩχEν
− σ(Sn−1)−1

∫
Eν

Ω(y′) dσ(y′). One can easily check that∫
Sn−1

Ων(y′) dσ(y′) = 0;

https://doi.org/10.1017/S1446788717000143 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000143


394 F. Liu [15]

‖Ων‖L1(Sn−1) ≤ C‖Ω‖L1(Eν) ∀ν ∈ N(Ω) ∪ {0}; (3.1)
‖Ων‖L2(Sn−1) ≤ C22ν‖Ω‖L1(Eν) ∀ν ∈ N(Ω) ∪ {0}; (3.2)∑

ν∈N(Ω)∪{0}

(ν + 1)1/2‖Ω‖L1(Eν) ≤ C‖Ω‖L(log+ L)1/2(Sn−1); (3.3)

Mh,Ω,Φ,Ψ,ρ f (x, y) ≤
∑

ν∈N(Ω)∪{0}

Mh,Ων,Φ,Ψ,ρ f (x, y) ∀(x, y) ∈ Rd × Rm. (3.4)

Inequality (3.4) together with (1.9), Minkowski’s inequality and (i) of Lemma 2.4
yields that

‖Mh,Ω,Φ,Ψ,ρ f ‖Ḟ p,q
α (Rd+m)

≤ C
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

42−lζ(Mh,Ω,Φ,Ψ,ρ f ) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)

≤ C
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

Mh,Ω,Φ,Ψ,ρ(42−lζ( f )) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)

≤ C
∑

ν∈N(Ω)∪{0}

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd+m

Mh,Ων,Φ,Ψ,ρ(42−lζ( f )) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)
(3.5)

for α ∈ (0, 1) and (p, q) ∈ (1,∞)2.

Proof of Theorem 1.1. We shall prove Theorem 1.1 by considering the following two
parts.

Part 1. Let n = d and Φ(y) = P(ϕ(|y|))
⊗

y with P = (P1, . . . , Pn) ∈ (A1)n. There exist
N ∈ N, some integers 0 = d0 < d1 < d2 < · · · < dN1 = max1≤i≤n deg(Pi) and {ai, j : 1 ≤
i ≤ n, 0 ≤ j ≤ N1} such that (a1, j, . . . , an, j) , (0, . . . , 0) for all 1 ≤ j ≤ N1 and

(P1(t), . . . , Pn(t)) =

( N1∑
j=0

a1, jtd j , . . . ,

N1∑
j=0

an, jtd j

)
.

For 0 ≤ s ≤ N1 and (x, y) ∈ Rn × Rm, define the linear transformation Ls : Rn × Rm →

Rn by Ls(x, y) = (a1,sx1, . . . , an,sxn), where x = (x1, . . . , xn). For any 0 ≤ s ≤ N1, let

Ps(t, x) =

( s∑
j=0

a1, jtd j x1, . . . ,

s∑
j=0

an, jtd j xn

)
.

For t ∈ R+, ν ∈ N(Ω) ∪ {0} and 0 ≤ s ≤ N1, we denote σνs,t by σh,Ων,Γs,t and |σνs,t | by
|σh,Ων,Γs,t | with Γs(y) = (Ps(ϕ(|y|), y′),Ψ(ϕ(|y|))). By (1.6), one can easily check that

σν0,t = 0. (3.6)

We also verify easily that

|σ̂νs,t(ξ, η)| ≤ C‖Ων‖L1(Sn−1) ≤ C‖Ω‖L1(Eν). (3.7)
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By a change of variable, (3.1) and Hölder’s inequality,

|σ̂νs,t(ξ, η) − σ̂νs−1,t(ξ, η)|

≤

∫
t/2<|y|≤t

|e−2πiξ·Ps(ϕ(|y|),y′) − e−2πiξ·Ps−1(ϕ(|y|),y′)|
|h(|y|)Ων(y′)|
|y|n

dy

≤ C
∫ t

t/2

∫
Sn−1
|ϕ(t)dsLs(ξ, η) · y′||Ων(y′)| dσ(y′)|h(t)|

dt
t

≤ C‖Ω‖L1(Eν)|ϕ(t)dsLs(ξ, η)|; (3.8)

|σ̂νs,t(ξ, η)|=
∣∣∣∣∣ 1
tρ

∫ t

t/2

∫
Sn−1

Ων(y′)e−2πi(ξ·Ps(ϕ(r),y′)+η·Ψ(ϕ(r))) dσ(y′)h(r)
dr

r1−ρ

∣∣∣∣∣
≤C‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣∣∣∫
Sn−1

Ων(y′)e−2πi(ξ·Ps(ϕ(r),y′)+η·Ψ(ϕ(r))) dσ(y′)
∣∣∣∣∣γ′ dr

r

)1/γ′

≤C
(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

Ων(y′)e−2πiξ·Ps(r,y′) dσ(y′)
∣∣∣∣∣γ′ dr
ϕ′(ϕ−1(r))ϕ−1(r)

)1/γ′

≤C
(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

Ων(y′)e−2πiξ·Ps(r,y′) dσ(y′)
∣∣∣∣∣γ′ dr

r

)1/γ′

≤C‖Ων‖
max{0,1−2/γ′}
L1(Sn−1)

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

e−2πiPs(r,y′)·ξΩν(y′) dσ(y′)
∣∣∣∣∣2 dr

r

)min{2,γ′}/2γ′

.

(3.9)

A change of variable together with (3.2), Lemma 2.1 and Hölder’s inequality implies
that ∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

e−2πiPs(r,y′)·ξΩν(y′) dσ(y′)
∣∣∣∣∣2 dr

r

≤

∫ 1

c−1
ϕ

∣∣∣∣∣∫
Sn−1

e−2πiPs(ϕ(t)r,y′)·ξΩν(y′) dσ(y′)
∣∣∣∣∣2 dr

r

=

∫ 1

c−1
ϕ

"
(Sn−1)2

e−2πi(Ps(ϕ(t)r,y′)−Ps(ϕ(t)r,θ))·ξΩν(y′)Ων(θ) dσ(y′) dσ(θ)
dr
r

≤

"
(Sn−1)2

∣∣∣∣∣∫ 1

c−1
ϕ

e−2πi(Ps(ϕ(t)r,y′)−Ps(ϕ(t)r,θ))·ξ dr
r

∣∣∣∣∣|Ων(y′)Ων(θ)| dσ(y′) dσ(θ)

≤

"
(Sn−1)2

min{1, |ϕ(t)dsLs(ξ, η) · (y′ − θ)|−1/ds}|Ων(y′)Ων(θ)| dσ(y′) dσ(θ)

≤ ‖Ων‖
2
L2(Sn−1)|ϕ(t)dsLs(ξ, η)|−1/4ds

×

("
(Sn−1)2

|ϕ(t)dsLs(ξ, η) · (y′ − θ)|−1/2ds} dσ(y′) dσ(θ)
)1/2

≤ C24ν‖Ω‖2L1(Eν)
|ϕ(t)dsLs(ξ, η)|−1/4ds ,
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which together with (3.9) and (3.1) yields that

|σ̂νs,t(ξ, η)| ≤ C‖Ω‖L1(Eν)2
2 min{2,γ′}ν/γ′ |ϕ(t)dsLs(ξ, η)|−min{2,γ′}/8dsγ

′

.

Combining this inequality with (3.7) yields that

|σ̂νs,t(ξ, η)| ≤ C‖Ω‖L1(Eν) min{1, |ϕ(t)dsLs(ξ, η)|}−min{2,γ′}/8dsγ
′(ν+1). (3.10)

On the other hand, by Lemma 2.3, (3.1) and Hölder’s inequality,∥∥∥∥∥(∑
j∈Z

(∫
Rd+m

(∑
k∈Z

∫ 2(k+1)(ν+1)

2k(ν+1)
||σνs,t | ∗ g j,ζ,k|

2 dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

∫ 2(k+1)(ν+1)

2k(ν+1)
||σνs,t | ∗ g j,ζ,k|

2 dt
t

)1/2∥∥∥∥∥q

Lr(Rd+m)

)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C(ν + 1)1/2‖Ω‖L1(Eν)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd+m)

)1/q∥∥∥∥∥
Lp(Rd+m)

(3.11)

for 1 ≤ s ≤ N1 and (1/p, 1/q, 1/r) belonging to the interior of the convex hull of three
cubes ( 1

2 ,
1
2 + 1/max{2, γ′})3, (1/2 − 1/max{2, γ′}, 1

2 )3 and (1/2γ, 1 − 1/2γ)3. Then by
(3.6), (3.8), (3.10), (3.11) and Lemma 2.5 we have∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rn+m

(∫ ∞

0
|σνN1,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C(ν + 1)1/2‖Ω‖L1(Eν)‖ f ‖Ḟ p,q
α (Rd+m) (3.12)

for α ∈ (0, 1) and (1/p, 1/q) ∈Rγ. We get by Minkowski’s inequality that

Mh,Ων,Φ,Ψ,ρ f (x, y) =

(∫ ∞

0

∣∣∣∣∣ 0∑
k=−∞

2kρσνN1,2kt ∗ f (x, y)
∣∣∣∣∣2 dt

t

)1/2

≤

0∑
k=−∞

2kτ
(∫ ∞

0
|σνN1,2kt ∗ f (x, y)|2

dt
t

)1/2

≤
1

1 − 2−τ

(∫ ∞

0
|σνN1,t ∗ f (x, y)|2

dt
t

)1/2
. (3.13)

Inequality (3.13) together with (3.3), (3.5) and (3.12) yields that

‖Mh,Ω,Φ,Ψ,ρ f ‖Ḟ p,q
α (Rd+m)

≤ C
∑

ν∈N(Ω)∪{0}

∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd+m

(∫ ∞

0
|σνN1,t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C
∑

ν∈N(Ω)∪{0}

(ν + 1)1/2‖Ω‖L1(Eν)‖ f ‖Ḟ p,q
α (Rd+m)

≤ C‖Ω‖L(log+ L)1/2(Sn−1)‖ f ‖Ḟ p,q
α (Rd+m) (3.14)

for α ∈ (0, 1) and (1/p, 1/q) ∈Rγ. This proves part (i) of Theorem 1.1.
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Part 2. Let Φ(y) = P(ϕ(|y|)y′) with P = (P1, . . . , Pd) ∈ (An)d. Following from [12],
there are N2 ∈ N, some integers 0 < l1 < l2 < · · · < lN2 ≤ max1≤ j≤d deg(P j) and
polynomials Ps

j ∈ Vn,ls ,R j ∈ A1 with deg(R j) ≤ max1≤ j≤d deg(P j) for 1 ≤ s ≤ N2, 1 ≤
j ≤ d, such that

Φ(x) =

Λ∑
s=1

Ps(x) + R(|x|),

where Ps = (Ps
1, . . . ,P

s
d) and R = (R1, . . . ,Rd). For each s ∈ {1, . . . ,N2}, there is at least

one j ∈ {1, . . . , d} such that Ps
j , 0. For j = 1, . . . , d and 1 ≤ s ≤ Λ, write

Ps
j(x) =

∑
|β|=ls

bs jβxβ =

d(s)∑
i=1

b′s jix
β(s,i),

where d(s) = dim(Vn,ls ). For 1 ≤ s ≤ N2, define the linear transformation Is : Rd ×

Rm → Rd(s) by Is(ξ, η) = (
∑d

j=1 b′s j1ξ j, . . . ,
∑d

j=1 b′s jd(s)ξ j), where ξ = (ξ1, . . . , ξd). For
0 ≤ s ≤ N2, we define Ps by

Ps(x) = R(|x|) +

s∑
u=1

Pu(x).

For t ∈ R+, ν ∈ N(Ω) ∪ {0} and 0 ≤ s ≤ N2, we denote σνs,t by σh,Ων,Γs,t and |σνs,t | by
|σh,Ων,Γs,t | with Γs(y) = (Ps(ϕ(|y|)y′),Ψ(ϕ(|y|))). Obviously,

|τ̂νs,t(ξ, η)| ≤ C‖Ων‖L1(Sn−1) ≤ C‖Ω‖L1(Eν). (3.15)

We easily get by (1.6) that
τνs,t = 0. (3.16)

By arguments similar to those for deriving (3.8) and (3.9),

|τ̂νs,t(ξ, η) − τ̂νs−1,t(ξ, η)| ≤ C‖Ω‖L1(Eν)|ϕ(t)lsIs(ξ, η)|, (3.17)

|τ̂νs,t(ξ, η)| ≤ C‖Ων‖
max{0,1−2/γ′}
L1(Sn−1)

(∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

e−2πiPs(ry′)·ξΩµ(y′) dσ(y′)
∣∣∣∣∣2 dr

r

)min{2,γ′}/2γ′

.

(3.18)

By an argument similar to that for [12, Corollary 4.3] with ε = (8lη)−1 and p = 2, there
exists C > 0 such that(∫ cϕ

1

∣∣∣∣∣∫
Sn−1

Ων(y′)e−2πiPs(ϕ(t/2)ry′)·ξ dσ(y′)
∣∣∣∣∣2 dr

r

)1/2
≤ C‖Ων‖L2(Sn−1)|ϕ(t/2)ls Ls(ξ)|−1/8ls .

(3.19)
By a change of variable and the properties of ϕ, we get from (3.2) and (3.19) that∫ ϕ(t)

ϕ(t/2)

∣∣∣∣∣∫
Sn−1

e−2πiPs(ry′)·ξΩν(y′) dσ(y′)
∣∣∣∣∣2 dr

r

≤

∫ cϕ

1

∣∣∣∣∣∫
Sn−1

e−2πiPs(ϕ(t/2)ry′)·ξΩν(y′) dσ(y′)
∣∣∣∣∣2 dr

r
≤ C22ν‖Ω‖L1(Eν)|ϕ(t)lsIs(ξ, η)|−1/8ls .
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This together with (3.1), (3.15) and (3.18) yields that

|τ̂νs,t(ξ, η)| ≤ C‖Ω‖L1(Eν) min{1, |ϕ(t)lsIs(ξ, η)|}−min{2,γ′}/16lsγ
′(ν+1). (3.20)

Using Lemma 2.3 and Hölder’s inequality we obtain∥∥∥∥∥(∑
j∈Z

(∫
Rd+m

(∑
k∈Z

∫ 2(k+1)(ν+1)

2k(ν+1)
||τνs,t | ∗ g j,ζ,k|

2 dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C(ν + 1)1/2‖Ω‖L1(Eµ)

∥∥∥∥∥(∑
j∈Z

∥∥∥∥∥(∑
k∈Z

|g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd+m)

)1/q∥∥∥∥∥
Lp(Rd+m)

(3.21)

for 1 ≤ s ≤ N2 and (1/p, 1/q, 1/r) belonging to the interior of the convex hull of three
cubes ( 1

2 ,
1
2 + 1/max{2, γ′})3, ( 1

2 − 1/max{2, γ′}, 1
2 )3 and (1/2γ, 1 − 1/2γ)3. The rest

of the proof follows from (3.16), (3.17), (3.20) and (3.21), and arguments similar to
those used in deriving (3.14). This completes the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Proof of Theorem 1.2. Let Ω ∈ H1(Sn−1) satisfy (1.6). By the well-known atomic
decomposition of Hardy space (see [6, 7]), there exist {cκ} ⊂ C and H1 regular atoms
{Ωκ} such that Ω =

∑
κ cκΩκ and

∑
κ |cκ| ≈ ‖Ω‖H1(Sn−1). Here each Ωκ satisfies the

following conditions: for some ε ∈ Sn−1 and ς ∈ (0, 2],

supp(Ωκ) ⊂ Sn−1 ∩ B(ε, ς) where B(ε, ς) = {y ∈ Rn : |y − ε| < ς};
‖Ωκ‖L∞(Sn−1) ≤ ς

−n+1;∫
Sn−1

Ωκ(y) dσ(y) = 0.

Then by Minkowski’s inequality we have

Mh,Ω,Φ,Ψ,ρ f (x, y) ≤
∑
κ

Mh,Ωκ ,Φ,Ψ,ρ f (x, y) ∀(x, y) ∈ Rd × Rm. (4.1)

Without loss of generality we may assume that supp(Ωκ) ⊂ Sn−1 ∩ B(ε, ς) with 0 <
ς < 1/4 and ε = e = (0, . . . , 0, 1). Below we give some notation, which is the same
as in [12]. In what follows, we use x = (x̃, xn) with x̃ = (x1, . . . , xn−1). Then there
are N3 ∈ N, some integers 0 < l1 < l2 < · · · < lN3 ≤ max1≤ j≤d deg(P j) and polynomials
Pu

j ∈ Vn,lu , R j ∈ A1 with deg(R j) ≤ max1≤ j≤d deg(P j) for 1 ≤ u ≤ N3, 1 ≤ j ≤ d, such
that

P(x) =

N3∑
u=1

Pu(x) + R(|x|),

where Pu = (Pu
1,P

u
2, . . . , P

u
d) and R = (R1,R2, . . . ,Rd). For j = 1, . . . , d, denote Pu

j(x) =∑
|β|=lu bu jβxβ. For l ∈ N and α ∈ Nn with |α| = l, we choose ηl,α(·) ∈An−1 such that

|xα − ηl,α(x̃)| ≤ Cς4(n−1) for x ∈ Sn−1 ∩ B(e, ς).
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For each u ∈ {1, . . . ,N3}, j ∈ {1, . . . , d}, we define qu
j ∈An−1 by

qu
j(x̃) =

∑
|β|=lu

bu jβηlu,β(x̃),

and set qu(x̃) = (qu
1(x̃), qu

2(x̃), . . . , qu
d(x̃)). Fix each u ∈ {1, . . . , N3}; there are

positive integers v(u), 0 < hu,1 < · · · < hu,v(u), and polynomials {Wu
jη : j = 1, . . . , d; η =

1, . . . , v(u)} ⊂An−1 such that:

(i) for j ∈ {1, . . . , d}, η ∈ {1, . . . , v(u)}, Wu
jη(·) is homogeneous of degree hu,η;

(ii) for each η ∈ {1, . . . , v(u)}, there exists at least one j ∈ {1, . . . ,d} such that Wu
jη , 0;

(iii) for each j ∈ {1, . . . , d}, there is a vu
j ∈ R such that qu

j(x̃) =
∑v(u)
η=1 Wu

jη(x̃) + vu
j .

For u ∈ {1, . . . ,N3} and η ∈ {1, . . . , v(u)}, we define Ru(x) andWu,η(x̃) by

Ru(x) = R(|x|) +
∑

u≤k≤N

|x|lk (vk
1, . . . , v

k
d) +

∑
1≤k≤u−1

Qk(x),

and
Wu,η(x̃) = (Wu

1η(x̃), . . . ,Wu
dη(x̃)).

Let M(0) = 0, M(u) =
∑u

k=1[v(k) + 1] for 1 ≤ u ≤ N3, and define Γ0,Γ1, . . . ,ΓM(N3) by

ΓM(u−1)+θ(x) = Ru(x) + |x|lu
∑

1≤k≤θ

Wu,k
( x̃
|x|

)
for 1 ≤ u ≤ N , 0 ≤ θ ≤ M(u) − M(u − 1) and ΓM(m)(x) = Φ(x). Let d(u) = dim(Vn,lu ).
For each u ∈ {1, . . . ,N}, we write

{β ∈ Nn : |β| = lu} := {β(u, 1), . . . , β(u, d(u))}.

Hence we can write Pu
j(x) =

∑d(u)
s=1 b′u jsxβ(u,s), where b′u js = bu jβ(u,s). Denote by d(u, η)

the number of distinct elements in {$ ∈ Nn−1 : |$| = hu,η}. For 1 ≤ u ≤ N3, 1 ≤ η ≤ v(u)
and 1 ≤ j ≤ d, write

{$ : |$| = hu,η} = {$(u, η, 1), . . . , $(u, η, d(u, η))},

and

Wu
jη(x̃) =

d(u,η)∑
s=1

wu, j,η,s x̃$(u,η,s).

For 1 ≤ u ≤ N3, we define Λ1, . . . ,ΛM(N3) ∈ N by

ΛM(u−1)+θ =

d(u, θ) if 1 ≤ θ < M(u) − M(u − 1),
d(u) if θ = M(u) − M(u − 1).

Also, we define linear transformations Li : Rd → RΛi for 1 ≤ i ≤ M(N3) by

LM(u−1)+θ(ξ) =



( d∑
j=1

wu, j,θ,sξ j, . . . ,

d∑
j=1

wu, j,θ,d(u,θ)ξ j

)
if 1 ≤ θ < M(u) − M(u − 1),

( d∑
j=1

b′u j1ξ j, . . . ,

d∑
j=1

b′u jd(u)ξ j

)
if θ = M(u) − M(u − 1).
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For s = 1, . . . ,M(N3), we set

l(s) = lu, δ(s) = hu,θ,

γ(s) =
1

4hu,θluγ′
if θ = s − M(u − 1) ∈ [1,M(u) − M(u − 1)),

l(s) = lu, δ(s) = 4lu(n − 1),

γ(s) =
1

8luγ′
if s = M(u).

For t ∈ R+ and 0 ≤ s ≤ M(N3), we denote ωκs,t by σh,Ωκ ,Γ,t and |ωκs,t | by |σh,Ωκ ,Γ,t | with
Γ(y) = (Γs(ϕ(|y|)y′),Ψ(ϕ(|y|))). One can easily get by (1.6) that

ωκs,t = 0. (4.2)

We also easily obtain that

|ω̂κs,t(ξ, η)| ≤ C; (4.3)

|ω̂κs,t(ξ, η) − ω̂κs−1,t(ξ, η)| ≤ Cϕ(t)l(s)ςδ(s)|Ls(ξ)|. (4.4)

On the other hand, by a change of variable and the same argument as for [23, (3.2)],

|ω̂κs,t(ξ, η)|=
∣∣∣∣∣ 1
tρ

∫ t

t/2

∫
Sn−1

Ω(y′)e−2πi(ξ·Γs(ϕ(r)y′)+η·Ψ(ϕ(r))) dσ(y′)h(r)
dr

r1−ρ

∣∣∣∣∣
≤

∫ t

t/2

∣∣∣∣∣∫
Sn−1

Ω(y′)e−2πiξ·Γs(ϕ(r)y′) dσ(y′)
∣∣∣∣∣|h(r)|

dr
r

≤C(ϕ(t)l(s)ςδ(s)|Ls(ξ)|)−γ(s). (4.5)

Using Lemma 2.3 with v = 1 and Hölder’s inequality we have∥∥∥∥∥(∑
j∈Z

(∫
Rd+m

(∑
k∈Z

∫ 2k+1

2k
||ωκs,t | ∗ g j,ζ,k|

2 dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C
∥∥∥∥∥(∑

j∈Z

∥∥∥∥∥(∑
k∈Z

|g j,ζ,k|
2
)1/2∥∥∥∥∥q

Lr(Rd+m)

)1/q∥∥∥∥∥
Lp(Rd+m)

(4.6)

for all 1 ≤ s ≤ M(N3) and (1/p, 1/q, 1/r) belonging to the interior of the convex hull
of three cubes ( 1

2 ,
1
2 + 1/max{2, γ′})3, ( 1

2 − 1/max{2, γ′}, 1
2 )3 and (1/2γ, 1 − 1/2γ)3.

For 1 ≤ s ≤ M(N3), define the linear transformation Ls : Rd+m → RΛs by Ls(ξ, η) =

ςδ(s)Ls(ξ). Then by (4.2) to (4.6) and Lemma 2.5 we have∥∥∥∥∥(∑
l∈Z

2lqα
(∫
Rd+m

(∫ ∞

0
|ωκM(N3),t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C‖ f ‖Ḟ p,q
α (Rd+m)

(4.7)
for any α ∈ (0, 1) and (1/p, 1/q) ∈ Rγ. By an argument similar to that for getting
(3.13),

Mh,Ωκ ,Φ,Ψ,ρ f (x, y) ≤
1

1 − 2−τ

(∫ ∞

0
|ωκM(N3),t ∗ f (x, y)|2

dt
t

)1/2
. (4.8)
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By (1.9), (4.1), (4.7), (4.8), (i) of Lemma 2.4 and Minkowski’s inequality, we obtain

‖Mh,Ω,Φ,Ψ,ρ f ‖Ḟ p,q
α (Rd+m)

≤ C
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

42−lζ(Mh,Ω,Φ,Ψ,ρ f ) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)

≤ C
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

Mh,Ω,Φ,Ψ,ρ(42−lζ( f )) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)

≤ C
∑
κ

|cκ|
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

Mh,Ωκ ,Φ,Ψ,ρ(42−lζ( f )) dζ
)q)1/q∥∥∥∥∥

Lp(Rd+m)

≤ C
∑
κ

|cκ|
∥∥∥∥∥(∑

l∈Z

2lqα
(∫
Rd+m

(∫ ∞

0
|ωκM(N3),t ∗ 42−lζ( f )|2

dt
t

)1/2
dζ

)q)1/q∥∥∥∥∥
Lp(Rd+m)

≤ C‖Ω‖H1(Sn−1)‖ f ‖Ḟ p,q
α (Rd+m)

for α ∈ (0, 1) and (1/p, 1/q) ∈Rγ. This finishes the proof of Theorem 1.2. �
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