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«-SPEEDABLE AND NON «-SPEEDABLE SETS 

BARRY E. JACOBS 

a-Recursion theory was invented simultaneously by Kripke [15] and Platek 
[22] and served to generalize the theories of Takeuti [34], Machover [20], 
Kreisel and Sacks [14] and others. Kripke (in [16]) derived machinery to 
construct an analogue to Kleene's T-predicate enabling him to assert that all 
of unrelativized ordinary recursion theory (as found in Kleene [13]) lifted to 
a-recursion theory. As a result, we were able to set down in [8] «-analogues to 
Blum's [1] well-studied axioms, thus, introducing the study of «-computational 
complexity theory. 

Our first activities in this area paralleled those in the beginnings of a-recur­
sion theory; namely, we demonstrated that major results of the w-theory held 
at a. In [9], it was shown that the Blum-Rabin arbitrary complex partial 
recursive function theorem and Borodin's Gap phenomenon generalized. In 
[11] we lift to a the classical Blum Speed-up Theorem and the McCreight-
Meyer-Moll Honesty theorem, and in [10] the McCreight-Meyer Union 
theorem. In all cases, constructions and proofs had to be revised to make up 
for deficiencies within many Si admissibles (e.g. lack of regularity). 

In this paper we initiate the second phase of our study of a-complexity 
theory (again, following the pattern set by a-recursion theorists). Namely, 
we try to isolate the differences between the co- and a-theories and, in partic­
ular, seek out theorems of ordinary complexity theory which are false in 
a-complexity theory. Our current work revolves around some recent results of 
Soare [33] which strongly link recursion theoretic and complexity oriented 
notions. Consequently, we bring a-complexity theory closer to other major 
areas of activity of a-recursion theory (i.e., a-degrees, lattices of a-r.e. sets, 
classes of generalized simple sets, etc.). 

An outline of our paper is as follows: In § 1 we present the basic definitions 
of a-recursion theory and a-complexity theory. We prove in § 2 one of the 
a-analogues to Soare's index set characterization for nonspeedable r.e. sets 
and investigate how the property of nonregularity (of a-r.e. sets) affects such a 
characterization. 

In § 3 we revisit Sacks' regular representative theorem (for a-r.e. a-degrees 
containing nonregular sets) and relate it to an a-analogue of Jockusch's notion 
of semirecursive set. In § 4, we use results of § 2 and § 3 to prove a generaliza­
tion of a theorem by Marques and Soare's classifying those a-r.e. a-degrees 
which contain generalized speedable sets. We also present in this section a class 
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of Si admissibles whose only speedable sets are those of a-degree 0'. Finally, 
we conclude in § 5 with a list of open problems for further research. 

The author wishes to express sincere thanks to Gerald Sacks, Richard Shore, 
Robert Soare and Robert DiPaola for their help in this research. 

1. Preliminaries. The basic definitions of «-recursion theory are defined in 
terms of levels La of Gôdel's constructible universe and the usual Sw hierarchy 
of formulae, a is admissible if La satisfies the replacement axiom schema of ZF 
for Si formulae. Hence, we think of La as a model of weak set theory. Through­
out this paper a is assumed to be admissible. 

A set A C a is a-recursively enumerable (a-r.e.) if it has a Si definition over 
La. A partial function / : a —» a is a-partial recursive if its graph is a-r.e. and is 
a-recursive if its domain is a. (Since there is a one-one «-recursive map of a onto 
La, it suffices to consider only subsets of a and functions on a) . A Ç a is 
a-recursive if its characteristic function is, and a-finite if it is a member of La. 
Equivalently, A C a is a-finite if it is both a-recursive and bounded below a. 
A C a is a-infinite if it is not a-finite and regular if A C\ 13 is a-finite for all 
13 < a. 

The basic recursion theoretic fact about admissible ordinals is that one may 
perform Ai (= a-recursive) recursions in La to produce a-recursive functions. 
Thus, we can a-recursively Gôdel number the a-finite sets {Ky\y < a} and the 
So/La formulae of two free variables <j>e(x, y). This gives us a Gôdel numbering 
for the a-r.e. sets, Re = {x\La t= 3y<t>e(y, x)} and a standard simultaneous 
a-recursive enumeration of these sets, Re

ff = {x|Q;y G L<r)</>e(x, y)}. 
An analogue to Blum's [1] notion of computational complexity measure is 

given by the following. 

Definition. An a-complexity measure $ is an enumeration (in a) of the 
a-partial recursive functions {</>e|e < a} to which are associated the a-partial 
recursive a-step counting functions {$e|e < a) for which the following axioms 
hold: 

(1) For all p, e, 0e(/3) is defined if and only if $«(0) is defined. 
(2) The predicate 

Mf R , (l if *€(0) = 7 

is a-recursive. 
We also assume that a-recursive versions of the Sn

m and Universal Function 
Theorems (Kripke [15]) hold for the enumeration {#e|e < a}. Implicit in this 
definition is the capability to retrieve, given any index e, both the function 0«, 
and step-counter $c in the form of algorithms. 

By the Sw projectum of a, we mean the least (3 S OL such that every Sn set 
below {3 is a-finite. For the case n = 1, the Si projectum is called simply the 
projectum and denoted by a*. Equivalently, a* is the projectum of a if and only 
if there exists one-one a-recursive mapping of a into a*. 
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As in ordinary recursion theory, we say that A is many-one or m-reducible to 
B, A Sm By if there is an «-recursive/ such that for all x, x £ A if and only if 

/ (*) € B. 
By {e}a

c(7) we mean that 

( 3 P ) Q I ? ) < 7 , 8 , P , I ? > 6 # « ' 

and 

and if, C (« — C) P\ o\ (Here ( , . . . , ) is some «-recursive coding of 
«-tuples.) We say that {e}c(y) = ô if for some <r, {e}<,c(y) = à. This enables 
us to define the notion of weakly a-recursive in (Swa) for a partial function / 
and a set C; namely,/ Swa C if and only if/ = {e} c for some e. Of course, for a 
set B Q a, B Swa C if and only if the characteristic function of B is weakly 
a-recursive in C. Related to weak «-recursiveness are two key notions. The 
recursive cofinality of a set A (rcf A ) is the least y ^ « such that there is an 
/ èwa A with domain y and range unbounded in «. A is hyperregular if and only 
if rcf A = «, otherwise it is nonhyperregular. 

Although weak reducibility is useful, for many as Swa is not transitive. 
Consequently, we define a-recursive in ( ̂ «) by saying that B ^a C if and only 
if there is an e such that for all «-finite Ky 

KyÇB~(3p)Qr,)Q<r)((p,r,,y,l)e Rf and 

Kp C C and Kv C « — C) and 

^ 7 Ç « - J B ^ ( g p ) ( 3 ^ ) ( 3 ( T ) ( ( p , r 7 , 7 , 0 ) G ^ e f f and 

i £ p Ç C and î / , Ç a - C). 

Since ^« is obviously transitive, and reflexive, it provides us with the notion 
of a-degree: deg (̂ 4) = {B\B ^a A ^a B). We call an «-degree «-r.e., regular, 
irregular, hyperregular or nonhyperregular if it contains an «-r.e., regular, 
nonregular, hyperregular or nonhyperregular set, respectively. We remark 
that if an «-degree a is (non)hyperregular then every set in a is (non)hyper­
regular and that a can be both regular and irregular. 

A third analogue to Turing reducibility is that of «-calculability which is 
defined in terms of Kripke's [15] equation calculus (EC) very much like 
Kleene's for ordinary partial recursive functions. If B Q a then the diagram 
of B, denoted A#, is 

( | ( T ) = 1]T G B} U {g(y) = 0|T £ B) 

(i.e., equations indicating membership facts about B). If £ is a finite set of 
equations (see Kripke [16]) whose parameters are ordinals less than «, then 
SE'B is the set of all equations deducible from E \J A s in the Kripke EC in 
any number of steps. Then a partial function/ C a X « is «-calculable (Sea) 
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from B if for some E f(y) = 5 W ( Y ) = « € ^ ' B for all 7, 8 < a. A S ca B if 
the characteristic function of A is «-calculable from B. 

2. The ^ wa-Soare Theorem. The notion of speedable co-recursively enumer­
able set was first introduced by Blum and Marques [2] to extend Blum's [1] 
original definition from total to partial recursive functions. Soare [33] recently 
discovered a pure recursion theoretic characterization for the notion of non-
speedability. Namely, that nonspeedable co-r.e. sets are precisely those sets A 
whose complements have weak jumps (i.e. Hj = {p\Rpr\ Â 9e 0}) Turing 
reducible to the complete r.e. set 0''. Soare's result, which we generalize below 
to «, makes use of the well known limit lemma of Schoenfield [27]; i.e., that 
A 20 sets are exactly those Turing reducible to 0''. 

Let <£ be any «-computational complexity measure as defined in § 1. A 
natural analogue to the Blum-Marques notion of speedability in «-recursion 
theory is provided by the following. 

2.1. Definition. An «-r.e. set A C a is a-speedable if for all «-r.e. indices e 
of A and all «-recursive h, there exists an index r for A where 

AC\ {0|*€(0) > A(*r(0),0)} 

is unbounded in «. 

It is easily seen that for « = co, the definition of «-speedable coincides with 
that of Blum and Marques. However, as is so often the situation, phenomena 
arising in «-recursion theory (i.e. nonregularity, nonhyperregularity) split 
concepts at the «-level which at 00 are coexistent (e.g. see Lerman [18] for many 
analogues to maximal r.e.). Our work here involves the splitting of nonspeed-
ability. 

2.2. Definition. An «-r.e. set A C a is called weakly {strongly) non a-speedable 
if there exists an index e of A and an «-recursive h such that for all RT = A, 

An {p\$<(f3) > A(*T(0),/3)} 

is bounded («-finite) in «. 

Since several distinct interpretations exist for the notion of Turing reduci-
bility (i.e. ^wa, ^a, ^c«) there arise several analogues to Schoenfield's limit 
lemma. One such is provided for weak reducibility. 

2.3. LEMMA. (^wa Limit) For S(x) C «, S(x) ^wa 0' if and only if there 
exists an a-recursive sequence \Sa{x)) where limv^a Sa(x) = S(x). 

Proof. (<=) Suppose (5<r(x)} is «-recursive and lim^a Sa(x) exists and equals 
S(x). Let A, Â be defined as 

(x, T ) G A <-> V<T^rSa(x) = ST(x) 

(X, T ) G À <-> 3 „^TSa(x) ^ ST(X) 
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Since A is a-r.e. and 0' is ra-complete a-r.e. (cf. Shore [30]), there exists an 
a-recursive / such that 

<x,r> e A^f((x,r)) (Z 0'. 

Hence, for y = 0, 1 

S(x) = y Ï=$3T (X,T) £ A and ST(x) = y 

«=> 3 T / ( <x, r )) g 0 ' and ST(x) = y. 

Define î e = { <x, y, £, r / ) | ^ = {/(<*, r ))} and i ^ = 0 
and 5T(x) = y}. Then it follows that 

S(a) = y<=>3£,i? (x, y, £, r?> Ç 2Î€ and K^QO' and K.QC?. 

Hence, 5(x) = {e}°'(x) and S(x) ^wa 0''. 
(=») Assume 5(x) ^ w a 0 ' via e. Then 

5 W = ^ ] ^ ( x j , ^ ) Ç i ? 6 and ^ C O ' and K,QÔ'. 

Since 0 ' is a-r.e., it can be approximated by an «-recursive OJ (x) 
with lim^a OJ (x) = 0'(x). Define M(o-, x) as 

{y|3«, V<a (x,y,t,r,)£R* and ^ Ç OJ and tf, Ç Ô?}. 

Then take 

c / \ _ [w y £ ^r (°">*) if M(°>x) = °> 
° * W " lo otherwise. 

Clearly 5V(x) is «-recursive. It follows from the fact that S = {e}° and the 
admissibility of a that for all x, lim^a Sa(x) exists and equals Six). 

We next prove one generalization to a of Soare's index set characterization 
for nonspeedable sets. Although we employ a somewhat less restrictive ana­
logue to Turing reducibility, weak reducibility, we still require that sets 
possess some degree of well-behavedness; namely, that of regularity. 

2.4. THEOREM. (^«-Soare) Let A be a regular a-r.e. subset of a. Then A is 
weakly non a-speedable if and only if 

HX= ( e ' | ^ n l * 0} SwaO'. 

(i.e. Â is Swa-semilow). 

Proof. (=>) Let Re = A and h satisfy the definition of weakly non a-speed­
able. Since A is a-r.e. we have 

jR/(<0 = Rt> U A 

for a-recursive / . Define 

H-'(e') = i1 if ( 3 x ) { x G R/-R: and $«(*)>*(*.*/(«')(*))} 
A ^ ' lO otherwise. 
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We will show that {Hja(x)} isa-recursive and lima_,a HÂ°(X) = Hj(x); hence, 
by the ^wa-Limit Lemma, Hj ^wa 0'. 

Suppose x^R^r\A (i.e. R,.C\A^V). Then 

x 6 RS - A' = Rs - R< 

for all a > a0. Also, since Re = A, $e(x) | and since i?6* C i?/(«'), 
A ($/(«')(*)» x) j , thus Hz'it) = 1, for all <r > o-0. 

Suppose ^ n l = 0. Then £«, C 4 and hence, Rnn = R€> VJ A = A. 
By the weak non a-speedability of A, since A = Rf(t')y 

Rtr\ ia\*,(x) > *(*/<«')(*).*)} 
is bounded by some a0 < a. By the regularity of A, A C\ a0 is a-finite. By a 
standard property of a-r.e. sets, there will exist a stage a' such that 4̂ Pi a0 C 
2?/ (= 4 ' ) for all a- > </. Hence, (4 H *<>) H ( i ? ^ - i2e") = 0. Thus, for 
all (7 > *', Hj*(eJ = 0. 

(<=) Assume 4̂ ^a-semilow; that is, 

# j = { e | i ^ e n i 5* 0} Swa0'. 

By the f^-Limit Lemma there are Hja(x) and Hx(x) where l im^ a Hj* = Hj. 
Let e < a be such that Re = A and define H(x, y, e) as follows: 

1. If $«,(*) 9± y set H(x, y, e) = 0; 
2. If <iv(s) = y let / = (AXO- ^ x)[$e(x) = <jor HÂ*(*') = 0] 

a. If $e(x) = / set # (x , y, e') = / 
b. Otherwise, set H (x, y, e) = 0. 

Observe that / exists in 2. when 3V (x) = y. For then x G i£C', hence either 
x £ R( = A or else x Ç i?e' P\ 4̂ and then HÂa(e) = 0 for all but a bounded 
subset of a. 

Define 

Hx, y) = sup {#(x, y, jS)|j9 g x} 

to see that R€ and h witness the weak non a-speedability of A. For suppose 
Rt> = A. Then since R€> H ^ = 0, #;T(e') = 1 for cr > o-0. Let x G 4 
where x > max {<r0, e', $€(x)}, to see that 

x e A n {z\$e(z) ^ h($<>(z),z)}, 
for 

h(x, <ïv(x)) = sup {H(x, $v(x),/?)|/3 ^ x} ^ # (x , $v(x), e'). 

But H2a(e) = 1, since x > o-0, 3>e(o")> hence, is 3>e(x). 

Observe that the latter half of the proof makes no use of the regularity of A. 

2.5. COROLLARY. If A is an a-r.e. set where Â is Swa-sernilow, then A is 
weakly non a-speedable. 
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2.6. COROLLARY. If A is a regular a-r.e. set where Hj %wa 0' (i.e. A is non 
^wa-sernilow), then A is a-speedable. 

Remark. The key role played by A1 s regularity in the proof of Theorem 2.4 
arises in the case Re> Pi Â = 0 or Rt> C A. Here i?/(e') = R€' ^J A = A and 
by weak non a-speedability 

(*) AC\ {cr|$e(x) > *(*/<«')(*),*)} 

is bounded by some ao < OL. Regularity of A ensures that all members of (*) 
will ultimately be generated from A, thus ensuring that Hzff(e') = 0 for all a 
past some a. 

We next prove that for all nonregular a-r.e. A (whether a-speedable or not) 
that Hj =Ca 0". From this one would suspect that the regularity condition 
in Theorem 2.4 may be a fundamental one. 

2.7. Definition. For any a-r.e. indices e, e' for A and a-recursive A, we define 
the (h, e, e)-speedup set of A as A C\ {j8|$e(/3) > ft($e'(o-), <r)\ and denote 
such a set as M(h, e, e'). 

The technique used in the following lemma was first employed by Simpson 
[31] and is similar to Spector's classical proof that every IIi1 subset of co is 
hyperarithmetic in every IIi1 — Ai 1 subset of co. 

2.8. LEMMA. Let h be a-recursive and e, e be two a-r.e. indices for A such that 
the speed-up set M(h, e, e) is nonhy per regular. Then 0" ^ ca M(h, e, e'). 

Prooj. Let M = M (h, e, e) be nonhyperregular and l e t / be weakly a-recur­
sive in M mapping y unboundedly into a. Since 0" is S2 (cf. Shore [29]) 

<r e 0" <->3P\/ôR(a,P,ô) 

where R is a-recursive. This is equivalent to 

3/3' < 7 W<y 3/3 < / ( £ ' ) V« < / ( « ' ) R(<r,P,ô) 

since/ maps y unboundedly into a. The result follows from the definitions of 
weak a-reducibility and a-calculability. 

We next see that the complement of any a-r.e. A with a nonhyperregular 
speedup set has weak jump at least as high as 0". 

2.9. LEMMA. Let h be a-recursive and e,e be two indices for A such 
that M(h, e, e) is nonhyperregular. Then 0" ^ c« Hj. 

Proof. Define 

R = i{z} if *€(s) >*(*«'(*),*), 
/(z) l<£ otherwise. 

for a-recursive t. Then 

z e M(h, e, e') *+RM ç A <->/(*) G Hi 
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and M(h, e, e') is m-reducible to Hz, thus certainly a-calculable in Hj. The 
result follows immediately from Lemma 2.8. 

The next series of results shows that every nonregular set possesses at least 
one nonhyperregular speedup set. 

2.10. LEMMA. For any a-r.e. index e for A, measure $ and a-recursive h, there 
exists an index e* for A such that 

(*) ( i U - > $€*(CT) > A(<M<r), a). 

In other words, for any index e' for A there exists another index e* such that 
o- Ç A ^a G M(A,€*, e'). 

Proof. Define the algorithm: 

/ 0 if 0e'(oOJ then loop around until: 
\ (jS) $É((r) > Â($€'(o-), o-); (i.e., perform K steps of some 

4>(e, a) = < loop while periodically checking (/3). Once (0) holds, 
# output 1) 
V t otherwise 

By the a-s-m-n Theorem (Kripke [15]), <£(e, a) = </>s(€) (c) for some a-recursive 
5. By the «-recursion theorem (also Kripke [15]), there exists an e* such that 
</>£(€*) (°0 = 0**(o"). 

Toseei^e ' C i?e* and condition (*), let o-G-<4 = i£e/. Then 0«'(o-)j and conse­
quently $e/(o-)j, hence A(<£€/(o-), o-)j. If $e*(cr) ^ h($e>(a), a) then the algo­
rithm "e*" would loop around till $**(&) > &($e>(o-), o-). Since h($€>((r), a)I, 
"e*" must eventually come to a halt, thus making o- G R**. 

To see i?e* C R€J observe that for any a £ R€*, we must have (/v((r)|. 
Hence, <r 6 Rt> and i?€' = i?€* = A. 

2.11. COROLLARY. Le/ e' fre aw a-r.e. index for A and h any a-recursive function. 
Then there exists an index e* for A such that 

A nonregular <-» M(h, e*, e) nonregular. 

Proof. Let e* be the index of the previous lemma. Then for any 7, 

a £ Any<-+a £ M(h, e*, e') H 7. 

Hence, nonregularity of A is synonomous with nonregularity of M(h, e*, e'). 

2.12. THEOREM. Let A be a-r.e. nonregular. Then 0" ^ca Hj. 

Proof. By Corollary 2.11, for any index e' for A and a-recursive h, there exists 
an index e* such that M(h, e*, e') is nonregular. Since M(h, e*, e') is a-r.e. it is 
also nonhyperregular; thus, by Lemma 2.9, 0" ^CaHj. 

3. Sacks' Regular Representative and a-Retrogressive Sets. The first 
consideration of complexity properties of sets and degrees of unsolvability 
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was given by Marques [21] who showed that if an co-r.e. Turing degree a con­
tained a speedable set then it must be non-low (i.e. a' >T 0'). In [33], 
Soare exploits his semilow characterization to not only provide a simpler proof 
of Marques' result but to also prove the converse—that all high co-r.e. Turing 
degrees contain speedable sets. In § 3 and § 4, we prove an analogue to the 
Marques-Soare theorem for a-r.e. a-degrees. The proof is different from the one 
provided by Soare due to the condition of regularity imposed in Theorem 2.4. 
However, the general structure for our argument is suggested by a remark 
made by Soare in [33] that indicates an alternative proof. 

We begin by reviewing one of the most frequently used results ([17], [28], 
[32]) of «-recursion theory—the Sacks Regular Representative Theorem. 
Although an a-r.e. a-degree may contain nonregular a-r.e. sets, Sacks' theorem 
tells us that there must be at least one regular a-r.e. set. 

3.1. THEOREM (Sacks [24]). Every a-r.e. a-degree contains a regular a-r.e. set. 

Proof. (Simpson [31]). Let a be an a-r.e. a-degree and B an a-r.e. member of 
a. If B is regular we are done; otherwise, let 0 < a be such that B C\ (3 is 
a-infinite. Let a* < a be the Si projectum of a and g a one-one a-recursive 
projection of a onto a subset of a*. Define N = g[B Pi fi] which is a-r.e. and by 
admissibility is an a-infinite subset of a*. 

3.2. Claim. N ^aB. Since B is a-r.e. all we need show is the clause for 
Ky C N. However, 

Ky C N^ Vcr e Ky(a e g[fl -> * <2 g[B]). 

By admissibility, g[0] is «-finite, hence equal to some K. Let 

R<0 = {(y,è,r, )\KV = g-\Kyr\K\ and 2^ = 0}. 

Then from the definitions 

KyQN^Q£)(3v)(y,£,ri) e R<0 and K^ Q B and KVQB}. 

Since N is a-r.e. and a-infinite, let n be a one-one a-recursive function with 
range N. Let 

B* = {n(v)\Kvr\B * &}. 

Clearly B* is an a-r.e. subset of a* and again by admissibility is a-infinite. 

3.3. Claim. (X) B* ^wa X <-» B* ^a X. Clearly B* g a X implies 
B* S wa X. Hence, suppose B* ^ wa X. Since B* is a-r.e. we only need deal with 
the negative clause of B* ^ a X. Then 

KaQF* ^Us,KaKôQB. 

Letting g(x) be the a-recursive function where Kg{a) = Uo^^a Ks, then 

*=>KffW QB 

<^g(a) e 5*. 

Since B* ^wa X, it easily follows that B* Sa X. 
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Let / be a one-one «-recursive enumeration function for B*. Define the 
deficiency set of f by 

Df= {r |GsW(«) </(?)}. 

Clearly Df is a-r.e. 

3.4. Claim. Df is regular. For any P < « 

Df^P = {y < 0 | ( 3 « W ( « ) < / ( 7 ) } . 

However, for each p there will exist a T$ < « such that 

Dfnp= {y <p\Gô)y<ô^f(ô) < / ( 7 )} . 

For if such a r̂  did not exist, then in searching for the various <5, one could 
develop a sequence ôn(n < co) whereby /(5n+i) < /(5n) for all n. 

3.5. Claim. B Sa Df. For each v < a*, define 

p(v) = M7[„ < f(y) and 7 € ^ / ] . 

By an argument similar to the one used in proving the previous claim, Df is 
unbounded and consequently p is total on «*. Clearly p is weakly «-recursive 
in Df and from the definitions, 

„ e B* <=»* e / o w ] . 
Since B* SmP and p Swa Df, then 5* rgwa D/. From Claim 2, J5* ^ a D/. But 
f o r % ) , i ^ ( 7 ) = M , £ ^ m 5*, hence B £aDf. 

Finally, 

3.6. Claim. Df Sa B. Observe t h a t / is increasing on Df1 for if 7 G Df then 
ÇVà)y<sf(y) S f(à). Consequently, 

7eDf^f(y) -f[y]QB*. 

Now for any «-finite set K, let Kf = Uy^K (f(y) — fM)> Observe that K! is 
«-finite and 

KQDf<^K'QB*. 

Further, let K" = U {Kv\v £ n~l[K' C\N}). Then from the definitions, 
K" Q B. 

In [12], Jockusch studies properties of various classes of simple sets and their 
relationships regarding several reducibility orderings. Fundamental to 
Jockusch's investigation is his notion of semirecursive set. 

3.7. Definition. A set A is a-semirecursive if there is an «-recursive function / 
of two variables such that for all ft, 7: 

(i) /(/S, 7) = P or 7 
(ii) p Ç A or 7 G 4 implies /(/3, 7) G -4. 

/ is called a selector function for ^4. 
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The following properties follow directly from the definition of «-semirecur-
sive set. 

3.8. Corollary. A is a-semirecursive if and only if Â is a-semirecursive. 

3.9. Definition. A set B is called m-compressible if B X B ^mB. 

3.10. Corollary. A a-semirecursive implies Â m-compressible. 

Dekker's [3] classical proof of the existence of hypersimple co-r.e. sets in 
every nonrecursive Turing degree generated the well studied notions of regres-
siveness and retracibility [23]. Since both of these entail the concept of an 
immediate successor, they need be altered for study over the ordinals. 

3.11. Definition. A set A is called a-retrospective if and only if for all fi Ç A 
the set A C\ (3 is «-r.e. with «-r.e. index uniformly obtainable from /3 
(i.e. A C\ /3 = i?Kp), t «-recursive). 

3.12. Definition. A set A is called strongly a-retrospective if and only if for all 
(3 £ A the set A C\ 0 is «-finite with «-finite index uniformly obtainable from 
£ (i.e. A Pi (3 = Ks(p), s «-recursive). 

3.13. COROLLARY. A strongly a-retrospective implies A a-retrospective. 

The following generalizes Jockusch's [12] observation that co-r.e. sets with 
regressive complements are semirecursive. 

3.14. THEOREM. If a set A C « is «-r.e. and Â is a-retrospective then A is 
a-semirecursive. 

Proof. We define our selector function /(x, y) by the following construction. 

Stage a. 

1. If & e A- then /(/3, 7) = 0 

2. If 7 £ 4* then / (0, 7) = 7 

3. If 0 G 22<(7)'then/GS,7) = 7 
4. If 7 e Rm' then / (0 , 7) = 0 
5. Otherwise, go to stage a + 1. 

/ is «-partial recursive. To see it is total observe that if fi or 7 £ 4̂ then 1 or 2 
above will ultimately cause an output. If 0 £ Â and 7 G I , then since 4̂ is 
«-retrospective, f3 £ i^(7) or 7 G î 03>; hence, one will eventually be located. 

We next see that if /(/3, 7) £ -I then both & £ À and 7 G Â 
For if /(jS, 7) Ç if, then certainly /(/3, 7) was obtained via steps 3 or 4. Sup­
pose /(jS, 7) was obtained at step 3; then /(/3, 7) = 7 and so 7 G Â. Hence, by 
«-retrospectiveness, Rt(y) Çz Â and by step 3, 0 £ i^(7), hence /3 Ç I . Simi­
larly, for step 4. 

We tie together our notion of «-retrospective sets with Sacks' constructed 
regular representative, Df. 

3.15. LEMMA. Df is «-r.e. and Df is strongly a-retrospective. 
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Proof. Recall from the proof of Theorem 3.1 that Df = {7I3 7<«/(ô) < f(y)}. 
Clearly, Df is a-r.e. To show Df is «-retrospective we define for all P < «, 

K(p) = {7 < P\f(y)< f(P) and (V«h < 5 < 0 - > / ( ? ) < / ( « ) } . 

Clearly, i£(/3) is «-finite with index «-effectively attainable from p. Hence, all 
that remains is to show that for all p £ Df, K(P) = DfC\ (3. 

Let y G K(p). Then 7 < P and / ( 7 ) < f(p). Since /3 G 5 / , f(y) < f(P) < 
f(3) for all Ô > p. By definition of i£(0), / ( 7 ) < f(8) for Ô : y < Ô < p. Hence, 
for all ô > 7, /(ô) > f(y), and 7 G Df H 0. Conversely, let y £ Dfr\p. Then 
y < P and / ( 7 ) < /(/?), else 7 would wo/ be in Z)y. For the same reason 
f(à) > f(y), for all 8 > 7; in particular, for 7 < ô < p. Hence 7 6 # ( 0 ) . 

3.16. COROLLARY. Every irregular a-r.e. a-degree contains a regular a-r.e. A 
where A is m-compressible. 

Proof. Df is a-r.e. and regular. By Lemma 3.15, Df is «-retrospective. Thus 
by Theorem 3.14, Df is «-semirecursive, and, by Corollary 3.10, satisfies 
DfxDf£nDf. 

In the regular representative proof (Theorem 3.1) it is argued for all P < a, 
Df C\ P is «-finite using a noneffective step. Sacks [26] questions whether this 
step may be effectivized. We provide a partial answer to this in the following. 

3.17. COROLLARY. Every a-r.e. a-degree a contains a regular set A such that for 
all P £ A, A C\ p is a-finite (effectively). 

Proof. For p Ç A, A Pi P is the «-finite set K(P). 

4. «-Degrees and «-Speedable Sets. In this section we consider properties 
of sets with m-compressible complements, in particular, with regard to their 
weak jumps and generalized «-jumps. The results of this and the previous 
section are then used to prove an «-analogue to the Soare-Marques charac­
terization. We conclude by displaying a class of admissible «'s for which a 
phenomenon at co fails to hold at «; namely, the existence of incomplete speed-
able sets. 

First, a technical result telling us that for «-semirecursive sets, «-finite 
membership questions can be reduced to single questions. 

4.1. LEMMA. Let A C oibe such that Â is m-compressible. Then there exists an 
a-recursive /* such that for all 7] < «, 

Proof. L e t / be an «-recursive m-reducibility map such that A X Â ^m Â 
via / . We define values {pa, pa*} via a construction below and then use these 
to define our function /*. 

Stage 0. Set pQ* = Po = »PlP G Kv] 

Stage a. Set pa = Mj8[0 £ K, - U K , Prl 
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If ft, = 0 then set p* = \Jr«rP* and halt: Otherwise set p* = f(Ur«r P*,P*) 
and proceed to stage a + 1. 

For each rç < «, there exists (by admissibility) a least stage av after which 
all of Kv has been enumerated in increasing order. Further, such a o-, is «-effec-
tively obtainable from 77. Hence, the function defined by f*(rj) = pff* is well 
defined and «-recursive. 

Claim. \/T) KV C Â <->/*(*?) 6 -4. For suppose f*(rj) G 4 and P is the 
least member of Kv H 4 . Let 0̂  < o-, be the stage of the construction at which 
P arises (i.e. equals pap). Then at stage a0, / ( U7-0/3 07*, 0) G 4 making it 
impossible at any later stage <r' for pa>* £ 4 ; in particular, (/ = o> 

Conversely, suppose i ^ C 4 . Then by a straightforward induction argument 
it is seen that for all a S Vr,, Pa* 6 4 . Since f*(rj) = ft^*, our result follows. 

As a preliminary to his regular representative proof, Sacks [24] shows that 
for any «-r.e. 4 there exists an «-r.e. B of the same «-degree as 4 such that for 
X C «, B t^wa X <-» ̂  ^ a X. In [5] Gill and Morris show that for each co-r.e. 
set A there exists an co-r.e. B, B = r i , where A is Turing complete if and only 
if B is effectively speedable (actually subcreative). In both cases, the sets B 
turn out to be a g-cylindrication of A. 

4.2. Definition. For any set 4 , the q-cylindrification of 4 , denoted AQ, is 
defined as 

A< = { 7 7 ^ 0 4 5* 0}. 

4.3. LEMMA. 7 W i C « with m-compressible complement, Hjq ^m HÂ> 

Proof. For all e < « 

^3rç(?7 G i?e and rj £ Â?) 
<->3Î?0? Ç 2?e and Kv C if). 

Let /* be the «-recursive function of Lemma 4.1, 

^3V V e Re and f*(v) £ A. 

For Rt(e) = /*[i?€] with £ «-recursive, 

<->3*?(/*0?) ^ ^ n l ) 
H ^ ( £ ) n i ^ 0 

<->*(e) G ffi. 

Hence HZQ Sm Hj via /. 

In [30], R. Shore proposes a definition for «-jump operator (which is equiva­
lent to that of Simpson [32]) and provides justification for his over several 
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alternatives. The basis for his definition is a notion of relative «-recursive 
enumerability. 

4.4. Definition. For any a-r.e. set of triples Rt, we say Rt enumerates x relative 
toAiî0^71)((x,^r1}^Ri and K^QA and Kv C A). We denote by 
Rt

A the set of all x enumerated by R€ relative to A. Thus B C a is a-recursively 
enumerable (a-r.e.) iw A if B = Re

A for some e < a. 

4.5. Definition. For any set A Q a the a-jump of A is the set 

4 = { <*, e)|x G i ? / } . 

Shore demonstrates that for i , 5 Ç «, (i) 5 a-r.e. in A if and only 
if B Sma A', (ii) .5 =a A implies B' ==mA', as well as analogs to other usual 
properties of the jump. 

4.6. LEMMA. For all B,HB Sm B'. 

Proof. As in [33] we employ the set HB = {e\R€
B 9* id}. 

Claim. HB Sm HB for all B. Define a-recursive /(e) by 

Rt{<) = { (x, f, y)\Ks = {*} and Kv = 0 and x G Re\. 

Then 

6 G HB <-> B C\ R< 9* 0 
^ 3 x x G B C\Rt 

<-*/(€) G # * 

Claim. HB SmBf for all B. Define «-recursive r(e) by 

and «-recursive /(£) by f(fi) = (1, r(e) ). Then 

e 6 HB^Re
B 9* 0 

<->3£, *7, * (x, t,v) € î e and K^ Q B and Kv Q B 

<^>3è,ri (l,£,ri) £ Rr(e) and K^ Q B and Kv Q B 

<- <1,K0> 6 5 ' 

Hence, from the Claims, it follows that for all $ , i7# ^ m 2?'. 

4.8. COROLLARY. Z,e£ ^ &e one of the four reducibilities (Sm, Sa, Swa, Sca) 
and call B Q a S-low if B' S 0' and S-semilow if HB S 0''. Then B S-low 
implies B S -semilow. 

Proof. By Lemma 4.6 HB SmB' for all B ÇZ a. If B is g-low, then B' S 0'; 
hence, # s g 0'. 
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Hay [7] shows that there can be sets A Q œ within the same Turing degree 
having Turing incomparable weak jumps. Our next result shows that this 
cannot be the case for a-semirecursive sets. 

4.9. LEMMA. For A Q a with m-compressible complement, A' = m Hj. 

Proof. Following Shore's definition of a-jump 

e 6 A' <-> e0 G Rix
A where e = (e0, €i ) 

<->3£,i?[<eo,£,î?> 6 Rtl and K^QA and Kv Q Â] 

<->3Éb€-Rs(o and J [ , Ç l ] 

where i?s(e) = {̂ ?|3 ? (*o, £, i? ) £ -Rei and i£s C 4̂} and 5(e) «-recursive, 

<-> 3 i?h € Rsw and i ^ H . 4 = 0] 

<->S(e) Ç fe 

Hence, from the above, -4' SmHlv- By Lemma 4.3, Hxâ Sm Hj, thus, 
-4' ^m # J - For the opposite direction we let B = Â in Lemma 4.6. 

Corollary 4.10 is the key step of Soare's [33] proof that high Turing degrees 
contain at least one speedable set (since all sets A C co are regular). 

4.10. COROLLARY. For any A C <*, (^4ff)' = m i2j?. 

Proof. For_all 0i, 02, le_t_i£/(/3l)/32) = i ^ U K$2 for some «-recursive/. It fol­
lows that A9 X Aq SmAQ v i a / , hence that AQ is m-compressible. The result 
follows from Lemma 4.9. 

4.11. COROLLARY. Every a-r.e. a-degree a contains a regular A with A' =m Hj. 

Proof. If a is a regular a-r.e. a-degree, then by Sacks [26] (Chap. 25) the 
g-cylindrication of any A £ a is also in a; thus by Corollary 4.10 Aq has the 
desired property. If a contains a nonregular member, Corollary 3.16 provides 
us with a regular a-r.e. member with m-compressible complement. The result, 
in this case, follows from Lemma 4.9. 

By B <wa A we mean, as usual, that B Swa A and A %.waB. In the case of 
a-degrees a, b, a <wab denotes that for all A Ç a there is B £ b with A <wa B. 

4.12. THEOREM. An a-r.e. a-degree a contains an a-speedable set if and only if 
0' <waa'. 

Proof (=>) Suppose 0' <wa a! fails to hold. Thus there exists a C £ 0' so 
that for all A' £ af either C %wa A' or else A' ^wa C. Since C =aO' it easily 
follows that for all A 6 a, C ^wa A'. By Corollary 4.8 each A is ^wa-semilow 
and by Corollary 2.5, A is weakly non a-speedable. 
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(<=) Suppose 0' <waa
f' Then by Corollary 4.11 there exists a regular 

a-r.e. A £ a where A' =m HA. Then, 0' <wa Hi and Â is non rg^-semilow; 
its a-speedability follows from Corollary 2.6. 

The proof of the first half of Theorem 4.12 goes through if we replace the 
condition Of <wa a' by 0' <a a'. However, difficulty resides in the second part. 
Namely, if 0' <a af, then there would still be a regular A £ a where A' =mHj} 

0' <a A' =mHj and thus Hj | a O ; . However, this last condition does not 
necessarily imply Hj | w a 0', (that is, non ^wa-semilowness of Â) since ^« 
and ^wa are distinct. 

4.13. COROLLARY. Let a be an a-r.e. irregular a-degree where 0' <wa af. Then 
Sacks' regular representative in a is a-speedable. 

4.14. COROLLARY. Let a be an a-r.e. irregular a-degree. Then a contains an 
a-speedable set if and only if Sacks1 regular representative in a is a-speedable. 

Shore [30] discovered an interesting pathology for admissible a when 0' is 
the only existing nonhyperregular a-r.e. a-degree. Namely, that incomplete 
a-r.e. degrees (sets) may not be a-jumped over 0'. 

4.15. COROLLARY. Let a be such that there is only one a-r.e. nonhyperregular 
a-degree (e.g. a = KW

L). Then the only a-speedable sets are the complete a-r.e. 
ones. 

Proof. By Shore [30], for every a-r.e. a <a Of, a' =a 0'. Hence, every 
Â Ç a is ^a- low; and by Corollary 4.8 is ^a-semilow. By Theorem 2.5 each 
A is weakly non a-speedable. 

This phenomenon differs from co since Sacks [25] shows the existence of high 
co-r.e. degrees below Of. By Soare [33] such degrees must contain speedable sets. 

5. Open Problems. In § 2 we proved an analogue to Soare's theorem for 
regular sets, A, and showed that for nonregular ones 0" ^CaHj. Since non 
a-calculability does not imply non weak a-reducibility, this fails to give a com­
plete answer to whether regularity is essential in Theorem 2.4. 

1. Do there exist weakly non-a-speedable nonregular a-r.e. sets which are 
not ^wa-semilow? If so, characterize those a for which they exist. 

Weak a-reducibility is only one of the reducibilities studied in a-recursion 
theory. Consequently, three different variations of non a-speedability should 
exist. 

2. What form does Soare's theorem take on when we use ^«-semilow for 
semilow? 

3. The same as the above, but for ^ ca-semilow. 
As in the proof of Theorem 2.4, answers to the above questions probably 

require investigating analogues to Shoenfield's limit lemma. 
Marques [21] proves that there exists a nonspeedable set in every r.e. Turing 
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degree. His result was obtained by using as a lemma an analogue to Sacks' 
Splitting Theorem [25] ; namely, that any nonrecursive r.e. set may be decom­
posed into two nonrecursive low nonspeedable sets. Shore [28] lifts Sacks' 
result via a non «-finite injury argument for regular «-r.e. sets and shows in 
[29] pathologies for nonregular and nonhyperregular ones. 

4. Can every regular non «-recursive «-r.e. set be decomposed into two non 
«-recursive weakly (strongly) non «-speedable ones? 

5. Can any irregular (nonhyperregular) a-r.e. «-degree be similarly de­
composed ? 

6. Does every a-r.e. non «-recursive «-degree possess a weakly non «-speed-
able set? a strongly non «-speedable set? 

Soare [33] exploits his semilow criterion to yield a simpler proof of Marques' 
result. His argument is based upon the observation that every r.e. Turing 
degree possesses an r.e. A where Hj ^ 0'. This last result is a special case of 
Hay's [6] analogue to the Sacks jump theorem, where weak jump (HA) 
replaces the usual jump {A'). 

7. Classify those admissible « in which every «-r.e. «-degree contains an 
«-r.e. A where 

(a) Hj ^ „ 0 ' (Â ^a-semilow) 

(b)Hx ^a 0' (Â ^«-semilow) 

(c)HX^c«0' (A ^ ca-semilow). 

8. Characterize those admissibles for which Hay's general result holds. 
An co-speedable r.e. set is effectively speedable if not only arbitrarily faster 

algorithms exist, but they are effectively obtainable from any algorithm deter­
mining the speedup. It was shown by Blum and Marques [2] that effective 
speedability is equivalent to subcreativity (a slightly weaker form of creative 
set) and that there exists sets which are speedable but not effectively speedable. 
Interestingly, the only proven witnesses to the differences between these 
classes are the r-maximal sets (i.e., r-maximals are speedable but not effectively 
speedable). Since, in «-recursion theory, r-maximal sets do not exist for all « 
(Lerman and Simpson [19]) we ask: 

9. Do there exist other sets which are «-speedable but not effectively 
«-speedable? 

10. Classify those « for which «-speedable equals effectively «-speedable. 
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