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Abstract

We state best approximation and fixed point theorems in modular spaces endowed with an //-space
structure given by the modular topology. We consider both the cases of single valued functions
and multifunctions. These theorems extend some previous results due to Ky Fan.

1991 Mathematics subject classification (Amer. Math. Soc): primary 47 H 10; secondary 54 H 25.

1. Introduction

The aim of this paper is to state non-convex versions of best approximation
and fixed point theorems in modular spaces endowed with its modular topology.
To do that we provide the modular space with an //-space structure in which
the linear setting is replaced by merely topological assumptions. Precisely,
in this structure the convex hulls are replaced by the contractible sets. The
//-space theory based on Horvath's ideas [9, 10] has been developed in [1, 2,
3, 4]. Modular spaces with this structure are called //-modular spaces. This
approach allows us to give a new application (Theorem 2) of our generalized
KKM Theorem proved in [2] on which the main theorems of the present paper
(Theorems 3,4) are based. Moreover in Theorem 2 and so in Theorems 3 and 4
the classical compactness assumptions are relaxed as well, as in Lassonde's
paper [13] and in our papers [1, 2, 3, 4]. Theorem 3 of Section 4 is a best
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approximation theorem for single valued functions and when the modular is a
seminorm in a vector space it is a non-compact and non-convex version of the
Ky Fan extension [8] of Browder's fixed point theorem [5]. In Section 5 the
multivalued case is considered. We introduce the concept of //p-continuity for
multifunctions in terms of modular convergence and in the spirit of the Hausdorff
metric and then, a relaxed convexity assumption on the modular p compatible
with the //-space structure (a related convexity definition can be found in [3]).
These definitions, as well as other technical conditions, enable us to prove the
best approximation theorem (Theorem 4) and, as a consequence, a fixed point
property for multifunctions. Finally Theorem 4 is also compared with other
generalizations to multifunctions of Ky Fan's theorem (see [15]).

2. //-spaces

We first recall some basic concepts in order to define the structure that we use
in this paper. Further details can be found in [9, 10, 1, 2, 3,4].

DEFINITIONS 1. An //-space is a pair (X, [FA}) where X is a topological space
and {FA} is a given family of non empty contractible subsets of X, indexed by
the finite subsets of X, such that A c B implies FA c VB. Let (X, {rA}) be an
//-space.

A subset D C X is called H-convex if for every finite subset A C D it
follows FA c D. A subset D c X is called weakly H-convex if, for every finite
subset A c D, the intersection VA n D is nonempty and contractible.

A subset K C X is called H-compact if for every finite subset A C X there
is a compact, //-convex set D c X such that K U A C D. A subset Xi C X is
called compactly closed if Xi is closed relative to every compact subset of X.

A multifunction F : X -*• X is called //-KKM if TA c \JX€A F(x), for
every finite subset A C X.

Theorem 2 below is proved as an application of the following generalization
of the KKM Theorem given in [2].

THEOREM 1 [2]. Let (X, {TA}) be an H-space and F : X -*• X an //-KKM
multifunction such that

(a) For every x e X, F(x) is compactly closed;
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(b) There is a compact set L C X and an H-compact K C X such that, for each
weakly H-convexset D with K c D c X, we have C\xeD(F(x) n D) C L.

Note that hypothesis (b) is more general than the following one:

(I) There is an //-compact K C X such that (~\xeK F'(x) *s compact.

Hence, if X is compact, property (I) and so (b) is immediately fulfilled.

THEOREM 2. Let (X, {VA}) be an H-space, D c X an H-convex subset. Let
G C D x D be a subset such that

(a) For every x e D, the set [y e D : (x, y) € G} is compactly closed in D;
(b) For every y € D, the set {x € D : (x, y) & G} is H-convex or empty;
(c) For every x e D, (x, x) e G;
(d) There is an H-compact Do C D such that the setT = {yeD:(x,y)eG

for every x e Do] is compact.

Then there is y0 s T such that D x {y0} c G.

Observe that in the case of a compact space X, condition (d) is automatically
satisfied, so the statement of Theorem 2 becomes simpler.

PROOF. For every x e D, let F(x) = {y e D : (x,y) € G}. By (a), F(x)
is compactly closed in D. By (b) and (c), if A = {xu ..., xn] c D, then
TA C U"=I Fte). Indeed if z e T, and z ^ (J"=i *"(*.•), then z £ F{xt)
for every i = 1, . . . ,«, that is (JC,, z) ^ G, for every / = 1 , . . . , n and so
TA c {x € D : (x,z) g G}. In particular (z,z) g G, a contradiction.
Finally, by (d), C\xeDo F(x) = T is compact. Then, by Theorem 1 there is
yo € n , £ D TO that is D x {y0} c G.

We note that Theorem 2 was also proved in the meantime and independently
by Chen [7, Theorem 1], using the same method based on our Theorem 1.

3. Some definitions concerning modular spaces

Let £ be a real vector space. A functional p : E —»• [0, +oo] is called a
modular if the following conditions are verified

(1) p(x) = 0 if and only if* = 0;
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(2) p(—x) = p(x), for every x e E;
(3) p(ax + Py) < p(x)+ p(y), for every a, p >O,a + P = l,andx,yeE.

Let Ep = {x € E : p{kx) < +oo, for every k > 0}. It is well known that
Ep is a vector subspace of E (see [14]).

A sequence {xn)n c Ep is said to be p-convergent or modular convergent to
x in £p (we denote it by xn —*• x) if there is k > 0 such that p(k(xn — x)) —*• 0
for divergent n. A subset >4 c Ep is called p-closed if for every sequence
(*„)„ C A, with xn —> x, then x € J4. A subset A c Ep is called p-compact
if every sequence (xn)n has a subsequence p-convergent in A. The topological
space Ep provided with this topology will be denoted again by Ep.

A subset D G Ep has the property (0) if every sequence (*„)„ p-convergent
to x0 in D admits a subsequence (xkjn such that p(xkj -> p(x0) as n diverges.

At first, we give an example of a subset of a modular space with property ($).
Let (£2, ̂ \ ix) be a measurable space where fi is a non-negative, non-atomic
and finite measure on Q. Let X be the space of all /x-measurable real functions
on fi. Let us consider the Orlicz class E* with respect to the modular

P(x)= I <K\x{t)\)dii(t), xeX,

where </> is a ^-function [14, page 4].
A set D c E* is sequentially equi-absolutely (f>-integrable if for every e > 0

and every sequence (jcn)n in D there is S > 0, such that fA(t>(\xn(t)\)dfj,(t) < €
for every A e & with \i{A) < S.

It is easy to show that every sequentially equi-absolutely 0-integrable sub-
set D of E* has the property (6). Indeed, if jcn —>• x0 in Z), then there is
a subsequence x^ ->• x0 almost everywhere in Q. Since # is continuous,
<P(\Xkn\) —> </>(kol) almost everywhere in £2, too. By the Vitali Theorem
p(*kn) -*• p(*o) and so property (6) holds.

Remark that the subspace p-topology on a subset D C Ep with the prop-
erty (0) is weaker than the strong topology induced by the F-norm

As an example we consider the Orlicz class E4" induced by </>(w) = eu — 1,
and the sequence xn : [0, 1] —>• [R defined by xn = «X[o,i/«c]- Let D be the
p-closure of the set {xn : n e N}. Since xn -4- x0 = 0 in D, this holds for every
its subsequence and so D satisfies the property (0). But (p(2xn))n diverges.
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The aim of this paper is to state non-convex best approximation theorems in
modular spaces. For this purpose we introduce in Ep an //-space structure. For
every finite subset A C Ep let us denote by VA the corresponding contractible
set. The space Ep with this //-space structure will be called an //-modular
space.

4. A best approximation theorem for single valued functions

In this section we state a best approximation result as well as a fixed point
theorem for functions defined in //-convex subset of Ep. In order to do this, we
introduce the following definition.

DEFINITION 2. Let D be any subset in E. A function / : D -*• Ep is called

Ap-continuous if for every sequence (*„)„ C D with xn -A- x in D we have

f(Xn) -

Now we are ready to prove the main theorem of this section.

THEOREM 3. Let C C Ep be an H-convex set and f : C -> Ep a p-
continuous function such that (C — f(C)) has the property (9). Assume that
there is an H-p compact Co C C such that the set T = [y e C : p(x — f(y)) >
P(y — f(y))> for every x e Co} is p-compact. Finally suppose that

(+) for every w € Ep, X e IR the set {x e Ep : p(x — w) < X] is H-convex.

Then there is y0 € T such that

P(yo - /(Jo)) = minp(* - f(y0)).
eCjreC

PROOF. Let G = {(x, v) € C x C : p(x - f(y)) > p(y - f(y))}. By
definition, condition (c) and (d) of Theorem 2 of Section 2 are fulfilled. Now,
we prove that the section G(x) = {y e C : (x, y) e G} is p-closed for every
x e C. Let x be fixed in C.

Let (vn)n c G(x) a sequence p-convergent to y0. By p-continuity of / ,
(f(yn))n p-converges to / ( j 0 ) and so (x - f(yn))n p-converges to (x - f(y0))
and (vn - f(yn))n p-converges to (y0 - f(y0)). Since p(x - / ( v j ) >

y« ~ f(yn)), by the property (9) we have:

- f(yo)) > p(yo - /(jo))
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and so y0 e G(x), that is, G(x) is p-closed.
Let now j e C . b e fixed. By property (+), the set C \ G(y) = {x e C :

(x, y) g G} is //-convex, if non-empty, on putting w = f(y) and k = p{y —
f{y)). Therefore by Theorem 2 there is y0 e T such that C x {y0} C G or
p(x — f(yo)) > p(yo — f(yo)), for every x e C and so the assertion follows.

COROLLARY 1. (Fixed point theorem) Under the assumptions of Theorem 3,
iff(C) C C, there is yQ € T such that f(y0) = y0-

PROOF. It is sufficient to observe that minxeC p(x — /(jo)) = 0.

REMARKS. (1) In the convex case, that is, FA = coA for every finite set
A c Ep, the property (+) of Theorem 3 is equivalent to quasi-convexity of the
modular p, namely the set {x e Ep : p(x) < k] is convex for every k e K.

(2) If the //-space structure in Ep is translation invariant, that is, for every
finite subset A c Ep and v € Ep, we have TA — y = rA_>5 then the property (+)
is equivalent to saying that the set {x e Ep : p(x) < k} is //-convex, for every
l e R .

(3) When p is an ^-norm in a vector space E, with p(ax) < p(x) for every
x e E, a € [0, 1], every subset D C E has the property (8) with respect to
strong convergence. Thus, in this particular case, Theorem 3 is a non-compact
and non-convex version for the homogeneous subadditive functionals of the Ky
Fan Extension of Browder's fixed point theorem [8].

(4) In Theorem 3 the property (9) assumed on C — f(C) can be relaxed to
the following one:

for all sequences (*„)„, (yn)n from C - f(C) p-convergent to x0,
y0 respectively with p(xn) > p(yn), we have p(x0) > p(y0).

It is easy to show that the property (9) implies the property (9*).
(5) All the results of Section 4 can be extended to the whole modular space

Lp , namely Lp = {x e E : p(kx) —> 0}. In this case it is sufficient to require
in Theorem 3 the following further condition: for every y € C, there is x e C
such that p(x — f(y)) < +oo.

5. A best approximation theorem for multifunctions

In this section we state a best approximation result as well as a fixed point
theorem for multifunctions defined in //-convex subsets of EB. In order to do
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this, we will introduce some background concepts.
Given a subset K C Epwe set p(K, x) = inf,e/t: p(t — x).
Let 2Ep be the family of non-empty subsets of Ep and for A, B e 2Ep,

ek(A, B) = supinf p(k(a - b)).

DEFINITION 3. A sequence (An)n=Oil<2,..., An e 2Ep, is said to be p-convergent
to Ao in the sense of Hausdorff (Hp-convergent) if there is A > 0 such that

limn_+00 max(ex(An, Ao), ex(A0, An)) - 0. We will write briefly An -i Ao.

DEFINITION 4. A multifunction L : Ep —»• 2Ep is said to be continuous in the

sense of Hausdorff (Hp-continuous) if L(yn) -> L(y0) whenever yn -A- y0.

The following result gives some properties of //p-continuous multifunctions.

PROPOSITION 1. Let L : Ep ->• 2Ep be an Hp-continuous multifunction with

p-closed values. Ifyn —*• y0 in Ep, then the following properties hold:

(i) for every z0 e L(y0) there is zn e L(yn) such that zn -A- z0;
(ii) for every sequence (zn)n=0,i,2,... with zn e L(yn)for n>\ and zn -A z0

then z0 e L(y0).

PROOF, (i) Let z0 e L(y0) be fixed. By //p-continuity of L, from yn 4> y0 it

follows that L(yn) -> L(jo); thus there is A > 0 such that limn_,.+00 ex(L(y0),
L(yn)) = 0. So, for every e > 0 there is n( such that supzeL(>o) inf,gL(yj
p(A(z — t)) < e, for every n > «f, from which inf,£L(:V/i) p(A(z0 — 0) < e>
for every n > h(. Hence for every n > nf there is /„ € L(yn) such that
p(A(z0 - tn)) < e that is tn 4 - z0.

(ii) Let (zn)n=01i2,... with zn e L(vn), n > 1 and zn -» z0. By //p-continuity

of L there is A > 0 such that limn_>+ooex(L(yn), L(y0)) = 0. So for every

€ > 0 there is nf such that for every n > h( and f e L(yn) we have

infzeLo-o) /°(A(/ — z)) < e- In particular infzeLiyo) p(A(zn — z)) < e where zn e

L(yn)andzn 4 z0. Hence for every zn € L(yn),n > hf, there iszn e L(yo)such

that p(A(zn — zn)) < e/2. From zn -> z0 it follows limn^+00 p(A(zn — z0)) = 0

for some A > 0 and so we can assume p(k(zn — z0)) < e/2, for every n > ne.

Putting /x = min{A, A}, by properties of p we have for n > hf,

-^{zn ~ Zo)J = py 2"(z« -zn+zn- zo)J < p(n(zn-zn))+p([u,(zn-z0)) < e
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and so zn —> z0. The assertion follows by p-closedness of L(y0).

Now, we introduce the following generalization of the convexity of the mod-
ular p. Let

E"1"1' = {(*,,..., *„) e R" : £*,- = 1; f, > 0, / = 1,..., «}
i=i

be the (n — 1)-dimensional standard simplex. We say that p has the property (+)
if g iven A = [xu ..., xn) C Ep, B — {yu ...,yn) C Ep, for every z e TA

there are £ e FB and (^(z, £) fn(z, £)) e E(n-1) such that p(z - £) <

Note that in the convex case, that is, TA = cOi4 for every finite subset 4̂ C £p,
the property (+) generalizes the convexity of p.

In [3] we introduced the following concept of //-convexity: for every A =
{wu ... ,wn} C Ep, and for every r] e T A there is an n-tuple (f 1(77),..., tn{r))) e
EC-1* such that p{n) < J21=l hirfipiWi).

In order to compare the property (+) with //-convexity we remark the fol-
lowing.

Given A = {xu ..., xn}, B = [yu ..., yn}, let A = [xx - y{,..., xn - yn}.
If for every z e VA there is f e FB such that z — £ e fA, then //-convexity
implies the property (+).

However the following proposition holds.

PROPOSITION 2. If p satisfies the property (+), then the function p(K, •) is
H-convex in Epfor every H-convex K c Ep.

PROOF. Let A — {xu ... ,xn} c Ep be fixed. For every m e N+ there is
rm = {t[" tB

m}C AT such that

(1) p(K,Xi)> Pirr-xd--, i = l , . . . , / i .
/n

For a fixed £ e F^ and m e N+, by property (+) there is r^ e r r > c ^ and
{*i(C I ) , • • •, ' B ( T ; , £)} in E""1 such that

(2)

For every m e N+ we put fm = (^(T^, £ ) , . . . , ^ ( T ^ , £)). By the com-
pactness of En~', the sequence 0m)meN

+ admits a subsequence still denoted

https://doi.org/10.1017/S1446788700035503 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035503


[9] Generalizations of Fan's best approximation theorem 299

by (rm)m€N convergent to t = (*!($),...,*„(£)) e S""1. By (1) and (2)
p(K, p < E L , ' , ( C $)p{K, Xi) + \/m for every m e N+ and so p(K, £) <
H"=\ ti(ij)p(K, xt), as asserted.

Finally we will use the following elementary result.

PROPOSITION 3. Let X be any topological space, <p : X ->• R+ be a given
function such that for every sequence (xn)n convergent to x0 in X there is a
subsequence (xkn)n such that (j>{xkn) —>• <j>(x0). Then, ifX is compact, 0 attains
its minimum value.

Let C C Ep be an //-convex set and L be a multifunction defined on C.
From now on we suppose that

(i) the set L(C) = [JX€C L(x) is p-compact;
(ii) the set C - L(C) has the property (0);

(iii) the multifunction L is //p-continuous with non-empty p-closed and
//-convex values.

We refer to these assumptions as hypotheses (I).
The following lemma gives a key result for the main theorem of this section

(Theorem 4).

LEMMA 1. Suppose hypotheses (I) hold. If{yn)n C C andyn —> yoinC;then
there is a subsequence (>*„)„ such that p(L(ykn), x) ->• p(L(y0), x) for every
xeC.

PROOF. For a fixed x e C, and n e N we define <j>(t) = p(x — t),t e L(yn).
The function <\> satisfies the hypotheses of Proposition 3. Indeed, let (tk)k C
L(yn) be a sequence p-convergent to t0 € L(yn). As (x — tk) A- (x — t0) in
C — L(yn), then by (ii) there is a subsequence (thk)k such that p(x — thk) ->
p(x — t0), that is, <j>(tht) -> $(A))- So by Proposition 3 and the p-compactness
of L(yn) there is £„ e £(>>„) such that inf,eL(;Vn) p(x - 0 = p(x - £„).

Let us consider the sequence of minimizing elements (£„)„. By p-compact-
ness of L{C) there is a subsequence (£*„)„ a n ( l £o e ^ ( O such that ^ -4- ^0

and p ( | t n — JC) -> p(£0 — ^)- By //p-continuity of L, £0 € L(j0)- So we have

lim p(L(ykn), x) = p(|0 - x) > p(L(y0), x).
n—>+oo

Next, we prove that equality occurs. If it is false, there is a 8 > 0 and h e N
such that for every n > « we have p(L( j t J , x) — p(L(y0), x) > S and so

(3) p{t - x) - p(L(j0), JC) > S, for every t e
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Let z0 € L(y0) be fixed. By //p-continuity of L there is a sequence (zkjn

with zkn e L(ykJ such that zkn —>• z0 and by (3)

p(zkn — x) — p(L(j0), x) > 5, for every n e N.

Finally, by (ii) using a further subsequence, we have p(zo—x)—p(L(y0), x) > 8,
for every z0 e L(yo), a contradiction.

THEOREM 4. Suppose that property (+) o« p and hypotheses (I) Wd. If there
is an H-p compact Co C C swc/z f/jotf ffte M T = {y e C : there is z e
L(y) with p(L(y), x) > p(z — y), /or every x e Co} w p-compact, then there
is y0 e T such that

(4) min p(y0 - z) = inf p(L(y0), x).
eL() €C

Observe that if C is p-compact the existence of such a subset Co is automatically
satisfied, so the statement of Theorem 4 becomes simpler.

PROOF. Let G = {(x, y) € C x C : there is z e L(j) with p(L(y), x) >
P(z — y)}- At first, we prove that (x, x) e G, for every x e C. Fixed x e C,
let </> : L(x) —>• D&+ denned by <j>(t) = p(x — f). As proved in Lemma 1, the
function <f> satisfies the hypotheses of Proposition 3. So, there is z e L(x) such
that p(x — z) = min,eZ,w p(x — 0 = p(L(x), x), that is, (x, x) e G.

Next, we prove that for every fixed x e C the set G(x) = {j e C :
there is z e L(v) with p(L(y), x) > p(z — y)} is p-closed.

Let (yn)n c G(x) with j n -A y0. For every n e N, let zn e L(yn) such that

(5) p(L(yn),x)>p{zn-yn)

By (i) and (iii) there is a subsequence {zkn)n p-convergent to z0 e L(y0). By
(ii) and Lemma 1 we can suppose, up to subsequences, that p{zkn — ykj —•
p(z0 - y0) and p(L(ykn), x) -*• p(L(y0), x). Hence by (5)

p(L(y0), x) - limp(L(ykn), x) > limp(z,tn - ykj = p(z0 - y0),
n n

that is, G(x) is p-closed.
Finally, we prove that for every y e C the set

C \ G(y) = {x € C : for every z € L(y), /o(L(30, x) < p(z - y)}
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is //-convex.
Let y e C and z e L{y) be fixed. Let A = [xu . . . , xn} C C \ G(y), then

(6) p{L{y),Xi) < p(z -y), for every / = 1, . . . ,«.

For a fixed £ € F^, by Proposition 2, //-convexity of L(y) and (6), there is
(M?) a i ) ) e S " - ' such that

which is the //-convexity of C \ G(y).
Finally, hypothesis (d) of Theorem 1 is automatically fulfilled. By Theorem 1,

the assertion follows.

COROLLARY 2. (Fixed point theorem) Under the assumptions of Theorem 4,
ifL(C)cC, there is yQ eT, such that y0 e L(y0).

PROOF. Let y0 e T satisfy (4). If x e L(y0) C C then

inf p(x — z) = 0, and so inf inf p(;t — z) = 0.

Therefore the assertion follows again by (4).

REMARKS. Theorem 4 is an extension in various directions (non-convex and
non-compact case, multifunctions, non-homogeneous functionals) of Ky Fan's
extension of Browder's fixed point theorem [8].

Among the other generalizations to multifunctions of the Ky Fan theorem [8],
we limit ourselves to quote Theorem 1 of Sehgal-Singh in [15]. There, the
authors work with convex subsets in a topological vector space and use a relaxed
compactness hypothesis, different with respect to our one.

In the compact case, our theorem is an extension to //-modular spaces of the
Sehgal-Singh theorem.

Finally we note that all the results of Section 5 can be extended to the whole
modular space Lp, namely, Lp = {x e E : lim^oPC^O = 0}. In this case it
is sufficient to require in Theorem 4 the following further condition: for every
x, y € C, there is z e L(y) such that p(z — x) < +oo.
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