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CHROMATIC SUMS FOR ROOTED PLANAR 
TRIANGULATIONS, IV: THE CASE x = oo. 

W. T. TUTTE 

Summary. The chromial P(M, X) of a planar near-triangulation M has 
the leading term Xr(M), where v(M) is the number of vertices of M. The prob
lem of finding the number of rooted planar near-triangulations of a given 
class S, all supposed to have the same number of vertices, can be regarded as 
a special case of the problem of finding chromatic sums. We can sum P(M, X) 
over the members of S, divide by the appropriate power of X and let X —> oo. 
We thus get the sum of the coefficient of the leading term of P(M, X) for all 
M G S, that is we get the number of members of S. This is why we classify 
such enumerative problems under "the case X = oo". We adopt this point of 
view in the present paper while enumerating certain kinds of rooted planar 
triangulations and near-triangulations. Some of the results have been published 
before. 

In an extension of the theory we sum the coefficient of X ^ ^ - 1 in P(M, X), 
this coefficient being minus the number of pairs of adjacent vertices in M. 
Since our triangulations and near-triangulations may have multiple joins the 
number of such pairs is not necessarily equal to the number of edges. We give 
a formula for the average number of such pairs in rooted planar triangulations 
of 2n triangles. 

1. On chromials. The chromial P(G, X) of a connected graph G of v(G) 
vertices can be written as 

(i) P(G,X) = Hf:1Ajy
(G)-\ 

where the Aj are integers. In the theory of chromials it is shown that Aû is 
non-zero (if G is loopless) for each integer j satisfying 0 rg j ^ v(G) — 1. 
Moreover the coefficients Aj alternate in sign, and A0 = 1. (See for example 
[2] or [4]). 

It is sometimes convenient to replace the above polynomial P(G, X) by 

V(G)-1 

(2) 0(G,M) = E A^\ 
j=0 

If we write ju = 1/X we can relate P(G, X) and Q(G, /x) as follows 

(3) <2(G,M) = X-<*>P(G,X). 
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This formula becomes meaningless if /x = 0; but in that case Q(G, /*) takes 
the value A0 = 1, by (2). 

If G is the graph of a planar map M it is usual to write P(G, X) = P(M, X). 
Correspondingly we write Q(G, ju) = Q(M, ju). 

We introduce the generating series 

(4) g = g(X, Y, Z, a) 

= £ Xm(mYnimZUM)Q(M,»), 
M 

in analogy with Equation (1) of I [5]. The sum is over all rooted near-triangula-
tions M. We now write 

(5) 5 = g(X,Z, M ) =g(X, 1,Z,M). 

We also write / = 1(Y,Z,\L) for the coefficient of X2 in g, and we put 
^ = h(Z, y) = J(l, Z, /z). Evidently Â is the coefficient of X2 in g. 

We proceed to relate the newly defined series to the series g, q, I and h of I. 
The number of faces of M is clearly t(M) + 1 and the number of edges is 
(St(M) + m(M))/2. Applying the Euler polyhedron formula we find that 

(6) v(M) = 1 + (m(M) + t(M))/2. 

Let î ^ b e a square root of X. Then by (3) 

P(M,\) = \wmW+lWQ(M, M). 

Thus 

g = £ xm(MV(MV(M)P(M, X) 

= X 2 (t«e)"Ufyw')(«»)'(Jf)0(M,M). 

Let us write 

(7) X = m , F = 3;, Z = wz. 

Then we have 

(8) * (* ,? ,* , M = Xg(X, F,z , /*) 

and therefore 

(9) <?(*,*, X) = \Z(X,Z,p). 

Now Z(;y, z, X) is the coefficient of x2 in g(x, y, z, X), which is X times the 
coefficient of X2 in g(x, 3% z, X). Hence, by (8), 

(10) l(y,z,\) = \2i(Y,Z1»)1 

(11) h(z, X) = \2h{Zyix). 
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Substituting from these formulae into the chromatic equation, Equation (13) 
of I, we obtain 

vrlXg\ = w-*X*Y\(\ - 1) + \Yw~lZgq 

+ Yw~lZ(\g - w~2X2\2l) - w~*X2Y2Z A (Xg), 
that is 

(12) Xg = (1 - n)X*Y + YZgq + YZ(g - X2l) - »X2Y2Z A (f). 

Since Y = y there is no need to reinterpret the operator A. 

2. The case [x = 0. We now put M = 0 in (12). This has the great advantage 
of eliminating the term in A(g). We find 

(13) Xg = X*Y + YZgq +YZ(g- XH). 

Putting Y = 1 in this we obtain 

(14) Xq = X3 + Zq2 + Z(q - X2h), Zq2 + (Z - X)q + (Xs - X2Zh) = 0. 

This equation resembles those for l(y, z, T + 1) and l(y, z, 3), encountered 
in I I and III [5]. We can solve it in the same way. Thus 

(15) (2Zq + Z - X)2 = D, 

where 

(16) D = (Z - X)2 - AZX* + 4:Z2X2h. 

In analogy with the two other cases we can show that there is a power 
series £ in Z such that 

(17) 2 Z g & Z , 0 ) + Z - £ = 0. 

We then have 

(18) {D}x^ = 0, [dD/dX]x=z = 0. 

Equations (18) are equivalent to the two following: 

(19) Z2 - 2Z£ + e - 4Z£3 + 4Z2£2/* = 0, 

(20) - Z + £ - 6Z£2 + 4 Z 2 ^ = 0. 

Eliminating h we find 

Z2 - Z$, + 2Ze = 0 

or, since Z is not identically zero, 

(21) Z = f (1 - 2£2). 
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Substituting this result in (20) we find that 

(22) h 1 - 3T 
( l - 2 £ 2 ) 2 -

Substituting for Z and h in (16) we find that 

(23) D = £2(1 - 2£2)2 - 2£(1 - 2£2)X + X2 

+ 4£2(1 - 3£2)X2 - 4£(1 - 2£2)X3, 

JO = (1 - 2^2)(X - £)2(1 - 2£2 - 4£X). 

We can now solve (15) for q. 

X - | + 2 f , ( Z - g ) ( l - 2 f ) 
2f (1 - 2?) Q 2K1 - 2 f ) ± {-T^r 

1 - 2f "*" 2£ 1 - 2|2 

The negative sign is chosen to avoid negative powers of Z when the expression 
is expanded in terms of X and Z. 

It is convenient to make use of a function y(t) defined by 

(24) 7(0 = 1 + ty*(t), 

and having no singularity at t — 0. It can be expanded by Lagrange's Theorem, 
or by the Binomial Theorem, as follows. 

tA Ln\(n + 1)! J (25) 71 

Formula (24) can be rewritten as 

(26) 7(0 = 

Hence our equation for q is equivalent to the following: 

(27) ï = j ^ p + - f ^ a r ir="2?J • ( " = 0)-

1 - (1 - 4Q* 
2/ 

3. The coefficients in Â(Z, 0) and g(X, Z, 0). Writing 0 = £2 in (21) and 
(22) we find 

(28) 

(29) 

Z% = d - 302, 

d(Z2h)/dd = 1 — 66», 

(30) 
(1 - 2 0 ) 2 * 
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Applying Lagrange's Theorem we deduce that 

zïh= 5 iirL\dd) la -20)4Loi ' 

= z m~\ (1 - 26Y 

„4l I w! L (2n - 2)! 

» / 2 " - 1 (3 : 

~ h \ »!(ï 

- 3)! 2-2"-1-(3» 

(1 - 20)2" 

2)! 

}]..}• 

(2w - 1)! J 

!(2« - 1)! 

^ n S V / 2"(3«)!Z2" ) , m 
(31) Â = 5 t(« + l)!(2»-+lj!/ ' (" = 0)-

For n > 0 the coefficient &2» of Z2n in /z is the number of rooted planar 
triangulations with 2n faces, or dually the number of rooted non-separable 
trivalent planar maps with 2n vertices. Formulae equivalent to (31) appear 
in [1] and [3]. 

An application of Stirling's Theorem to (31) gives 

(32) h In 
! ( ! ) ' » - ( ! ) • 

(M = 0). 

Formulae (31) and (32) can be used in determinations of averages. Thus if 
we wish to find the average number of 3-colourings for rooted planar triangu
lations of 2n faces we have only to divide the hin of I I I , § 4, by h2n> This gives 
the average exactly. If we need only an asymptotic approximation we can use 
Formula (33) of I I I with Formula (32) of the present paper and obtain 

12V3(16/27y\ 

It seems likely, though it has not yet been proved, that the average number of 
3-colourings for unrooted planar triangulations with 2n faces is given 
asymptotically by the same expression. 

We now turn to the study of q, with ju = 0. From (25) and (27) we have 

Q = 
XI X* xz 

(1 - 2£2) + 1(1 - 2£2) (1 - 2£2)J £ j U!(» + 1)!(1 
(2n)lXT 

2£2) -I 
The coefficient of X in this formula is found to be zero, and the coefficient of 
X2 is 

(1 - 3£2)/(l - 2?)\ 

in agreement with (22). For larger values of n we can write the coefficient qn 

of Xn in q as follows: 

(33) <Z« 
(2« - 4)!{" 

(n - 2)!(« - 1)!(1 - 2 ^ ) - i 
(2» - 2)!{" 

(n - 1)!H!(1 - 2 r ) " 
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Using (21) and writing 9 = £2 as before we rewrite this as 

, w , _ (2* ~ 4)!Z-2 (2n - 2)!Z»  
^ J g w ( w _ 2 ) ! ( w _ 1 ) ! ( 1 _ 2^2n-3 ( w _ 1 ) ! w ! ( 1 _ 2d)2n. 

To eliminate 0 we require the expansion of (1 — 2d)~k, where k is a positive 
integer, as a power series in Z. We use (30) in an application of Lagrange's 
Theorem and obtain 

or 

<w n an -* - * f 2™(3m+£ - i)!Z2-
( 3 5 ) ( 1 " 2 ^ " * £ & m!(2m + £)! * 

Using (34) and (35) we find that forn > 2 the coefficient of XnZn+2i in q, 
where j may take all integral values from —1 upward, is 

(2n - 3)!2 J + 1(3j+ 2w - 1)1 2-(2n - 2)!2 i(3j + 2n - 1)! 
(n - 2)!(» - l ) ! ( j + l)!(2j + 2^ - 1)! (n - l)l(n - l)ljl(2j + 2n)\ ' 

If j = — 1 the second quotient is to be interpreted as zero. This formula can 
be written more simply as 

2'+2(2w - 3)!(3j + 2n - 1)!  
(n - 2)!(w - 2)!(j + 1)!(2« + 2j)\ ' 

We now rewrite this formula more in accordance with the conventions of I, 
first noting that it is valid also when n = 2, by (31). Let qtf]c denote the coeffi
cient of Z ' J M f c + 2 in q. By Equation (16) of I this coefficient can be non-zero 
only if 0 ^ k g t/2. We substitute k - 1 for j and / - 2k + 2 for w, thus 
obtaining 

/ofiN - = 2 * ( 2 ; - 4 £ + 2 ) 1 ( 2 / - £ ) ! 
^ D ; g<'* (* - 2*)!(* - 2k + 1)!*!(2* - 2& + 2)! " 

An equivalent formula was given by R. C. Mullin in [1]. 

4. The chromatic sum I in the case /x = 0. We go on to consider the sum 
J (F, Z, 0). The author does not know of any earlier treatment of this in the 
literature. For pt = 0 the coefficient ltfS of Ys+1Zl can be interpreted, provided 
t > 0, as the number of rooted planar triangulations with t faces and with a 
root-vertex of valency 5. It seems likely that this coefficient will sometimes be 
needed in determinations of averages, though the author has no immediate 
application of this kind in mind. We therefore find an exact explicit formula 
for this coefficient. 

In what follows /x = 0. We obtain an equation for I by modifying the method 
of III, section 5. First we rewrite our Formula (13) as 

(37) (X - YZq - YZ)g = X 3 F - X2YZL 
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We introduce a power series 77 in 7 and Z defined by the following equation 

(38) rj - YZq(v,Z,0) - YZ = 0. 

The coefficients in 77 can be found, using (36), by equating coefficients for 
successive powers of Z in (38). Thus the coefficient of Z° is zero and the 
coefficient of Z1 is Y. Thus the formal power series rj is well defined. From (37) 
and (38) we find 

(39) 77 = Zl 

By substituting 77 for X in (14) we obtain 

(40) Zg2(>7, Z, 0) + (Z - 77)5(77, Z, 0) + (T73 - rj2Zh) = 0. 

Elimination of §(77, Z, 0) between (38) and (40) gives 

Z(T7 - YZ)2 + YZ(Z - 77)(77 - YZ) + Y*Z2(r)* - rj2Zh) = 0, 

F2ZT73 + (1 - F - F2Z2Â)T72 - FZ(1 - F)T7 = 0. 

Since 77 is not identically zero it follows from (39) that 

(41) Y2ZH2 + (1 - F - Y*Z2h)ï - F ( l - F) = 0, (M = 0). 

This equation can also be written in the forms 

(42) Y2ZH(l - h) + (1 - F)(J - F) = 0, 0* = 0), 

and 

(43) A (/) = 1/F2Z2 - 1/FZ2/, (/x = 0). 

Now let us write the equation in terms of the parameter 0. We have 

F20(1 - 20)2/2 + (1 - F - F20(1 - 30))/ - F ( l - F) = 0, 

that is 

(44) {2F20(1 - 20)2/ + 1 - F - F20(1 - 30)}2 = Du 

where 

(45) D1 = (1 - F - F20(1 - 30))2 + 4F3(1 - F)0(1 - 20)2. 

Other forms of the last equation are 

Z>x = 1 - 2 7 + 72(1 - 20 + 602) 
+ 73(60 - 2202 + 1603) + 7 4 ( - 4 0 + 1702 - 2203 + 904), 

(46) D1 = (1 - 7 + 07)2((1 - 07)2 - 40(1 - 20) 72). 

Since 

1 - 7 - 0(1 - 30)72 = (1 - 07)(1 - Y + dY) - 20(1 - 20)72 
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we can deduce from (44) and (45) that 

. 20(1 -26)Y2 ( 1 - Y + 8Y)(l-8Y)j 
26(1 - 2dfY2 + 26(1 - 20)2F2 \ 

1 -
49(1 - 2 0 ) F 2 

(1 - 6Yf J ) ' 

We choose the sign to avoid negative powers of Y in the final expansion of /. 
We may now write 

(47) 
- _ 1 (1 - Y + 6Y) /fl(l - 20)F2 \ 

1-26 (l-26)(l- 8Y) y\ (1 - 6Yf j ' 

with of course n = 0. 
As a partial expansion of (47) we have 

,- 1 _ , „ - J 1 _ l - e \ f, / (2n)W(l - 2fl)KF2" \ 
1 1-26^ \l-8Y 1 - 26) h \n\(n + l)\(l - 6Y)2nf • 

This formula gives the coefficient of Y° in I as zero, which is correct. It gives 
the coefficient Cs of F s + 1 , where 5 ^ 0, as the coefficient of Ys+1 in 

A ^ j (2w)!8"~1 

i à* l»!(» + l)!L 

that is in 

(1 - 20)"(2» + r)\6rYr+2n 

(2»)!r! 

(1 - fl)(l - 26)"-1(2n - 1 + r)WY 
(2n - l)\r\ 

r -r/r+2n 

}• 

zzip-^^r-'n *-»<>+>» 
From this we infer that 

^ j (1 - 26)n-16s-ns\ \ t ( s ^ / 2 1 / ( l - 2fly-y+1-ws!(s + 1 - » ) \ 
C s _ jèS l»!(» + 1)!(* - 2»)!/ je* 1 »!(n + l)!(s + 1-2»)! / ' 

[s/2] 

(48) Cs = £ 
s!Z* 

tA ln!(» + l ) ! ( s - 2 » ) ! ( l - 26)' 
[(s+D/2] C 

5 W 
y ! z 2 , - 2 , + 2 ( 5 _ n + 1 } 

+ l)!(s - 2n + 1)!(1 - 2d)2s-3~n+"f ' 

The coefficient of Z2:/_2s+2w in (1 — 20)~2s+372_1 is non-zero only if j — s + 
w ^ 0. It is then 

(Sj - s)\2j-s+n(2s- 3n + 1) 
(j - s + n)\(2j - n + 1)! ' 

by (35). Similarly the coefficient of Z2j-2s+2n~2 in (1 - 20)-2s+3"-3 is 

(3j - 5 - l)\2j-s+n-1(2s - 3n + 3) 
( j - 5 + n - l)!(2j - n + 1)! 

if j — s + w — 1 ^ 0, and is zero otherwise. 

https://doi.org/10.4153/CJM-1973-099-9 Published online by Cambridge University Press

file:///l-8Y
https://doi.org/10.4153/CJM-1973-099-9


CHROMATIC SUMS 937 

We may now deduce from (48) that l2j,s, the coefficient of Ys+1Z2j in J, is 
given by the following formula. 

Ï4QÏ j = V 1 / sl(Sj - s)\2j-s+n(2s - 3n + 1) I 
k ; 2J,S »-™5if.r-i) l»!(» + D!(s - 2»)!(j - 5 + n)l(2j - n + 1)!J 

*~Tm / J ! ( 3 J - J - l)!2 J~ s + w(25-3w + 3 ) ( ^ - w + 1) \ 
éf-H-v, \nl(n + l)l(s -2n + l)\(j - s + n - l)!(2j - n + l ) ! j ' 

I(s+1)/21 

I 
»=max(0, 

5. Derivatives at M = 0. Continuing our study of the function g at M = 0 
we apply the operator A to (37). 

(X - Zq - Z) A (|) - (Zg + Z)g = X3 - X2Z/~ - X2Z A (I). 

Hence, by (37), 

(X - Zq- Z)(X - YZq - YZ) A (g) - (Zq + Z)(X*Y - X*YZÏ) 

= (X - FZg - FZ)(X3 - X2Z/~ - X2Z A (/)), 

X3(X - Zl)  
(50) A (|) = 

y27 A H\ 

0* = 0). 

(X - Zq - Z)(X - YZq - YZ) 
X2ZA (/") 

(X - Zq - Z) ' 

Formula (12) is valid for all fi. Let us denote derivatives with respect to n 
by primes. Differentiating with respect to fi and then setting /i = 0we obtain 

Xg' = - X 3 F + YZ(gq' + i'2) + YZ{g' - X*V) - X^Z A ( |) , 
(51) (X - YZq - YZ)g' = - X 3 F + FZfg' - X2FZZ' - X2Y2Z A ( | ) , 

0* = 0). 

Now let us write F = 1 in some of the foregoing equations. From (37), 

(52) (X - Zq- Z)q = X2(X - Zh), (jt = 0). 

From (43) we have 

(53) {A (l)}r-i = (* - 1 ) / 2 2 Â , (M = 0). 

From (50) and (52), 

<72X3(X - Zh) qX2Z\ A (/)} r - i 
X\X-Zhf X\X - Zh) ( A ( f ) } r - i = V ^ / v - ^FT2 ^2 -

^2 gX2Z(Â -^ y , b y ( 5 3 ) , 
X(X - Zh) X2Z2h(X-

^ y , b y ( 5 3 ) , 

qZh - qXh + qX 
XZh(X - Zh) 

h(-Zq-X3+X2Zh) + qX 
XZh(X - Zh) 
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by (52). Thus 

(54) \A(g)}Y=i = g~^~, (ji = 0). 

From (51) and (54), 

(55) (X - 2Zq - Z)q' = - X 3 - X^Zh' - X(q - X*h)Jr\ 

(2Zq + Z - X)q' = X^Zh1 + X(q/h), (M = 0). 

In this equation we substitute the parameter £ for X and apply (17). We 
find 

0 = eZh' + £(£ - Z)/2Zh, 

h' = -2£72£ 3(1 - 3£2), (by (21) and (22)), 
(56) V = - ( 1 - 3 I * ) - 1 , (M = 0 ) . 

Using (55) and (56) we can express q' in terms of X and £ as follows. 
From (23) and the ensuing resolution of the ambiguity of sign we have 

2Zq + Z-X = -{l-2?)(X-Ç) 
L1 (1 - 21 

But 
(i - 2n . 

-X^q - 2?) X(l - 2ff 
(1 - 'if) + (1 - 3£2) X2Zh' + X(q/h) = " , " ' * ? - + --Tt 5 P T 3 

X ( l - 2g2)X(X - g) 

Hence, by division, 

(i - 3n 

2£(1 - 3£2) 

r kx 1 
1 ( 1 - 2 * 2 ) J 

by (27), 

X ( X - £ ) ( l - 2 £ 2 ) 2 

1 - 1 -
4£X 

(1 - 2£0J 

q = 
X ( l - 2£2) 
2{(1 - 3£2) {-['- 4£X 

(1 - 2 |2)J 
(57) 

for M = 0. 
The author has not investigated V(Y, Z, 0) in detail. It can however be 

expressed in terms of known functions by substituting the parameter rj for 
X in (51). The expression on the left then vanishes. The expression g(77, F, Z, 0) 
occurs in the resulting formula. However this can be counted as a known 
function, for it can be shown by an application of l'Hospital's Rule to (37) 
that 

(58) K17, F , Z , 0 ) = 
77 (277 - T)Y - YZ) 

Z( l - Y + V
ÀY) ' 

The effect of substituting 77 for X in A (g(X, F, Z, 0) can be determined 

from (50). 

6. Pairs of adjacent vertices. There is a graph-theoretical interpretation 
of the derivatives h' and qf at ju = 0, given by the following theorem. 
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(6.1) Let G be any loopless graph. Then the coefficient Ai(G) of XP(G° -1 in 
P(G, X) is minus the number of pairs of adjacent vertices in G. 

Proof. If G is edgeless P(G, X) = \V(G\ and the theorem is trivially t rue. 
Assume as an inductive hypothesis t ha t the theorem holds whenever the 
number e(G) of edges of G is less than some positive integer j , and consider 
the case e(G) = j . 

Let A be any edge of G. Let G'A be the graph obtained from G by deleting A, 
and G"A the graph obtained from G by contract ing A to a. single vertex. 

Suppose G to have a second edge joining the ends of A. Then the deletion 
of A changes neither the chromial nor the number of pairs of adjacent vertices. 
Since the theorem is t rue for Gf

A by the inductive hypothesis, it is t rue also 
fo rG . 

We m a y now assume tha t A is the only edge joining its two ends in G. By a 
well-known and easily proved theorem we have 

(59) P(G, X) = P(G'A, X) - P(G"A, X). 

We observe tha t G"A is loopless. T h e number of pairs of adjacent vertices is 
one less in G'A than in G. But v(G) — 1 is the number of vertices of G"A, and 
therefore the coefficient of Xc(Gr)_1 in P(G;/

A, X) is 1. Since the theorem holds 
for G'A by the inductive hypothesis it holds also for G, by (59). 

T h e theorem follows in general by induction. 

Now for n > 0 the sum over all rooted planar tr iangulations T of 2n faces 
of the number K(T) of pairs of adjacent vertices of T is the coefficient —h\n 

of Z2n in - A ' , with /x = 0. But 

-h! = (1 - S^2)-1 = (1 - 30) - 1 

= 1 + 3 È 

n\ (r 2n n-1 

'•> j=0 

( 1 -

(n 

2eyn(i - 3<?y 

1)! 
j\(n - 1 - j)\ \de/ 1(1 -( l - 2ey 

x W {(i-m'Ue^n 
iz2n(n 

i + 3 E z r •< i 

, (1 - 3 0 ) 2 ' 

1)1(2» + j - l)l23'Zn-1-i(n -j)[ 

= 1 + 2 h 1(2»)! è l 

• j ) ! ( 2 « - 1 ) ! 

: » + j - l ) ! ( 2 / 3 ) J ( » - j ) }}• 
}̂ 

T h u s 

(60) -h'u = 
2-3" 
(2«). E 

7=0 

( 2 » + j - l ) ! ( 2 / 3 ) J ( » - j ) 

j \ 
a } . 

provided t ha t w > 0. 
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For large n we can use an asymptotic formula derived as follows. From (60) 

2-3" (3M -- 2)!(2/3)--v in — (2»)!(« - 1)! 

3-2"(3n - 2 ) ! / 

3(» 

(2M)!(M 

_ ! ) ( „ _ 
- 1 ) ! ' 

•2)(3/2)2 
where 

2 ( n - l ) ( 3 / 2 ) 
"*" (3M - 2) ^ (3M - 2) (3M - 3) 

4 ( M - 1 ) ( M - 2 ) ( M - 3 ) ( 3 / 2 ) 3 

"*" (3w-2) (3w - 3) (3w - 4) "t" " * "' 
to M terms. 

Each term in the sum / is positive, and less than the corresponding term in 
the absolutely convergent series 

H = 1 + 2 • 2-1 + 3 • 2-2 + 4 • 2-3 + . . . . 

For large n the sum of the first 5 terms of / , where 5 is fixed, can be approxi
mated asymptotically by the sum of the first 5 terms of H. Since 5 may be 
taken as large as we please it follows that 

J ~ (1 - 2 - 1 ) - 2 = 4, 

_ p _ 4-2"(3M)! 
2n 3M-(2M)!M!' 

(61) - ^ ~ ( ( 3 ^ ) W ~ 3 / 2 ( f ) " ' 0 . - 0 ) . 
by Stirling's Theorem. 

From (32) and (61) we have 

(62) ^ ~ T > (M = 0)-

Thus for large n the average number of pairs of adjacent vertices in a rooted 
planar triangulation of 2n faces is asymptotically (8/3)w. Since the number of 
edges is 3n we can express this by saying that the average number of edges joining 
two adjacent vertices is asymptotically 9/8. It seems likely that the same 
result holds for unrooted planar triangulations, but this has still to be proved. 
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