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ABSTRACT

Mortgage insurance indemnifies a mortage lender against loss on default by the
borrower. The sequence of events leading to a claim under this type of
insurance is relatively complex, depending not only on the credit worthiness of
the borrower but also on a number of external economic factors.

Prominent among these external factors are the loan to valuation ratio of the
insured loan, the disposable income of the borrower, and movements in
property values. A broad theoretical model of the functional dependencies of
claim frequency and average claim size on these variables is established in
Sections 6 and 7. Section 8 fits these models, extended by other "internal"
variables such as the geographic location of the mortgaged property, to a real
data set.

Section 9 compares the fitted model with the data, and finds an acceptable fit
despite extreme fluctuations in the claims experience recorded in the data
set.

KEYWORDS

Mortgage insurance; housing price index; loan to valuation ratio; regres-
sion.

1. INTRODUCTION

Mortgage insurance indemnifies a mortgage lender against loss on default by
the borrower. The typical sequence of events leading to the invocation of the
indemnity is as follows.

The amount of the mortgage is repayable by a sequence of instalments,
perhaps monthly, over a period of some years, up to perhaps 25 or in a few
cases more. If a borrower fails to meet one or more of these instalments,
arrears collection procedures will be instigated. If it appears that the borrower
is experiencing financial difficulties which threaten his capacity to pay the
scheduled instalments, the lender's initial response will usually be to attempt
rehabilitation of the borrower, possibly by some form of rescheduling of the
debt repayment.

In many cases this will render the borrower's difficulties temporary. In other
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less fortunate cases it will become clear that the borrower is quite unable to
repay the debt. The lender will then force sale of the mortgaged property, and
retain that part of the sale proceeds required to discharge the remaining debt.
In the majority of sales, the proceeds will be sufficient for this purpose, but if
they are not the mortgage insurance indemnity is invoked to reimburse the
lender for the shortfall.

It is an elementary observation that inflation of property values reduces the
call on mortgage insurance; the proceeds of property sales cover a greater
proportion of the corresponding debts. It is also clear from the above
description that a loan needs to go through several stages (healthy -> in arrear
-> property under management -» sale of property) before a mortgage
insurance claim arises, and each of these stages involves some delay. As will be
discussed in Section 3, each of them also depends on its own specific economic
factors.

For these reasons, the underlying process generating mortgage insurance
claims is complex and dependent on several variables which are exogenous to
the insurance portfolio. Consequently, mortgage insurance run-off arrays,
whether in terms of numbers or amounts of claims, exhibit very different
characteristics from those of other lines of business. A striking example of this
is given in Section 2.

These different characteristics necessitate rather different modelling tech-
niques. The purpose of the present paper is to illustrate these techniques by
means of a case study. Since this study is specific to a particular portfolio, it
cannot be claimed that the modelling techniques illustrated are generally
applicable. It is hoped, however, that they are fairly generally indicative of the
type of modelling which needs to be attempted.

2. NUMERICAL EXAMPLE : PRELIMINARY DISCUSSION

The following data are given as an indication of the difficulties likely to arise if
a mortgage insurance portfolio is subjected to conventional run-off analysis.
More detail of the data on which this paper is based appears in Appendices E and G.

Year of

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

Number

0

0
1
0
3
0
0
0

of

1

25
13
21
17
1
0
0

claims,

2

54
20
24

134
30
0
5

per 10,000

3

116
27
20
55
68

4
2

loan

4

30
42
45
23
35
15
2

advances,

5

18
31
36
9
5
6

emerging in

6

6
5

13
0
0

7

0
0

13
3

development year (a)

8

0
0
4

9 10

0 6
0

(a) Development year is defined as year of emergence of claim minus year of loan advance.
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Let the term relative claims frequency denote the number of claims per
10,000 loan advances. If Ctj denotes the relative claim frequency in develop-
ment year j of year of advance /, and Ay denotes the age-to-age factor:

(2.1) Ay= Y C* Z
k = 0

then the following table of age-to-age factors is obtained.

Year of Age-to-Age factor in development year j =

advance i

1984
1985
1986
1987

1

2.86
7.12
2.71
1.00

2

2.50
1.44
1.08
1.50

3

1.38
1.07
1.05

4

1.04
1.03

5

1.00

The great instability in these ago-to-age factors is evident in the sense of
variability within a development year. The basic reason for the instability is
clear from the first table. It is the apparent correlation between relative claim
frequency and year of emergence of claim, i.e. with the number of the diagonal
in the table. Such a data structure suggests application of the separation
method (TAYLOR, 1977, 1986), with the model structure:

(2.2) v jj

The separation method yields the following parameter estimates.

j

0
1
2
3
4
5
6
7
8
9
10

0.00
0.06
0.20
0.22
0.14
0.11
0.03
0.03
0.02
0.00
0.20

k

1984
1985
1986
1987
1988
1989
1990

4

366
167
195
350
196
48
29

This produces the following comparison between observed and fitted relative
claim frequencies.
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Year of

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0
1
0
3
0
0
0

Observed

0

1
1
1
1
1
0
0

25
13
21
17
1
0
0

21
9

11
20
11
3
2

ind fitted

2

54
20
24

134
30
0
5

72
33
38
69
38
9
6

(shown ir

3

116
27
20
55
68
4
2

79
36
42
76
42
10
6

l bold type)

4

30
42
45
23
35
15
2

52
24
28
50
28
7
4

18
31
36
9
5
6

relative

5

18
21
38
21
5
3

6
5

13
0
0

claim

6

6
11
6
1
1

frequency

7

0
0

13
3

9
5
1
1

8

0
0
4

in

3
1
0

development year

9

0 0
0 0

10

6 6

Total

60
195
193
101
131
245
53
6
5
0
0

94
140
181
169
159
133
73
28
9
2
0

The table indicates that the separation method achieves a reasonable fit. No
formal goodness-of-fit statistics are examined, because this model is later
discarded. The difficulty is that, despite the reasonableness of the fit, the
sequence of escalation index numbers kk is peculiar by normal standards. Until
some explanation of this peculiarity is found, it is impossible to produce any
reliable projection of the sequence into future years.

One of the major objectives of subsequent sections of this paper will
therefore be to obtain such an explanation. The discussion of this aspect of the
modelling problem is taken up in Section 3.

3. THE PROCESS OF CLAIM OCCURRENCE

3.1. Major financial factors

As pointed out in Section 1, a loan must traverse several stages of financial
deterioration before producing a mortgage insurance claim. These stages are
subject to different financial influences. Of these separate influences, two are of
particular prominence:

(a) the onset of financial difficulties for the borrower; and
(b) in the event of forced sale, the extent to which the sale proceeds repay the

outstanding loan.

These two factors are discussed in the following two sub-sections.

3.2. Onset of borrower's financial difficulties

Despite its importance in a borrower's budget, the mortgage payment instal-
ment will nevertheless be to some extent a residual item in that budget. It will
rank after tax and consumer expenditure on necessities (food, clothing, etc.). In
addition, most past loans have been of a type whereby the amount of
instalment varies with variations in current day interest rates.
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MODELLING MORTGAGE INSURANCE CLAIMS EXPERIENCE 101

It appears, therefore, that a reasonable measure of the degree of financial
pressure on mortgage borrowers would be provided by an estimate of the
average residual income after allowance for tax, consumer expenditure and
mortgage instalment. This residual income, called here the home affordability
index (HAI), was constructed in the following form:

Home affordability index = average weekly gross household income
minus

tax

minus

consumer expenditure
minus

mortgage instalment,
expressed as a percentage of gross income.

A baseline distribution of gross household income over these categories of
expenditure was derived from a 1988/89 household expenditure survey (HES)
conducted by the Australian Bureau of Statistics. The items of expenditure for
this base year were adjusted to other years in various ways, indicated by the
following table.

Item of income or expenditure Adjustment from year to year according to

Gross household income Average weekly earnings
Tax Average weekly earnings (a)
Consumer expenditure Consumer price index

Mortgage instalments Average weekly earnings (b)
Mortgage interest rates (b)

(a) Preliminary investigation indicated little variation in the effective average tax rate over the
period concerned.

(b) The average amount of a new loan was assumed to change in proportion with average weekly
earnings. These loans were assumed repayable over periods of 20 years, and the average
mortgage instalment calculated on the basis of the most common interest rate charged in the
year concerned in respect of the loan portfolio under analysis.

The component time series used in the construction of the HAI (at year end)
are set out as Appendix F.

The resulting HAI (at mid-year) is as set out in the following table.
The rather irregular progression of this index is seen in Appendix F to derive

from quite reasonable component indexes. Each of these components may be
projected over future years, producing a rationally based projection of HAI.
This situation may be contrasted with that which arises on application of
"black box" estimates of past claims escalation, as in Section 2, and in which
no guidance as to future escalation is available.
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Year Home affordability index

1979 100.0
1980 104.8
1981 111.9
1982 101.7
1983 104.1
1984 128.9
1985 128.3
1986 101.7
1987 87.4
1988 90.6
1989 81.5
1990 81.2

3.3. Recovery of outstanding loan on forced sale

The HAI of Section 3.2 provides an indication of the likelihood that an
individual borrower will experience financial difficulty in a particular year.
However, such difficulty, while a necessary condition, is not sufficient for the
emergence of a mortgage insurance claim. It is quite possible the borrower's
difficulties are such as to force sale of the property, but that property values
will be sufficient for the entirety of the outstanding loan amount to be
recovered by the lender.

Whether or not this is the case will depend mainly on movements in property
values between the date of advance of the loan and the date of the forced sale.
In Sydney these movements may be estimated by reference to the Housing Price
Index (HPI) computed and published by Residex Pty Limited. The following
table was derived from that index with slight modification.

Year ended " ° " s i " f P r i c e ! n d e x

-m T l l n p (Sydney) at mid-year
M J u n e (30/6/79 = 100)

1980 115.3
1981 145.1
1982 158.6
1983 158.4
1984 168.2
1985 177.2
1986 182.4
1987 191.5
1988 245.8
1989 363.5
1990 430.7
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Evidently, the greater the increase in value of properties generally, the less
the chance that forced sale of a particular property will lead to a loss to the
mortgage lender.

3.4. Lags in claims process

While movements in the HAI (Section 3.2) and HPI (Section 3.3) have been
identified as major variables in the frequency of mortgage insurance claims, it
is to be expected that there will be a lag between cause and effect in each
case.

Information from the company operating the mortgage insurance portfolio
discussed in this paper was that, broadly:

(a) the average period between mortgage instalments falling in arrears and the
property being taken under management (if indeed this latter occurred)
was about 6 months; and

(b) the average period between taking a property under management and
effecting its sale was also about 6 months.

On the basis of this information, it might be reasonable to expect lags of:

(a) 12 months between movements in the HAI and the consequent movement
in claim frequency; and

(b) 6 months between a movement in the HPI and its consequent movement
in claim frequency.

Thus, it has been assumed in subsequent modelling that a claim frequency
experienced during year t is dependent upon:

(a) the value of the home affordability index at the middle of year t—\;
and

(b) the value of the HPI at the end of year / - I .

Examination of alternatives suggested that this choice of lags provided about
the best fit of model to data. Further detail on the incorporation of the HAI
and HPI in the model is given in Section 6.2.

4. DATA

4.1. Variables affecting claims experience

Section 3 identified the HAI and HPI as likely to be major explanatory
variables of claim frequency. Other variables in this category include:

(a) the proportion of the original property value advanced by way of
mortgage, i.e. the loan to valuation ratio (LVR);

(b) the geographic area of the mortgaged property (described in more detail in
Section 4.2);

(c) the agreed term of the mortgage loan;
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(d) the type of property mortgaged (e.g. new house, old unit, land only,
etc.);

(e) the financial type of the loan (e.g. reducible loan with variable interest,
interest only instalments with fixed interest rate, etc.).

In addition, it is likely that claims experience will vary with development year,
even in the absence of movements in the HAI and HPI. This would reflect a
process of natural selection operating on each year's mortgage advances,
whereby the poorest risks succumb to financial pressures relatively early, and
the remainder survive the mortgage term.

It is clear that the major variable affecting claim size will be the size of the
original loan. In addition, the explanatory variables (a) to (e) of claim
frequency potentially affect claim size also.

4.2. Form of data

As the tables of Section 2 indicate, claims experience relates to the period 1984
to 1990. In fact, the 1984 experience covers only 7 months of that year.

Data supplied in respect of these claims consisted of a claim by claim
tabulation, recording in each case the relevant variables identified in Sec-
tion 4.1:

(a) year of advance;
(b) amount of loan;
(c) value of property;
(d) geographic area of property;
(e) term of loan;
(f) type of property;
(g) financial type of loan;
(h) year of emergence of claim.

The tabulated geographic area was the postal code of the property. These
codes were grouped into 14 broad urban and rural regions within the states of
New South Wales and Australian Capital Territory, as follows:

Metropolitan regions 1 to 5; Canberra (6); Newcastle (7); Wollon-
gong(8); Central Coast (9); North Coast (10); South Coast (11); Blue
Mountains (12); Southern Highlands (13); Other (14).

The exposure base for the study consisted of all loans advanced over the
years 1980 to 1990 inclusive. These were recorded, loan by loan, according to
the variables (a) to (g) listed above as potentially affecting claim frequency.

As the data described above constitute a unit record file, it is not practical to
present the full detail here. It is not even practical to tabulate cells of data since
there are 1499 exposure cells. However, Appendix G gives a tabulation of
exposures and claims according to year of advance and development year. It is
to be stressed that, while such a tabulation is interesting, it omits a great deal
of the raw data.
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5. EXPLORATORY DATA ANALYSIS

5.1. Claim frequency

Section 4.1 identified a number of characteristics of individual loans (such as
LVR, term of loan, etc.) which might have a bearing on the likelihood of those
loans leading to claims. These characteristics will be referred to here as risk
variables.

Initially, data concerning claim numbers were analysed according to the risk
variables listed in Section 4.1. This provided initial guidance concerning the
types of loans which were subject to high or low risk of default.

The results of this analysis are summarized in the following sequence of bar
charts.

According to LVR
Claim frequency per 1000 advances

Range of LVR

According to Term of loan
Claim frequency per 1000 advances

l»U0 111*110

Term of loan (months)

According to Financial type
Claim frequency per 1000 advances * '

According to Development year
Claim frequency per 1000 advances

Development year

According to Area
Claim frequency jrer 1000 advances

According to Dwelling type
Claim frequency per 1000 advances *

Dwelling type
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These charts raise the following possibilities:

(a) claim frequency peaks in the second, third and fourth years after the year
of advance;

(b) claim frequency increases dramatically with increasing loan to valuation
ratio (LVR);

(c) claim frequency increases significantly with increasing term of loan;
(d) certain geographic areas experience conspicuously higher or lower claim

frequencies than average;
(e) defaults appear to be confined totally to reducible loans carrying a

variable interest rate;
(f) claim frequency appears highest in relation to land, higher in relation to

new properties than old, and lowest in relation to improvement loans.

As stated, these are raised as possibilities only, rather than conclusions.
Without further analysis, it would be impossible to determine whether all of
these variables affect the default risk directly, or some of them are merely
correlated with the genuinely operative risk variables.

For example, it might be the case that term of loan has no bearing on default
risk, but appears to be relevant because LVR does have such a bearing and
long terms are associated with high LVRs.

The question of possible correlation between risk variables is remarked upon
further in Section 8.1.

5.2. Claim size

Initially, data concerning claim sizes were analysed according to the risk
varibles listed in Section 4.1. This provided initial guidance concerning the

Claim size to loan amount ratio
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types of loans which led to larger or smaller losses when default occurred. The
detailed results of this analysis are set out in Appendix D. The results indicate
little variation in claim size with any of the risk variables except development
year. The variation of claim size with development year is graphed in the
preceding chart.

The chart suggests that the greater the time elapsed between advance of loan
and default, the greater the claim size to loan amount ratio, i.e. the greater the
loss on default expressed as a proportion of the original advance. This result is
confirmed by formal regression analysis, as described in Section 8.2.

Since growth in property value generally increases with development year,
this chart is consistent with the predicted form (7.2) of model.

6. FORM OF CLAIM FREQUENCY MODEL

6.1. General

In the following the basic units of tabulation of claims data will be referred to
as cells. A cell will consist of an item of data associated with a particular
combination of year of advance, development year, and any sub-set of the risk
variables identified in Section 4.1.

It is reasonable that the total effect of risk variables on claim frequency
should be multiplicative, i.e.

(6.1) expected relative claim frequency = function (development year, HAI,
HPI)
x
function (risk variables, e.g. LVR,
geographic area, etc.).

The form of the first of the two functions on the right will be discussed in
Section 6.2. As far as the second function is concerned, a reasonable first
approximation would consist of the product of a factor in respect of each of
the risk variables present. Equation (6.1) then becomes:

(6.2) expected relative claim frequency = function (development year, HAI,
HPI)
x

factor dependent on LVR

x

factor dependent on geographic area

x

etc.
Interactions between the factors making up this product could be added if

necessary.
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Expected relative claim frequency (per loan advanced) is adjusted by a factor
of 7/12 in all cells whose experience relates to 1984. This allows for the fact that
the data include only 7 months' claims (Section 4.2).

Some of the risk variables identified in Section 4.1, e.g. financial type of
loan, are categorical by nature. Others, e.g. LVR, are continuous by nature. It
was convenient for exploratory analysis of the data to convert all variables (i.e.
risk variables, not HAI and HPI) to categorical form. Details appear in
Section 5.1. The categorical form of data was retained in the final modelling,
described in Section 8.1.

6.2. Dependence on development year and economic variables

Preliminary analysis (Section 5.1) indicated that relative claim frequency,
expressed as a function of development year, was generally consistent with the
shape of a Hoerl curve. Appendix B provides a theoretical underpinning of this
observation. Consequently, the model adopted for relative claim frequency in
the absence of any other effects took the form:

(6.3) const, x (j+ y2f exp ( - cj),

where j represents development year.
The modification of (6.3) by HAI and HPI raises some questions. Consider

HAI first.
As noted in Section 3.2, the HAI may be regarded as a measure of the

average borrower's residual income after payment of mortgage instalment. An
individual borrower will experience difficulties in payment of mortgage instal-
ment if this residual income turns negative. The frequency with which this
occurs in the event of movements of HAI will depend on the distribution of
individual residual incomes, rather than just the average of this distribution
represented by HAI. There is virtually no information available in respect of
this distribution.

There is, however, some evidence that individual gross incomes are subject to
a Paretian distribution (MANDELBROT, 1960).

If a similar assumption is made about residual incomes after payment of
mortgage instalment (i.e. HAI), then Appendix A demonstrates that, to first
approximation, logged claim frequency will contain a term linear in R (i+j)/R (/),
where / denotes year of advance, j development year, and R(t) the HAI
experienced in year t. Allowance for the one year lag in the effect of HAI, as
discussed in Section 3.4, modifies this term to R(i+j-l)/R(i) (1 in the case
7 = 0).

Because of the approximations leading to this result in Appendix A, an
alternative linear term involving

log[R(i+j-l)/R(i)] for j>\;

or

(6.4) 0, for y = 0 ,
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was tried. This latter form produced a slightly better fitting regression than the
unlogged ratio, and has been adopted henceforth. In fact, both alternatives
produced quite similar results.

Appendix B, particularly (B.10), demonstrates that, under seemingly reason-
able assumptions about the accumulation of the amount of mortgage debt on
default, and about property values on resale, claim frequency should also
contain the following factor involving LVR and HPI:

Lv[H(i+j)/H(i)]-\ vconst. > 0,

where L denotes LVR and H{t) the HPI experienced in year t. In order to
accommodate the lag in the effect of HPI discussed in Section 3.4, this last
expression should be modified to the following:

Lv[H(i+j-V2)/H(i)]-\ j>\;

or

(6.5) L\ ; = 0,

where H(t- Vi) is interpreted a the HPI experienced at the end of year t—\.
Note that (6.5) indicates that claim frequency should include the same power

of both LVR and HPI. However, this result was derived in Appendix B on the
assumption that LVR affected the proportion of principal outstanding at
default, but not the risk of default itself. In practice, it is likely that LVR is
correlated with the ability of the borrower to meet financial commitments, in
which case it intrinsically affects the risk of default. For this reason, (6.5)
should be generalized to the following:

or

(6.6) L\ 7 = 0.

Combination of (6.2) to (6.4) and (6.6) yields the following model:

(6.7) expected relative claim frequency in development yeary of year advance /
= const, x (j+ y2y exp (-cj)

x U{R(i+j-\)IR(i)}->> [H(i+j-y2)/H(i)rv

x factor dependent on geographic area
x etc. for j > 1,

and with the two square bracketed terms removed in the case j = 0.
Let fi(i,j) denote the expected relative claim frequency (6.7), and E(i) the

number of loans advanced in year i. Let N(i,j) denote the number of claims
emerging in development year j of year of advance i. Then the claim frequency
model adopted was:

(6.8) N(i,j) ~ Poisson
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It should be noted that the precise form of dependency of relative claim
frequency on LVR and HPI in (6.7) relies upon distributional assumptions
made in Appendix B. If these assumptions were varied, the form of (6.7) would
change. Consequently, an alternative to (6.7) is considered in Section 8.1, in
which the terms involving LVR and HAI are replaced by:

exp (XL) exp [- v H(i+j- lA)IH(i)].

This alternative model turns out to be inferior to (6.7).

7. FORM OF AVERAGE CLAIM SIZE MODEL

Appendix C shows that, on the same seemingly reasonable assumptions as in
Appendix B (referred to in relation to the development of (6.5)), the average
claim size in respect of loans advanced in year / should progress over
development years according to the following parametric form:

(7.1) E[Q(i,j)] = const, x H(i+j)/H(i),

where

Q(i,j) = the claim ratio (i.e. ratio of claim size to original loan size) experi-
enced in development year/ of year of advance /;

H(t) = HPI experienced during year /.

One may note the interesting effect whereby average claim size increases with
development year even though outstanding principal is decreasing. Clearly this
result derives from the assumptions made in Appendices B and C. Different
assumptions would lead to a different parametric form in (7.1). However, an
examination of the development of Appendix C indicates that the property of
increasing E[Q(i,j)] with H(i+j) derives only from an assumption that the
variable y has a decreasing failure rate, where y = a//? and

a = a random variable representing the factor by which outstanding principal
has been enlarged after default by arrears of principal and interest and any
other costs,

P = a random variable representing the factor by which the property value has
been reduced by the forced nature of the sale and the associated
expenses.

While there is no particular evidence concerning the failure rate of y, it is
interesting to note that the seemingly reasonable assumption of a Pareto
distribution leads to the result (7.1) which is found in Section 8.2 to accord
with experience, at least to the extent that the claim ratio trends upward with
increasing property factor. However, because the Pareto assumption may be a
little too specific, it is reasonable to widen the model (7.1) to the following:

(7.2) Q(Uj) = a + b H(i+j)/H(i) +error term,

where approximately
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(7.3) error term ~ N(0, a2).

The appropriateness of this error term is discussed further in Section 8.2.

8. FITTING THE MODEL

8.1. Claim frequency

By (6.7) and (6.8),

(8.1) log E[N(i,j)] = log E(i) + const. + a log (j+ Vi)-cj

+ X log L-p log [R(i+j- l)/R(i)]

- v log [H(i+j- V2)/H(i)]

+ term dependent on geographic area
+ etc., j > 1,

with the two square bracketed terms on the right omitted for the case j = 0.
This linear form, subject to the error structure (6.8), was fitted to the data
using GLIM (Generalised Linear Interactive Modelling) (Royal Statistical
Society, 1987). Various combinations of the potential explanatory variables
listed in Section 4.1 were tried, and the main results are reported in the next
table but one.

Original coding (a)

4 J
3
5
6

2

10-12 /

9 \14 /

13

8

Geographic area

First aggregation

Area 1 J
Area 3 I
Area 4 j
Area 5 J

Area 2

Area 6

Area 7

Area 9

Area 8

Second aggregation

AREA 1

AREA 2

AREA 3

AREA 4

(a) As set out in Section 4.2.
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The results of the trial regressions are displayed in the following table.

Variable

Regression constant
Development year
Log (development year+ XA)
LVR (d)
Log (LVR)
Log (home affordability factor) (b)
Property growth factor (c)
Log (property growth factor)

Indicator variables (f):
AREA 2
AREA 3
AREA 4
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7
Area 8
Area 9

1

-9.505
-1.093

4.908
1.100

-3.039

0.60
0.16*

-0.35*
-0.26*

1.05
1.15

-5.33*
0.81

Coefficient

2

-12.18
- 1.143

5.066
1.144

- 3.070

in variable

3

-10.50
- 1.218

4.558
0.994

- 2.036

at left (a)

4

-9.848 -
-1.097 -

4.906
1.100

-3.017 -

0.52
0.87

-5.24 -

in Regression No.

5

12.90
- 1.096

4.903
1.099

- 3.015

0.52
0.87

• 5.24

6

-5.776
-1.119

5.076

8.93

-4.636

0.53
0.87

-5.25

7

-5.943
-0.8536

4.505

8.413
-2.158

-5.658

0.5131
0.8772

-7.254*

60 < Term < 120 months
120 < Term < 180 months
180 < Term < 240 months
240 < Term

Dwelling:
Improvements & increases
All other than improvements,
increases & land only
Dwelling type missing

3.74*
2.95*
2.00*
2.74* 3.06*

1.33*

0.64*
7.05*

Deviance (e) 854 549 632 611 610 593 527

(a) Dependent variable in regression log (claim frequency), as in (8.1).
An asterisk attached to a coefficient in the table indicates that this coefficient differs from zero
by less than 2 standard errors.

(b) The home affordability factor is the ratio of values of HAI appearing in (8.1).
(c) The property growth factor is the ratio of values of HPI appearing in (8.1).
(d) The variable referred to here is in fact

I O X L V R - 3 . 5 .

The variable log (LVR) uses the genuine LVR, though grouped in ranges of 10 percentage
points width. Each such range is represented by its mid-value.

(e) Deviance is a measure of goodness of fit, related to the log likelihood ratio of the model. A
lower deviance implies a better fit.

(f) The variables Area k and AREA m have already been described as 0-1 indicator variables. The
variables listed subsequently in the table are also of the 0-1 indicator type, taking the value 1 if
the loan is subject to the risk variable displayed, 0 otherwise.
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By (6.8) and (8.1), the model is multivariate Poisson with multiplicative
structure of the mean. GLIM fits this by maximum likelihood. Note that the
logarithmic form of (8.1) is no more than a convenience of expression. It could
equally have been written in its unlogged (multiplicative) form. In particular,
(8.1) does not imply that the observations N(i,j) (many of which are zero) are
to logged.

For the interpretation of this table, special reference should be made to
geographic area of the mortgaged property. On the strength of the chart of
Section 5.1, a number of areas, seemingly similar in claim frequency and/or
physically contiguous, were aggregated. The areas at this initial level of
aggregation were denoted by "Area k". These were 0-1 variables, taking the
value 1 if the property lay in the relevant area, 0 otherwise.

Regression 1 in the table indicated that further aggregation was possible. The
new variables resulting from this aggregation were denoted by "AREA w",
and were 0-1 variables, each of which consisted of the sum of the relevant
variables Area k. The key to the two aggregations is as shown in the previous
table but one.

It may be noted that the trial regressions included alternative versions of
(8.1) in which the terms dependent on LVR and HPI were replaced by their
respective unlogged forms, as discussed at the end of Section 6.2. These
alternatives were, however, inferior to (8.1) in terms of fit.

Regression 7 provided the best fit of model to data, and was adopted as the
final model. This final model, expressed in non-symbolic form, was as
follows:

(8.2)

CLAIM FREQUENCY =
(per 1000 advances)
IN DEVELOPMENT YEAR t

2.624 (/+ '/2)4-505 exp (-0.8536 t)

X

(LVR)8413

[(HOME AFFORDABILITY FACTOR)2

x

(PROPERTY GROWTH FACTOR)5658]

x

1 if AREA 1

1.670 if AREA 2

2.404 if AREA 3
0.0007 if AREA 4

where
HOME AFFORDABILITY FACTOR and PROPERTY GROWTH FAC-

TOR are the ratios involving H and R respectively in (8.1).
The formula in the box indicates that claim frequency:

(a) moves sharply upward with increasing LVR;
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(b) moves sharply downward as property values or disposable incomes after
mortgage instalments increase;

(c) varies significantly by geographic area, exhibiting a particularly low value
in the Wollongong district.

Because of correlations of the type discussed at the end of Section 5.1, not all
of the risk variables exhibited a significant effect on claim frequency.

8.2. Average claim size

The form of the model was suggested in Section 7 as the following:

(7.2) Q(i,j) = a + b H(i+j)/H(i) +error term,

where approximately

(7.3) error term ~ N(0, a2).

This model appears unnatural to the extent that the normal error term would
permit claim sizes to be negative. This would be avoided by the inclusion of an
error term which was by nature positive. An example would be a lognormal
error term, as would be incorporated in an alternative model of the form:

(8.3) log Q (ij) = log a + b log [H(i+j)/H(i)] + error term,

where

(8.4) error term ~ N(0, a2).

Equivalently,

(8.5) Q(i,j) = a[H(i+j)/H(i)]hx error term,

where

(8.6) error term = lognormal (0, a2).

Note that both forms (7.2) and (8.5) accommodate the theoretical form
(7.1).

Ordinary regression produced the following two alternative models.

Parameter Unlogged model (a) Logged model (b)

a 0.1622 0.1555
b 0.0494 0.3083

< T 2 0.0257 0.8676

(a) This is the model described by (7.2) and (7.3). Of the 425 observed claim ratios, 2 large values
have been excluded as outliers.

(b) This is the model described by (8.3) and (8.4).
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In fact, neither of the two models considered in the preceding table produced
an ideal fit to the data. Their respective residuals are tabulated in the following
table.

Values

less than
- 3
- 2
- 1

0
1
2

more

Total

to
to
to
to
to
to

than

of standardized
residuals

- 3
- 2
- 1

0
1
2
3
3

Relative frequency

Unlogged model

0
0

12
47
24
10
5
1

100

of standardized residual in

Logged model

1
3
8

32
44
12
0
0

100

These two tabulations of standardized residuals are very much reflections of
each other about the origin. While the unlogged model is somewhat skewed to
the right, the logged model is about equally skewed to the left. This suggests
that the correct model lies somewhere between normal and log normal. Such a
model might be of the form (7.2), but with the error term strictly positive and
skewed to the right but less so than log normal.

Note that the fitted values of claim ratios, according to the two alternative
models, are:

(8.7)
EQ(hj) = a + bH(i+j)/H(i) for unlogged model;

(8.8) = a [H(i+j)/H(i)]b exp ('/2 a
2) for logged model.

In the event, (8.8) produced a rather heavy upward bias, about 18 % in total,
in fitted values of claim amount relative to observed amounts. The form of this
comparison was exactly as reported in Section 9.2, but with the unlogged
model used there replaced by the logged.

This result appears to indicate that the exponential scaling factor in (8.8) is
not robust against the non-normality in the error term of (8.4), as was
demonstrated in the above table of standarized residuals.

On the other hand, Section 9.2 indicates that the unlogged model provides
an adequate fit, and accordingly it was adopted.

9. MODEL VERIFICATION

9.1. Claim frequency

The model adopted in Section 8.1 has been used to compute standardized
residuals according to several variables. The resulting residual plots appear
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below. Note that each residual relates to the aggregation of all experience at
the value of the independent variable displayed. For example, the first residual
in the first plot may be obtained from the second table of the present
sub-section as:

( 8 - 6 ) / ^ = 0.8.

A plot of the residuals of all cells (taken over all explanatory variables)
would not be helpful since the great majority of cells contain very small
expectations.

RESIDUAL PLOT RESIDU4LPL0T

Development year

RESIDUAL PLOT
RESIDUAL PLOT

These plots appear generally satisfactory in terms of magnitude, with the
exception of year of default 1984. This one anomaly, in the relatively distant
past, involves relatively few claims (see first table below) and is insufficient to
invalidate the model.

The plot against year of advance contains a downward trend. If included in
the model, year of advance appears as a highly significant explanatory
variable; other things equal, claim frequency declines by 29% as between each
year of advance and the next. Naturally, the effects of the other explanatory
variables, particularly those which are time dependent, change.

While this model provides a superior fit to the data, the abstract nature of
the year of advance effect is problematic. It might be interpreted as a factor
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representing improvement in underwriting. However, in this case, the total
improvement over the decade of underwriting would be almost 97%, which
might strain credulity.

It seems more likely that year of advance is acting as a proxy for some other
unidentified explanatory variable(s). When this variable is omitted from the
model, its effect is largely captured by the other explanatory variables.

Moreover, an examination of the fitted numbers of claims (using the model
which omits year of advance effect) against the data suggests that the apparent
trend in the residuals may not be particularly meaningful (see second table
below).

The following table displays the actual and model numbers of claims
underlying the above plot of standardized residuals by experience year.

Period
Number of claims emerging

Actual Model

1984 (7 months)
1985
1986
1987
1988
1989
1990

28
32
53

168
103
21
20

13
24
54

174
115
22
24

Total 425 425

The table illustrates the close agreement between actual and model numbers
of claims for all experience years except 1984, despite the extreme fluctuations
in numbers of claims.

More detailed information is given by the following table which tabulates
experience and model simultaneously by year of advance and development
year, and from which the above table may be derived.

Year of
loan

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0
1
0
3
0
0
0

0

0.1
0.3
0.2
0.3
0.4
0.2
0.3

Observed and fitted

5
7

16
14
1
0
0

1

1.6
4.3

16.2
17.1
6.2
2.7
7.1

7
7

13
104
24
0
8

2

4.9
5.3

15.5
86.6
24.6
2.7
5.6

13
6
7

30
53
3
2

(shown it

3

4.5
7.6
8.8

37.7
56.7
4.8
2.5

3
8

10
8

19
12
2

l bole

4

1.8
4.8
8.7

14.7
16.8
7.6
3.1

type)

3
6
8
3
3
5

5

1.5
4.4

11.4
5.2
1.8
3.8

lumber

1
1
3
0
0

6

1.2
4.9
3.5
0.5
0.8

of claims

0
0
3
1

7

1.2
1.4
0.3
0.2

0
0
1

in development

8

0.3
0.1
0.1

9

0 0.0
0 0.0

1

year

10

0.0

Total

8
28
38
31
72

191
43
6
8
0
0

6
20
37
36
77

171
50
12
9
7
0
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The following table presents these results in the same format as in Section 2,
enabling comparison of the present set of results with those from the
separation method.

Year of
i

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0
1
0
3
0
0
0

Observed

0

0
0
0
0
0
0
0

25
13
21
17
1
0
0

8
8

21
21
6
2
6

and fitted (shown

2

54
20
24

134
30
0
5

38
16
28

111
30
3
3

3

116
27
20
55
68
4
2

in

41
34
26
69
73
6
3

bold

4

30
42
45
23
35
15
2

type)

18
25
39
43
31
10
4

18
31
36
9
5
6

relative

5

9
23
51
15
3
5

6
5

13
0
0

claim frequency

6

7
26
16
1
1

7

0
0

13
3

7
7
1
1

8

0 2
0 1
4 0

in development yea

9

0 0
0 0

10

6 0

Total

60
195
193
101
131
245

53
6
5
0
0

43
122
179
109
140
220
62
12
5
6
0

9.2. Average claim ratio

For each claim in the experience, a fitted value of its claim ratio was calculated
according to (8.7) using the values of a and b tabulated in Section 8.2. Each of
these claim ratios was multiplied by the associated amount of its loan, to
produce a fitted claim size.

Observed and fitted claim sizes were then summarized in 2-way tabulations
by year of advance and development year. These tabulations are displayed in
Appendix E, and reduced to their corresponding 1-way tabulations below.

Year of

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

Total

Amount of claims

Observed

$000

51
294
398
354
632

1931
425
46

259
0
0

4388

Fitted

$000

70
312
374
323
642

2063
472

69
222

0
0

4545

Ratio:

Observed

fitted

%

73
94

106
110
98
94
90
67

117

97

Development

year

0
1
2
3
4
5
6
7
8
9

10

Amount of

Observed

$000

32
425

1750
1051
674
321
47
31
56
0
1

4388

Fitted

$000

46
471

1844
1133
642
301
38
35
28
0
7

4545

claims

Ratio:

Observed

fitted

%

70
90
95
93

105
107
124
88

199

14

97
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It should be particularly noted that the fitted amounts of claims, according
to the above description are conditional upon the observed numbers of claims.
This is a proper approach to examination of the fit of the average claim size
model. Agreement between model and data appears satisfactory.

It is useful to carry out some check that the common dependence of the
claim frequency and claim size models on the HPI does not lead to unwanted
correlation between the two. That this does not in fact occur is indicated by the
following scatter plot of the observed fitted ratios of average claim size against
a similar ratio for number of claims.

Each point represents a particular combination of year of advance and
development year. To give a simple indication of the significance of the plotted
points, they are divided into "large cells" and "small cells". The former are
those cells containing a fitted number of claims in excess of 5; otherwise the
cell is "small".

1 2
Ratio observed/fitted — numbers

m Large cells + Small cells

9.3. Loan sizes associated with claims

While Section 9.2 models the claim size which will arise from a particular loan
size if a claim occurs, it provides no indication of which loan sizes are likely to
lead to claims.

There is no particular reason to believe that the sizes of loans associated with
claims will be representative of the entire portfolio of loans advanced. Indeed,
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the table below indicates that, on average, it is the larger loans that lead to
claims.

Care is needed here, however, as the model of claim frequency in Section 9.1
conditions on LVR and other risk factors, for which average loan sizes may
differ from the portfolio average, and so without further analysis it is not clear
to what extent the inclusion of these factors in the model will effectively select
average loan sizes above the portfolio average. This question is also examined
in the following table.

Year of advance

1980
1981
1982
1983
1984
1985
1986
1987
1988

Average

As a

average loan
with past

135
144
119
116
85
95

144
97

241

109 (c)

percentage of portfolio

size associated
claims (a)

(8)
(28)
(38)
(31)
(72)

(191)
(43)
(6)
(8)

(425)

average loan size

average loan size weighted
by model numbers of

future claims (b)

96
102
101
102
102
102
103
100
98

102 (d)

(a) The numbers of claims on which the ratios are based are shown in parenthesis. For each year of
advance, the average size of loans associated with recorded claims has been calculated and
related to the portfolio average (for that year of advance).

(b) For each combination of year of advance and risk variables, the average loan advanced and
model claim frequency (according to the model of Section 8.1) are calculated. The average loan
advanced, weighted by model claim frequency, is then calculated for each year of advance.

(c) Average of the entries in the column, weighted by numbers of claims shown in parenthesis.
(d) Unweighted average of the entries in the column.

The table suggests that the average loan size associated with claims of a
particular cell for a particular year of advance is about 7 % higher than the
overall average loan size for the cell.

Thus, a forecast of future claim amount for a particular cell of development
year j of year of advance / would be computed as:

1.07 x average loan size in year of advance /

where N(i,j), Q{i,j) are estimates of N(i,j) and Q(i,j) from Sections 9.1
and 9.2.

An alternative approach to the above would be to include loan size as an
explanatory variable in the claim frequency model of Section 8.1. This might be
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awkward in practice, however, because it would increase very considerably the
number of data cells entering into the regressions of Section 8.1.

10. CONCLUSION

Section 8 fits models to the claim frequency and claim ratio in the mortgage
insurance portfolio examined. Section 9 verifies that these models provide a
reasonable fit to the data.

The models therefore can be, and indeed have been, used to estimate the
liability for claims still to emerge in respect of past years of loan advance. In
order to carry out this estimation, one needs to project future values of the
HAI and HPI. This in turn requires projection of incomes, tax rates, mortgage
interest rates and growth in property values. Projections such as these are,
problems of substance in their own right, but are beyond the scope of the
present paper.
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APPENDIX A

DEPENDENCE OF CLAIM FREQUENCY
ON HOME AFFORDABILITY INDEX

Let X denote the random variable representing the proportion of an individ-
ual's income required for tax, consumption and mortgage instalment. Assume
this variable to be Pareto distributed, i.e. with p.d.f.:

(A.I) f(x) = kx~x~\ k const.

The borrower will experience financial difficulties if X> 1, which occurs
with probability:

(A.2) P[X>\] = kx~ala.\x=l.

Now, suppose that X shifts by a factor of c to X' = cX. Then the probability
(A.2) shifts to

(A.3) P[X' > 1] = P[X> 1/c] = kx-"/a\x=lle.

Comparison of (A.2) and (A.3) shows that the probability (A.2) has shifted
by a factor of ca. Now note that the scale shift of X to cX must shift the mean
of A' by a factor of c:

(A.4) E[X'] = cE[X].

Let

Y= l-X,
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and note that

(A.5) E[Y] a HAI.

Then the factor by which HAI changes when X changes to X' is:

(A.6) R = {l

where

fi = E[X].

Inversion of (A.6) yields:

(A.7) c = [l-R(l

Thus, the shift in HAI by a factor of R causes the frequency with which
borrowers experience difficulties to shift by a factor of:

(A.8) c" = {[l-R{\-n)]/ri".

Now, it is convenient to analyse log (claim frequency), which will depend on
log (frequency of borrower's difficulties), and (A.8) shows that this latter will
depend on an additive term of:

log ca = a log {[l-R(\-M)]lfi}
~ -txR(\ —/*) + const.,

for small values of (1—//)/?.
Thus, to first approximation, the model of expected log (claim frequency)

should include a linear term in R, the ratio by which HAI has changed since
advance of the loan(s) in question.

APPENDIX B

DEPENDENCE OF CLAIM FREQUENCY
ON HOUSING PRICE INDEX, LVR AND DEVELOPMENT YEAR

Consider a loan taken at time t = 0. Let V(t) be the value of the associated
property at time t, and P(t) the amount of principal then outstanding. Then

(B.I) V(t)=V(0)[H(t)/H(0)],

(B.2) P(t) = P(0)f(t),

where

H{t) = HPI at time t;

f{t) = proportion of principal still to be repaid at time t.

By (B.I) and (B.2),

(B.3) P(t)IV(t) = Lf(t)H(0)/H(t),
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where

(B.4) L = P(0)/V(0) = loan to valuation ratio.

Suppose that the borrower has encountered financial difficulties at some time
s < t. At time t sale of the property is forced. At that point, the debt in respect
of the loan will be P(t) <x(t), where

tx{t) = a random variable representing the factor by which outstanding princi-
pal has been enlarged by arrears of principal and interest and any other
costs.

Similarly, the net proceeds of the sale of the property will be V(t) /?(?)>
where

P(t) = a random variable representing the factor by which the property value
has been reduced by the forced nature of the sale and the associated
expenses.

Then the ratio of outstanding debt to sale proceeds is:

(B.5) X(t) = y(t)P(t)/V(t),

where

(B.6) y(/) = a(O//?(O-

By (B.3) and (B.5),

(B.7) X(t) = L[H(t)/H(0)Vlf(t) y(t).

A claim will occur if X(t) > 1, i.e. if

(B.8) y(t)>[H(t)/H(O)][Lf(t)rl.

Now suppose that y(t) is Pareto distributed with d.f.

(B.9) F{y)=\-{ylay\ y>a,

assumed independent of t. Then, by (B.8), the probability of occurrence of a
claim is:

(B.10) P[X(t) > 1] = {a fit) L[H(t)/H(0)rl}\

Thus, expected claim frequency varies as a power of L [H(t)/H (0)]"1. Note
also that claim frequency for policies of a particular term n varies over
development years t by a factor of

(B.H) [f(t)Y a [a^Y,

which has the shape illustrated by the solid line in the following diagram.
However, note the above assumption that the distribution of the factor y(t)

is independent of t. While perhaps largely true, it will break down as t —• 0 as the
screening procedures of the lender force claim frequency toward zero. Hence,
the curve (B.I 1) of frequency over development year will be modified for small
; in the manner indicated by the broken line in the diagram.
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When allowance is made for the variety of original terms n, the dependence
of claim frequency on development year is seen to be represented by a weighted
average of curves of the type illustrated in the diagram.

APPENDIX C

DEPENDENCE OF AVERAGE CLAIM SIZE
ON HOUSING PRICE INDEX

As noted just prior to (B.8), the financial difficulties of a borrower will lead to
a claim if X(t), as defined there, exceeds 1. In fact, by the same argument as
led to that result, the amount of the claim will be

(C.I) = a{t)P{t)-p{t)V(t)

= P(t)V(t)[X(t)-l].

Note that fi{t) and y(t) (and hence X(t)) will not be independent, even if
x(t) and /?(*) are.- For general random variables Y and Z, let [iY

 a n d Mz denote
their means, vY and vz their coefficients of variation, and pYZ their correlation.
It is straightforward to demonstrate that:

(C.2) E[YZ]=Myfiz(l+pYZvYvz).

By (C.I) and (C.2),

(C.3) E[A(t)]= V(t) E[X{t)-\]+

where E[Y]+ denotes E[Y\Y> 0].
Now, by (B.5)

(C.4) =E[y(t)-V(t)/P(t)]+P(t)/V(t).
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By the Pareto assumption (B.9),

(C.5) E[y(t)- V(t)/P(t)]+ = [V(t)/P(t)] v/(v- 1),

whence (C.3) and (C.4) yield:

(C.6) E[A(t)]= V(t)/ip(l+pilxvpvx)v/(v-l)

<xV(0)H(t)/H(0) [by (B.I)]

if Up, Vfi, vx and ppx are the assumed independent of t.
Thus, the expected average claim size is directly proportional to property

values, all other things equal. This has the interesting effect of causing average
claim size in respect of a group of identical policies usually to increase with
development year even though outstanding principal is decreasing.

APPENDIX D

EXPLORATORY ANALYSIS OF CLAIM SIZE

Dl. Variation of claim ratio with loan to valuation ratio

Loan to
valuation

ratio

up to 50%
50 to 60%
60 to 70%
70 to 80%
80 to 90%
over 90 %

Number
of claims

1
1
8

36
189
191

Claim to loan ratio

Sample
mean

55.8 %
56.9%
23.3%
23.9%
22.9%
23.5%

Sample
standard
deviation

13.7%
19.2%
18.4%
15.6%

95% confidence limits (a)

Lower

11.8%
17.4%
20.3%
21.3%

Upper

34.8%
30.4%
25.6%
25.7%

(a) These are the symetric /-distribution confidence limits. Where the sample size is less than 2, the
confidence limits do not exist.

D2. Variation of claim ratio with term

Term

months

60 to 119
120 to 179
180 to 239
240 & more

Number
of claims

3
16
55

352

Claim to loan ratio

Sample
mean

36.4%
34.8%
28.4%
22.0%

Sample
standard
deviation

14.1%
29.8 %
20.2%
15.6%

95% confidence limits (a)

Lower

1.3%
18.9%
22.9%
20.4%

Upper

71.4%
50.7%
33.9%
23.7%

(a) See Appendix Dl.
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D3. Variation of claim ratio with area

Area

Ml , M4
M2
M3
M5
Canberra
Coastal
Newcastle
Wollongong
Other

Number
of claims

29
63
77

5
4

100
32
0

116

Claim to loan ratio

Sample
mean

16.5%
21.2%
16.5%
25.8 %
23.1%
24.6%
31.7%

27.5%

Sample
standard
deviation

11.7%
15.0%
12.6%
14.8%
13.0%
18.2%
17.2%

19.4%

95 % confidence limits (a)

Lower

12.0%
17.5%
13.7%
7.5%
2.4%

21.0%
25.6%

23.9%

Upper

20.9%
25.0%
19.4%
44.1%
43.8 %
28.2%
37.9%

31.1%

(a) See Appendix Dl .

D4. Commentary

All pairs of confidence limits in Appendices Dl to D3 straddle the overall
mean of 23.4% except in four cases. All four of these cases relate to area of
residence, and are found in Appendix D3.

APPENDIX E

COMPARISON OF OBSERVED AND FITTED CLAIM AMOUNTS

The following are the amounts of claim observed in respect of each combina-
tion of year of advance and development year.

Year of
advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0

$

0
9591

0
22882

0
0
0

1

$

60085
45337

161743
150351

7054
0
0

Amount of claims observed in

2

$

71488
71469
68811

1060021
219581

0
258976

3

$

115151
29799
61801

325411
474840
28174
15810

4

$
28522
69711

102851
85959

180820
179612
26638

5

$
13349

105156
81026
64416
11766
44976

development year

6

$
7873
3724

35484
0
0

7

$
0
0

20827
10110

8

$
0
0

56169

9

$
0
0

10

$
1009
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The following are the amounts of claims fitted to each combination of year
of advance and development year by the procedure described in Section 9.2.

Year of
advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0

$

0
14819

0
30697

0
0
0

1

$

51324
68421
185929
151670
13995

0
0

Amount of

2

$

56280
96763
121228
1089849
258058

0
221693

3

$

125940
43406
63585
258339
576994
41149
23866

claims fitted in development year

4

$
27287
91833
129344
74571
167683
130423
20740

5

$
25853
84727
70032
29094
26301
64647

6

$
9332
9687
19012

0
0

7

$
0
0

27658
7572

8

$
0
0

28253

9

$
0
0

10

s
7380

Each cell in this table is of the form:
actual number of claims
x
fitted average claim size.

Hence comparison of the table with the previous one examines only
variation of experience from model amounts of claim.

An alternative version of the preceding table consists of cells of the form:
fitted number of claims

fitted average claim size.
This table is as follows.

Year of
advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

0

$

0
4668

0
3131

0
0
0

1

$

15962
41551
188718
185146
86881

0
0

Amount of i

2

$

39396
73512
144634
907194
264079

0
153966

3

$

44040
55278
80326
324560
617384
66099
29785

;laims fitted in development year

4

$
16472
55444
111986
136558
148532
82395
31805

5

S
13202
61935
99883
50459
15693
49662

6

$
11077
47805
22086

0
0

7

$
0
0

2637
1408

8

$
0
0

2910

9

$
0
0

10

$
52

For cells in which where are no claims observed, the procedure of Section 9.2 does not produce a
fitted average claim size. These cells, indicated in bold, have been assigned a fitted amount of claims
equal to zero.
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APPENDIX F

HOME AFFORDABILITY INDEX

i ear
(as at
31 De-
cember)

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

Economic indicators

Aver-
age

weekly
ear-

nings

$

224.35
246.00
278.25
315.90
346.70
375.90
405.40
428.20
450.85
477.70
521.65
560.75
600.68

Con-
sumer
price
index

82.4
91.1

100.0
110.2
123.4
130.9
136.0
147.5
161.4
173.7
187.7
203.0
213.0

Mort-
gage

interest
rates (a)

p.a.

11.50%
11.50%
12.00%
14.50%
15.50%
14.00%
13.50%
15.00%
15.50%
14.50%
14.25%
17.25%
15.50%

Gross
house-
hold

income
(b)

$ per
week

562.74
617.05
697.94
792.38
869.64
942.88

1016.88
1074.07
1130.88
1198.23
1308.47
1406.55
1506.69

Household

Tax
(b)

$ per
week

118.28
129.70
146.70
166.55
182.79
198.19
213.74
225.76
237.70
251.86
275.03
295.64
316.69

Con-
sumer
expen-
diture

(b)

$ per
week

326.21
360.65
395.89
436.27
488.52
518.22
538.41
583.93
638.96
687.66
743.08
803.65
843.24

expenditure

Mort-
gage

instal-
ment
(b)

$ per
week

64.40
70.61
82.26

107.18
123.78
124.22
130.41
149.07
160.96
162.07
174.68
217.77
214.46

Residua

Amount

$ per
week

53.85
56.08
73.10
82.39
74.54

102.26
134.33
115.30
93.25
96.64

115.68
89.48

132.30

income

As per-
centage

of
gross

income

9.569%
9.089%

10.473%
10.397%
8.572%

10.846%
13.210%
10.735%
8.246%
8.066%
8.841 %
6.362%
8.781%

(a) The most common interest rates applying to loans in the mortgage insurance portfolio under
analysis.

(b) These four columns were derived in a consistent manner from the HES, as described in
Section 3.2.
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APPENDIX G

DATA

The data described in Section 4.2 are summarized in the following table. This
should be considered in conjunction with the qualification set out in the final
paragraph of Section 4.2.

Year of

advance

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

Number
of loans
advanced

1700
1917
2231
3426
5496
7787
8077
9910
17646
11878
13614

0

0
1
0
3
0
0
0

Number

1

5
7
16
14
1
0
0

2

7
7
13
104
24
0
8

of claims (a) recorded

3

13
6
7
30
53
3
2

4

3
8
10
8
19
12
2

5

3
6
8
3
3
5

n development year

6

1
1
3
0
0

7

0
0
3
1

8

0
0
1

9

0
0

10

1

(a) Development year is defined as year of emergence of claim minus year of loan advance. Claims
emerging in 1984 represent the experience of only 7 months.
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