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Real Linear Substitutions with Equimodular Multipliers,
and their expression in terms of their Invariants.

By Dr. D. G. TAYLOR.

{Received 4th November 1915. Read 10th December 1915).

Section I.—Introduction.
§1. Let

denote a linear substitution of non-vanishing determinant; and
let the roots k( of its characteristic equation

ln-k, l12 , ... lln

h" .(2)
n (*,-*) =

1

'nl '«« *

be for the present assumed distinct. Then with each root ke is
associated an invariant point or pole P , and a linear invariant, or
invariant (n — 2)-plane £ . If the n points P( do not lie on an
(n — 2)-plane, the determinant of their coordinates,

(3)

will be non-vanishing, where xa £(a.= l, 2, ...n) are the coordinates
of P ; and the equation of the linear invariant associated with
k is

• 2 * . a (4)

X denoting as usual the cofactor of x in D. Since the linear
invariants ^£, and also the coordinates of the poles Pf, are, on
application of the substitution, reproduced unchanged, except that
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they are multiplied each by the associated root k of the charac-
teristic equation, these roots will be called the multipliers of the
substitution.

With the assumptions stated, we at once obtain the formula
^ = 2 * , * ^ , (a,/3= 1,2, . . .«), (5)

which determine the coefficients of the substitution when its poles
and multipliers are given. If we have two substitutions with the
same poles, but with different multipliers k(, kj (e= 1, 2, ...n),
then if

c, c' being any constants, the substitution whose coefficients are
(A. „) will have the same poles as the given ones, and the quantities
K£ for multipliers. Further, the effect of the substitution {lao)
followed by (I' „) will be to change the coordinates x of the pole
P£ into k'( ke xae ; that is, the product of the two substitutions is
another substitution with the same poles, whose multiplers K
are respectively the products of the corresponding multipliers of the
given ones, or

Ke = k'ek(, (e = l,2,...n).

Thus copolar substitutions are permutable ; and also the result
of repeating a given substitution r times is a substitution with the
same poles, and with the quantities kr

e for multipliers. V l^a
denote a coefficient in the final substitution, then

* ' # = 2 * ; * o e ^ ; (6)

and a complete index law can be established, negative and
fractional indices included, for a substitution possessing n inde.
pendent poles.

In building up a substitution from its poles and multipliers, it
is easy to trace the effect of an equality between two of the latter.
If k., = ku every point on the line P, P2 is a pole, and any two of
them may be taken in place of the given two Plt P2. We can still
find n independent poles, though they are not unique; and the
specification of the substitution in terms of poles and multipliers is
not impaired. A similar argument holds when three or more
multipliers are equal; and the linear invariants might be used
instead of the poles in developing the argument.
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On the other hand when, in a substitution of which the
coefficients are given, two of the multipliers are found to be equal,
two cases may arise. The equations for the coordinates of the
corresponding pole may yield a line of poles, or only a single pole.
For example, the substitution

SB,' = k #1

as2 = Z 2 1 o ; ]

of which the three multipliers are equal, possesses only one pole.
In such a case the poles and multipliers are not sufficient to specify
the substitution; but this case does not arise in the sequel.

Section II.—Gyclant Substitutions.

§ 2. In any system of n homogeneous point-coordinates there are
n special sets of values which may be said to define the unit-points
of the system. They are

Pe(xie,x2t,...xJ,(e=l,2,...n),
where

/ •X -^ -w—-^• -^ . . -^ <7>
p being any primitive nth root of unity. We may assume
p = exp (2ir i/n), since any other admissible value would yield the
same points, only in a different order. The (n - 2)-plane passing
through all of these points except P( is

*,-£,»* *,-0 (8)
8=1

Consider now the " cyclant" substitution *

Xj =hn a;,+An_,a;2+...-l-A1a;,1
xl =h1 x, + hn x2+...+h.2xn

*»' = ̂ n-l *1 + K-i X1+...+hnXn

where each row on the right contains the same n coefficients in the
same cyclic order, with the same coefficient hn always in the leading

* Hilton, Linear Substitutions, p. 12, Ex. 7.
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diagonal. The value of its determinant is equal to the product of
n factors linear in the hg, which may be written *

ke = iP
sehs, ( e = l , 2 , . . . n ) (10)

p being as before a primitive nth root of unity. The quantities k
are also the roots of its characteristic equation ; and it can easily
be verified that the pole and linear invariant associated with k as
multiplier are the unit-point P( and the (n - 2)-plane £e just defined.
Since equations (10) can be solved uniquely for the hg in terms of
the kf, it follows that every linear substitution possessing the unit-
points as poles is of the form (9). The actual form of the results is

n

€ - 1

Since the unit points are all different, every substitution of type (9)
can be completely specified in terms of its poles and multipliers;
and it is not necessary that the latter be all different.

In general the coefficients, multipliers, and variables of (9) are
alike complex quantities. When the multipliers are all different,
only one of the linear invariants, namely £n, has real coefficients
when n is odd ; and only two, namely £ . , £n, when n is even. But
when equalities occur among the multipliers, additional linear
invariants with real coefficients may arise, as will appear later.

Since substitutions with zero determinant are excluded, none of
the multipliers can vanish. They cannot all be equal, else the
substitution becomes a " similarity-substitution." t By reducing
the coefficients in a constant ratio, any one of the multipliers, say
£„, can be made equal to unity.

When two of the multipliers, say k(, k(l, are equal, any linear
function of the corresponding invariants, say A £ +/*£,, where A, JJ.
are constants, is also invariant with the same multiplier. In
particular let k( = kn_e; then it is clear from (8) that there are two
additional linear invariants with real coefficients, namely,

• Scott, Determinants, p. 81.
t Hilton, ibid., p. 26.
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Let the coefficients k, be all real. Then by (10) kn is real,
and also k±n when n is even; while ke, kn_e are conjugate
imaginaries, or, as a special case, real and equal. The imaginary
linear invariants can then be combined into quadratic invariants
with real coefficients, of the form

$Jn_e, multiplier | k( \ •, (e= 1, 2, ...p),

where p = ^(n~l) or £ (n - 2) according as n is odd or even.
These real quadratic invariants are characteristic of the case in
which the coefficients of the substitution are real.

If in addition to the coefficients being real, the multipliers have
all the same modulus, then the quadratic invariants have all the
same multiplier. This is the case of equimodular multipliers
discussed below.

If we impose the further restriction that the amplitudes of the
multipliers shall be all of the form 2 s ir\r (s, r integers), then the
mutual ratios of the multipliers will be r'h roots of unity, and the
substitution of finite order r.

§ 3. The treatment of the relations between the coefficients in
the case of equimodular multipliers will be facilitated by the
following notation. Placing the coefficients hx, h2, ...hn in order
round a circle, multiply each by that coefficient which is s places
in advance of it, and denote the sum of such products by II,, thus :

V. = h1h,+1 + hzhl+.2 + ...+hnh,; (12)

Ho or Hn may be used indifferently for the quantity 2 h]. Let
t stand for ^ (n - 1) or \ n according as n is odd or even. Then
there will be (t+1) distinct functions H,, defined by s = 0, 1, ... t.
Each will consist of a sum of n products; except H^n in the case
of n even, which will contain only half the number ; thus for n = 4,

H2 = /*, h:i + h2 ht.
This notation, explained for the coefficients h, may be used also for
the variables x and multipliers k.

We shall prove that when the coefficients are real and the
multipliers equimodular, Ho is equal to the square of the common
modulus, and the other expressions H, vanish.

Let the common modulus be K ; then equating K2 to | k( |
2 as

obtained from (10), we obtain the (t+ 1) equations

(Ho- K2) + 2HlCos2— +... + 2Htcos?-^ = 0, (e = 0, !,...<)...(13)
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Now it is easily seen that the determinant of the trigonometrical
coefficients of these equations does not vanish ; hence

§ 4. The Quadratic Invariants. Assuming only, to begin with,
that the coefficients h, are real, we have, as already seen, the follow-
ing quadratic invariants with real coefficients :

£e£_e , multiplier | k( |2, (c = 1, 2, ...*),
M Z. 2
Cn > » Kn •

Noting the similarity in form between (8) and (10) we have on the
analogy of (13)

£ e C * = X o + 2 X 1 c o s ^ r + ... + 2 X t c o s — , (, = 0 ,1 , . . .<). . . (15)

where the case « = 0 corresponds to £n
2 just above. These expres-

sions constitute the (I + 1) quadratic invariants with real coefficients
which exist independently of any equalities among the multipliers ke

or their moduli.
Now let the multipliers be equimodular. Then these invariants

all possess the same modulus ff0; hence any linear function of them
is also an invariant with the same modulus. I t follows that, when
the coefficients are real and the multipliers equimodular, the(t+l)
quadratic forms Xm Xlt ... Xt are invariants with common multi-
plier Ho.

If we consider the set of multipliers

Ae = / e , (e=l, 2, ... n), (16)

where p is an integer, we find from (11) that the corresponding
coefficients h, all vanish except hp, which has the value unity. The
substitution thus reduces to the cyclic permutation

*r' = *»-P+r. (r=l, 2, ... n);
and conversely every cyclic permutation of the letters x corresponds
to a set of multipliers of form (16).

If xn yr (r - 1, 2, ... n) are two sets of variables subjected to
substitutions of the form (9), but with different coefficients, and if

Vr = ±x,yr_,
i
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then it is found that the substitution which transforms the
quantities Vr is equivalent to the product of those which transform
the xr, yr.

If, further, the xr, yr are subjected to the same substitution, and
that substitution satisfy the conditions (14) for equimodular multi-
pliers, then the quantities

Ur = £x.yr+., ( r = l , 2, ...w)

are invariants with the same multiplier as the Xr, Yr.

§5. In the case of three variables, on the hypothesis that the
coefficients are real and the multipliers equimodular, we may
without loss put

«! = « , «2 = e , « j=l j

we then have by (14)

the coefficients can then be written in the form
A, = £{2cos(0-2s7r/3) + l} , ( S = 1 , 2 , 3 ) ; (17)

the substitution will be of finite order r, provided 6 is of the form
2 p irjr, where p, r are integral, and the quadratic invariants are

each with multiplier unity.
Let (xJt x3, x3), (yM 2/2, y3) be the direction-cosines of two lines

with respect to trirectangular axes; and let them be transformed
by the above substitution. The following quantities will remain
unchanged :

2 a ? , 2 y J , 2a;r2/r> So;, , 2 y r , ( r= l ,2 ,3 ) .

Thus the transformed quantities are also the direction-cosines of
two lines, containing the same angle as the two original lines,
and each making the same angle as its original with the line of

symmetry (—75,—75,—75). The substitution therefore repre-

sents a rotation through a definite angle about tlie line of symmetry.
I t is easily shown that the amount of the rotation is + 6, with,

the usual sign convention, where 6 is the amplitude of the
multiplier kv The rotation changes the z-axis into the line
(Aj, A2, h3), and similarly for the other axes.
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Developments of this application will appear later.
In the case of four variables, we have easily

*, + **« - 2 (A,-A,), K- k3=2i(h1-h3)\ .
k, + kt = 2(A2 + A4), k.-k^ -2(h1 + h3)) '

and the conditions for equimodular multipliers are
ff1 = Aj A2 + hi h3 + h3 ht + ht h, = ( ^ + h3) (A2 + h4) = 0,

We can therefore distinguish two cases :

(A) *, = «**, k3 = e~ie, -&S = &4=1, with
we then have

A,= | ( 1 + s i n
/t2 = - £ cos #
A,= | ( 1 - s i n
h, = ^ cos 6

(B) *, = «••*, /i;3 = e-« e . yfc, = /fc4=l, with ^
and then

A, = £ sin 5
A2= ^ ( 1 - c o s
h3 = - J sin 5

|

I t will be found that in the first case there are the quadratic
invariants

Xo, X,, X,, multiplier 1,

while in the second, in virtue of the equality of k», kt, the quadratic
invariants are

Xo, Xlt Xs, (#! + x3f, (â j + xt)-, multiplier 1.
On analogy with three dimensions, let any two sets of quantities

xn Vr (»* = 1, 2, 3, 4) satisfying the condition

be called the direction-cosines of two lines in four-space. Since
*** • £-1 V ~ I ^t *r tfr\ — £J y^r Mi ~ ^t Vr) )

\ r ) r,«

the summation on the right extending to six terms, therefore
2 xr yr is numerically less than unity, and may be called the cosine
r

of the angle between the lines. The lines may be called parallel
when this quantity is unity, and at right angles when it vanishes.
3 Vol. 34
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We have just seen that, corresponding to any value of the
parameter 0, there are two distinct real equimodular linear sub-
stitutions of form (9) in four variables. The operation in four
dimensions which corresponds to a rotation 6 about the line of
symmetry in three dimensions is ambiguous.

Now the interpretation of what we may call mode (B) above is
simple. Rotation in four dimensions takes place not about a line
but about a plane, and the plane is determined by two lines lying
in it. I t is clear that in mode (B) the quantities

are all invariant, with multiplier +1 ; hence the substitution
indicates a rotation about the plane determined by any two of the
three lines through the origin whose direction-cosines are

l\ fl o L oWo — o J -

these three lines evidently lying in one plane.
In mode (A), on the other hand, there is but one linear invariant

with multiplier + 1, namely £4 = 2 xr. The invariant
r

S2 = Xl ~ X2 + X3 ~~ Xi

has multiplier - 1. If the line (xlt x2, x3, xt) makes angles fa, <j>.2 with
, ,. / 1 1 1 1 \ / I 1 1 1\

the lines (̂ —, -j, —, —), ^ , - — , —, -yJ respectively,
then the line obtained from it by a substitution in mode (A) will
make with the same two lines the respective angles <j>lt TT — <£2. We
may for the moment call this a quasi-rotation about the plane
determined by these lines. Though not itself a rotation, two
repetitions of it are equivalent to two repetitions of mode (B), i.e.
to a rotation of amount 16 about the plane indicated above.

When n = 5, the conditions for real coefficients and equimodular
multipliers show that we can put

that the real quadratic invariants are Xo, Xly X.; and the co-
efficients can be written down in terms of 0,, 02.

Thus, as to the analogue in five dimensions of a rotation about
the line of symmetry in three dimensions, two parameters 0lt 6% are
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necessary for its specification; but for given values of these para-
meters the operation is determined without ambiguity.

When« = 6, then by (14)

whence
(h, + h3 + hs) (A2 + ht + h6) = // , + H3 = 0,

yielding, as with n = 4, an ambiguous case.
(A) With h2 + ht +• he = 0, we have k3 = - k6t and the real quad-

ratic invariants
Xo, Xx, X2, X3, multiplier + 1,

(*! +x3 + x5)" - (x.2 + xt + x6)-, „ - 1.

(B) With Aj -(- h3 + hs = 0, we have k3 = ke, and the real quadratic
invariants, all with multiplier + 1,

Xo, Xlt Xv X3, («! + x3 + x5f, (x* + xt + xef.

We can now generalize as follows :
In the case of n real variables, with equimodular multipliers,

the coefficients satisfy the conditions
#0 = 1, # , = zr3=.. . = ;/,-=(),

and the real quadratic functions
•^oi Xv . . . X,

are invariant, multiplier + 1; where t = ^(n-\) or £ n, according
as n is odd or even. When n is odd, the number of angular
parameters 6 required to specify the substitution is \ (n- 1), and,
these being given, the substitution is unique.

When n is even, the number required is £ ( n - 2 ) ; but, these
being even, the substitution is ambiguous. In the second or (B)
mode in such cases the functions

are also invariants with multiplier + 1 ; in the first or (A) mode,
the difference of these functions is an invariant with multiplier - 1.

Section III.—Construction of Real Linear Substitutions of Equi-
modular Type from their Heal Linear and Quadratic
Invariants.

§ 6. I t is proposed to extend to more general cases some of the
results obtained in last section for cyclant substitutions.
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The coefficients of the characteristic equation being real
functions of the coefficients of the substitution, the imaginary
multipliers of a real substitution must occur in conjugate pairs. I t
follows that the imaginary linear invariants can also be arranged
in pairs, such that the product of the two members of a pair is a real
quadratic invariant.

Thus the invariants of a real substitution can always be given
as one or two * real linear, and | ( n - 1) or \ (n - 2) real quadratic
invariants, according as n is odd or even As a rule each quadratic
invariant must be the product of two conjugate imaginary linear
invariants; but this' will not of necessity be so when equalities
subsist among the multipliers or their moduli. In particular, when
all the multipliers are equimodular, the quadratic functions whose
linear factors constitute the imaginary linear invariants, need not
be the gi ven quadratic invariants, but linear combinations of these,
and of the square of the real linear invariant (or of the squares and
products of the two or more real linear invariants, when such exist).

§7. n = 3.
In the case of a real substitution in three variables with equi-

modular multipliers, the most general assumption for the linear
invariants is

£i = (Pi + ki) *i + (P-2 + ki) *a + (P3 + *?a) *3> mult. el$

£3 = a.j xt + 04 x2 + 0.3 a--3 , „

where the p, q, a. are real.
The coordinates of the poles, being proportional to the minors

of the determinant of the coefficients of (19), are as follows, where
(prq,)=prq,-p,qr, etc:

P2:
— (pjOLj) - i (g:0L|) — (P3«-J) — i (^"-l) ~ ( Pi'

x13 x.a

(20)

* For a case with no real linear invariants, but i n real quadratic
invariants, see below, § 10.
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If we write
Pi, Pi,

then the determinant of the coefficients in (19) is equal to - 2 i Do,
and that of the coordinates in (20) is

- 4 Z>0
2 = D, say.

Now applying formula (5),
D ln = (xrl JCtl + Xrf Xtf) cos 0 + (xrl X,i — x^a -3T(2) i sin 0 + xr3 X# ;

so that for rj=s,
D lr, = xrS X,s (1 - cos 0) + i (a:r] Xtl - x^ X,.:) sin 0,

while
Dlrr=D cos 0 + ajr3 Xr3 (1 - cos 0) + i (xrl Xrl - x^ X^) sin 0.

For the x we may take the actual denominators in (20) ; and
then for each X we must take - 2 i Z>0 times the corresponding
coefficient in (19).

Putting for short

we have for the coefficients of the substitution the following :
2>0 (Ju - cos 0) = ejj 04 (1 - cos 0) + (S13 04 - 812 04) sin 0 j
Do lu = £23 04 (1 - cos 0) + (&„ 04 - SJJ 04) sin 0 V , ... (21)
-^0 1̂3 ~ £23 "̂ a (1 ~ c o s 0) + (^33 "^ ~ 3̂2 "-s) s i Q ^J

and the six others derived from these by cyclic interchange of the
suffixes 1, 2, 3.

As an example, let us suppose that in addition to the linear
invariant 2 a. a;, we are given th« quadratic 2a^, (see above, §6)
each with multiplier + 1 . Then since 2 a;2 must, be a function of
the linear invariants, there must exist a relation of the form

(2 a. xf + X 2 a? = fi{(Zp xf + (2 q xf).
The condition for the breaking-up of the left-hand member into
factors yields

and we then have, on equating coefficients,
(p2f3 + q2q3)\

[ (22)
.* + 042 = -fi( p* + ? 3

2 ) , aa 04 =
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"We may without loss assume

P3= -
then

For definiteness we may take the upper signs, since it is only a
question of the order of the invariants £„ £2. Thus

, = (o,04 + io^a:, + (a, o3 - i o,) x2 - (a.,2 + <xf)xa)>
 ( 1

and the poles are

P\ { 04-1030.,, - ^ - i !
P2 { - 04- i04o x , 0,-^0404, {(o-^ + o,2)} [ , (24)

where the common factor - 2t (o^ + 042) has been discarded from
the coordinates of Ps. The coefficients of the substitution can now
be written down:

Zn = cos0+ o ^ l - c o s t f ) "i
ln= Oj o,( l -cos 6) -04 sin 8 \ , (25)
ln = O] 03 (1 - cos 6) + o,2 sin 6 J

with the six others obtained by cyclic interchange of suffixes.
As was to be expected, these are the coefficients of the substitu-

tion undergone by the direction-cosines of a line which is rotated
through the angle 6 about an axis whose direction-cosines are
(a,,, 04, 04). They agree with the formulae given in Whittaker,
Analytical Dynamics, § 7. They reduce to (17) above on putting
o.1 = o2 = a1!= 1/^3. The general rotation-substitution in three
dimensions has thus been deduced purely from its multipliers and
the invariants Soa;, 2 a;2; and its imaginary linear invariants and
its poles are given in terms of the cosines of the axis by
(23), (24).

Let us assume more generally that the function

S = ax? + 6«a3 + ex.? + 2/c2x3 + 2gx&1 + 2hx1xi,

in which the coefficients are real, is an invariant with multiplier
unity, in addition to the real linear invariant £3 = 2 a. x. As before,
a relation must exist of the form
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The value of A, determined as before, is given by

-A\. = Aa.1
2 + Ba^ + CaJ + 2Fa^<L3+2 #0404 + 2//04 04 = E, say;

the usual notation being employed for the discriminant of S and

its minors. Assuming, as we may without loss,

g3

and wri t ing
dE

2 ^ = ^ - , ( r -1 ,2 ,3 ) ,

we find without difficulty

E (la - cos 0) - 04 E1 (1 - cos 6) + (g 04 - h 04) JE . sin 0
E Jj3 = 04 El (1 - cos 6) + (/OLJ - 604) JE. sin 0 1 ...(26)
# iI3 = 04 E, (1 - cos 0) + (c 04 - / a , ) JE. sin 0 J

together with the six others derived from these by simultaneous
cyclic interchange of the suffixes 1, 2, 3, and the two sets of symbols
a, b, c; /, g, h. It is evident that, for a real substitution, E is
necessarily positive.

The process here employed is analogous to that which arises in
finding in homogeneous plane point-coordinates the (imaginary)
tangents to the conic S at its points of intersection with the line
£3; or in finding in three-dimensional cartesian coordinates the
tangent planes to the quadric cone S which touch along the
generators in which the cone is cut by the plane £,. The condition
that E is positive ensures that the points of intersection in the first
case, and the lines of intersection in the second, shall be imaginary,
and therefore also the tangent lines and planes;

The substitution might be interpreted geometrically as follows.
Let

S= const., £3 = const.

denote respectively a conicoid and a plane in trirectangular coordi-
nates ; let Q be any point on their curve of intersection, and ON
the normal to the plane from the centre of the surface. Let Q
move along the curve of intersection until the plane ONQ has
rotated through an angle 6 about ON; then the direction-cosines
of the new position of OQ are obtained from those of the old by the
substitution whose coefficients lr, are given in (26).

The generality of the result would not be impaired by assuming
E = 1; and we would then have

04 El + 04 E2 + 04 E3 = E = 1.
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{
Pt{

§8. n - 4 .
Generalising the case of four variables already treated in § 5,

let us take as the invariants of a real substitution in four variables,
with equimodular multipliers, the following :

= 2 (pr + iqr) Xr, mult, e"
r=l

-ie
(27)

£3 = 2 (pr - iqr) xr, „ e
4̂ = 2 <*-rXr , „ 1

where the a, /?, p, q are real, and 17 denotes + 1 according as mode
(A) or (B) is under consideration.

The coordinates of the poles, and the formulae for the coefficients
of the substitution, can be obtained exactly as in the case of n = 3.
Taking as coordinates the actual first minors of the determinant of
the coefficients of (27), and writing

(ftA«») =

we obtain for the poles :

ft. ft . Pt
A. A. A

, etc.,

- 2i

those of P3 being obtained from
real parts. Write

by changing the signs of the

A ft. ft. ft. p*
A. A. A. A
? i . ?2 > 9*3 > q*

then the determinant of the coefficients of (27) is 2iD0, and that of
the coordinates just set down is

(-2iZ>0)
3 = 8t2V = 2>, say.

If we denote by Xr, as usual the appropriate first minor of D, then
it is clearly equal to - 4Z>0

2 times the corresponding coefficient in
(27). Now applying formula (5),

cos 6 + {xrXXa - XrtXa) i sin $ + rj x^
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Denoting the coefficients of (27) for convenience by

cr,(r, «= 1,2, 3, 4),
we can put

2 DaK. = Ar,cos0 + Br,sin d + Cr,, (mode A) •>
2 Dolr, = Ar,cos 6 + Br,ain 6 + Drl, (mode B) / { '

where
Ar, = * (*ri c.i + a?,, c.3), Cr, = - 1 (a:rt crt - xri c,4) \
Sr,= - (xrlc,l-xr3c,3), DT,= i(x^ca + xrlc^)i

I t would be tedious to express the 64 coefficients at length in
terms of the o., (i, p, q ; but we shall find them for the special case
which is analogous to rotation about any axis in three dimensions.

Mode (A).—An important divergence from the case of n = 3
arises from the existence, in the present case, of two real linear
invariants £2 = 2/6a;, £4 = 2a.a;. For there are now three inde-
pendent real quadratic invariants with multiplier + 1, namely,

€2 1 C4 > SI 63 •

If therefore on the analogy of last article we assume 2 ar as an
invariant in addition to £2) £4, the relation from which the pn qr of
£u £J are to be found is of the form

(30)

Now Sylvester's Law of Inertia states that when a quadratic
form is expressed as a sum of squares, the number of positive
squares and the number of negative squares are fixed; hence in
(30) \, fx must be negative and v positive.

We may (by reducing the /3, if necessary, in a constant ratio)
assume v = + 1 . The condition that the left-hand member shall
break, like the right-hand, into linear factors, is* that not only its
discriminant, but also every first minor thereof, shall vanish. The
discriminant is a biquadratic in A., of which the absolute term and
the coefficient of the first power of A. are easily seen to be zero.
Rejecting the double zero root we are left with a quadratic. Butf
this quadratic must have equal roots; hence there is only one suit-
able value of X.

* Salmon-Rogers, Analytical Qeometry of Three Dimensions (1912), §79.
t See, e.g., Kouth, Advanced Rigid Dynamics, §269.
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Writing

one of the first minors is

7K

this, equated to zero, yields the zero root and another, the one we
are in search of, viz.,

Sinoc a similar relation must hold for every other pair of suffixes as
well as 1, 4, we must have

, 2o./J-0, (31)

whence - A = 2 a.2 = 2 /82. On equating coefficients in (30) we now
have 10 conditions, which are satisfied by the following values:

9-3 = «•• A - « i A .

It will also be found that there is no loss of generality in taking
these values as the general solution.

For the further discussion of this case we may assume

-A = 2a.s = 2 ^ 3 = l , whence pt = a.* + ft2- 1.

Referring back to the coordinates of the poles Pr we can prove

*)-?!! (?2fttt,)= -f t , etc.,
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hence the coordinates take the simple forms

2iPtp3

4 ' n—• « • o—• = = —*

2ijt>4a., 2 tp 4 ou 2i/>404 2IJ»4OL4

the common factors being retained for convenience. Also

hence finally the coefficients of the substitution in mode (A) for
which 2 o. as, 2 /3 x, 2 x2 are invariant are given by

where

and the bn are given in the following scheme, the arrangement as
to the suffixes being the same as in the table of coordinates of poles
just above:

o ,
K.: («,A) , 0

-(04 pt), (anPJ , 0 , -(a-.p,),
(04 ft) , (03 ft) , K f t ) , 0 ,

where (0 .̂̂ ,) = a.rj8, - a.jir. I t can at once be verified that these
values agree with those given in § 5 (A) for the special case

o-1 = a-! = (x3 = a.4= -P1 = pi= -Pz = p i = \.

We have thus completed the determination of the substitution in
four variables in mode (A) analogous to that which represents a
rotation about a given axis in three dimensions.

Mode (B).—If for the case of mode (B) we were to make the
same assumption as in (30), we would find that the alteration
needed in going from (A) to (B), equivalent to the change from
Cr, to Dn in (29), amounts simply to changing the minus signs in
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the formula for the cr<l above into plus. I t will have been noted
that the formulae for the h in modes (A), (B) (§ 5) differ only in the
constant terms.

But it appears that the assumption (30) is not sufficiently
general for mode (B), since a term of the form

T) 2 (a. x) 2 (/? x), (rj const.),

might also have place on the left. To determine whether this would
introduce any more generality into the result, it will be sufficient
to replace the «.„ flr in (23) by

oLV-K + fft, P'r = ma,r + m'/3r, (r= 1, 2, 3, 4),
where we may obviously assume

These relations yield

whence (say)
I = cos (, I' = sin f, m = - sin f, m' = cos (,

P + m2 = P + m" = 1, lm' - I'm = 1.
Denoting the new coefficients of the imaginary invariants by

accented letters p'r, q'r, we have
pi = (la., + I'Pif + (m<x4 + m'jitf + k

Pi =2h, 9i'=?i. etc->

so that no generality is lost in the case of mode (B) by omission of
the product term from the left of (30). A similar proof will hold
for the more general case treated below.

§9. Suppose that in place of 2ar we are given as quadratic
invariant the general quadratic form

S= (a, b, c, d,f, g, h, I, m, n$xlt x,, x2, xtf, (33)
I t is known (Broniwich, Quadratic Forms, § 8) that this can be
written

ft >2 >2 Z-2

< 5" a +aC+CA + AD'

where the { are linear functions of the x, D is the discriminant of
the given form, and A, C are obtained in succession from D by
removals of the last row and column.
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In the case of an odd number of variables, if the discriminant
of the form were negative, we could consider instead the same form
affected with the minus sign, of which the discriminant is positive.
But when, as here, the number of variables is even, the dis-
criminants of S, - S are identical, and we must consider two cases,
according as D is positive or negative.

I. D positive.

Here, by Sylvester's law of inertia, S must either be a sum of
four positive squares, or of two positive and two negative, or of
four negative, according to the signs of a, C, A. We may therefore
make an assumption of the form

(Ea.xy+(2f3xy + \.S = /j.{(^px)'i + (2qx)-} (34)

II. D negative.

Here S is either a sum of three positive and one negative
squares, or of one positive and three negative, and our assumption
must be of the form

(2,,xxy-(2pxy+ks=ix{(2pxy+c2qxy}.
Results for the second case may, then, be deduced from those for
the first by affecting each /? that occurs with the coefficient i.

We can follow the method of the less general case (§ 8) up to a
certain point. Let us put

a, h , g , I , a.!
h, b , f, m, ctj

9 > f > c i n > °4
I , m , n , d , a.
a.lt a,, 04, a.it 0

let <£2 denote the corresponding expression when the a in the last
row and column are replaced by the corresponding /3, and ^ the
expression when the a of the last row, but not of the last column,
are replaced by the /3.

The discriminant of the left-hand member of (34) is, as before, a
biquadratic in A. with two roots zero, and the residuary quadratic is

D A.2 + (& + <£,) A. + rp = 0,
where D ty = <j>i <£j — <j>i£,
Since this quadratic must, as before, have equal roots, hence

$1 = $2> $12 = 0> (*^)

a n d — D A = <j>i = rag.
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Using <f> to denote the common value of <£„ (j>., we have for the
p, q ten relations typified by the following:

(36)

Assuming qt = 0, /J. Z> JD4 = 1, we thence obtain p,, p2, jt>3, p4 as rational
quadratic functions of the a, /J; and for qlt q.* q3 equations such as

A2 + ?1
2 ={ D(fl? + ft) -4>a

It is clear from the relation

and the forms of the expressions on the right hand of this identity,
that <f>- contains the factor D. I t therefore follows from (37) that
1v lit .1z a r e e a°h of the form

D- x (rational quadratic function of the a, /3).
The labour of obtaining the actual expressions can be avoided

by turning to the geometrical interpretation of the analytical
process; and this will also throw new light on the meaning of the
coefficients >̂, q.

In the phraseology of the theory of the six coordinates of a line
(see Salmon-Rogers, Analytical Geometry of Three Dimensions,
§§53 ff.), let sr, <rr ( r = l , 2, ... 6) denote respectively the ray-
coordinates and aa^a^-coordinates of the line of intersection of the
planes

let s/> °v' denote the corresponding coordinates of the line of
intersection of the planes

and let these lines be called respectively (1), (2).
Then with the abbreviations

(ar/3,) = (ar/3.-a,f3r), etc.,
we have

(a2^3) = cr1 = s4, (a3 /?,) = <r.2 = s6, (e^ /?,) = <r3 =
(a, /?4) = cr4 = s,, (a2/34)=o-5 = Sj,, (a3 /i4) = <r6 = s3 [ g

(p2g-3) = o-1' = s4') etc. j '
(p1y4) = cr4' = s1') etc.

Now it is clear from (34) that the planes 2 a a;, 2 /? x, 2p a;, 2 y x
form a tetrahedron self-conjugate with respect to the conicoid S,
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and therefore that (2) is the polar line of line (1). But the
coordinates of the polar of a given line with respect to a conicoid
can be obtained as follows.

Let ar,(r, 8 = 1, 2, ...6) denote (see Salmon-Rogers, §80 c) the
second minors of the discriminant of S, and let

¥ = ( a n , . . . < » „ $ « „ sB ...sef;

then unaccented letters denoting the coordinates of the given line,
and accented letters those of the required line,

2<r/ = ^ , ( r = l , 2, . . .6) (39)
dsr

With the single assumption qt = 0, we have
- < = Pi ?i, - °V = Pi q* - o-d' = Pi q3;

and if in (36) we further assume yu D = 1, we at once obtain the
values of

PiPu PiPu PiP» Pi ;
we thus have the ratios

Px-p^-Pz-Pi- q i - q i - q *
as required. We may write the results, subject to the insertion of
an arbitrary constant factor, as follows :

a,

A
I,

h,
a2,

A.
Wl,

Pi

Pi

/>3

Pi

9>
«3>

A.
n,

q,=

= 2) (
= D (a2 a4

= Z) (a3 a4

= I> W
I
a4

A

- a,,

A.

I,

+ P
+ P
+A

a2,

A.
/,
»n,

i A]
sA)
A)

2)

a3,

A,

w,

-Z
-m<j).

- w < £ ,
-d<f>,

+ a,,
A,

A,
i,

A
n

.

as, as,
b, /,
A. A.

a4

m

A

§ 10. Finally, we can now indicate the answer to another
question, viz.,

Under what conditions will two real quadratic invariants serve
to define a real equimodular substitution in four variables 1
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If S, S' are the given invariants, it is necessary in order to
obtain the requisite four linear invariants that S + kS' shall break
up into two planes (real or imaginary) for two distinct values of A.
For each of these values therefore the discriminant of S + X S' and
all its first minors must vanish.

Now in the classification of quadratic forms in four variables
(see Bromwich, loc. cit., § 18), the only case satisfying these con-
ditions is that numbered 9 on Lindemann's list, with the symbol
[(11) (11)]; namely that in which S, <S" have four generators in
common, forming a skew quadrilateral, at the vertices of which the
conicoids touch.* We can then write

+a , tf
S' = c, (a, £2 + a2 fi») + c3 (a, tf + a4 tf),

where the £ are linear functions of the coordinates ; the one pair of
linear invariants will then be linear functions of £, £,; and the
other pair, of £3, f4. Of these invariants there will be four, two, or
none real according to the signs of the coefficients an which are
functions of the coefficients of the forms.

Thus, assuming the forms to satisfy the above conditions, and
reducing them to sums of squares by the method given by Bromwich
(Sj 17), we immediately obtain the linear invariants, from which the
coefficients of the substitution can be derived by the method of
§ 8 above. The variety of possible cases would probably render
unprofitable the search for a general formula like that of the last
article. The only novelty is the case in which all four linear
invariants, and therefore also the multipliers, are imaginary; they
consist, of course, of conjugate pairs, and the treatment offers no
difficulties.

* See also Bell, Coordinate Geometry of Three Dimensions, §§ 166-8;
Salmon-Rogers, § 202.
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