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Abstract

Waldspurger’s formula gives an identity between the norm of a torus period and an L-function of the
twist of an automorphic representation on GL(2). For any two Hecke characters of a fixed quadratic
extension, one can consider the two torus periods coming from integrating one character against the
automorphic induction of the other. Because the corresponding L-functions agree, (the norms of)
these periods—which occur on different quaternion algebras—are closely related. In this paper, we
give a direct proof of an explicit identity between the torus periods themselves.
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1. Introduction

Waldspurger’s work in 1985 sparked the beginnings of a rich theory studying
the relationship between special values of L-functions and automorphic periods.
In [W85a], he studies torus periods for representations of B×A , where B is a
quaternion algebra over a number field F . Consider

P(π B,Ω) : π B
→ C, f B

7→

∫
TQ\TA

f B(g) ·Ω(g) dg,

where π B is the Jacquet–Langlands transfer of an irreducible automorphic
representation π of GL2(AF) and Ω is a character of a maximal torus T .
Waldspurger establishes a formula

|P( f B,Ω)|2 = ∗ · L
(
BC(π)⊗Ω, 1

2

)
, (1.1)

where ∗ consists of factors that depend only on local data. Combining
Waldspurger’s formula with Tunnell–Saito’s work on ε-dichotomy, which
characterizes the branching behavior of representations of local quaternion
algebras in terms of local ε-factors, one sees that there is at most one quaternion
algebra B such that ∗ is nonzero. If L(BC(π) ⊗ Ω, 1

2 ) 6= 0 and the central
character condition

ωπ ·Ω|A×F = 1, where ωπ is the central character of π ,

holds, then there is a unique quaternion algebra B—characterized by local
ε-factors—such that the linear functional P(π B,Ω) is nonzero.

In this paper, we will consider the torus periods arising from two symmetric
special cases of this: fixing two Hecke characters χ1, χ2 of E×, consider

(1) π = πχ1 and Ω = χ2;

(2) π = πχ2 and Ω = χ1.

As such, the only automorphic representations of GL2 we will consider are those
that arise as the automorphic induction πχ of a Hecke character χ . As the central
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Period identities of CM forms on quaternion algebras 3

character of πχ is χ |A×F · εE/F , the analogue of the central character condition for
both (1) and (2) is

χ1|A×F · χ2|A×F · εE/F = 1. (1.2)

Formally, the Rankin–Selberg L-function for the (GL2×GL2)-representation
πχ1 ⊗ πχ2 satisfies

L(BC(πχ1)⊗ χ2, s) = L(πχ1 ⊗ πχ2, s) = L(BC(πχ2)⊗ χ1, s). (1.3)

On the other hand, as we see in Equation (1.1), Waldspurger’s formula relates
(1) to the left-hand side of (1.3) and (2) to the right-hand side of (1.3).
Furthermore, the quaternion algebras B1 and B2 arising from (1) and (2) are
related by the following simple formula:

The ramification of B1 and B2 at a place v agrees if and only if −1 ∈ Nm(E×v /F×v ).
(1.4)

Therefore one obtains a relationship between (the norms of) the torus periods
arising from our two symmetric cases.

As these torus periods occur on different quaternion algebras, it is of interest
to study these periods directly, without invoking Waldspurger. In this paper, we
do exactly this: we prove an explicit identity between the periods on B1 and B2.
We will employ the theta correspondence to construct automorphic forms and
compare the resulting torus periods. To this end, the key to our approach is
the construction of a seesaw of dual reductive pairs that precisely realizes the
quaternion algebras B1 and B2.

MAIN THEOREM (6.17). There exist explicitly constructed pairs of automorphic
forms f B1

1 ∈ JLB×1 (πχ1) and f B2
2 ∈ JLB×2 (πχ2) such that

P( f B1
1 , χ2) =P( f B2

2 , χ1).

We point out the simplest interesting case of the Main Theorem. Let F = Q
and E = Q(

√
−7), and consider the canonical Hecke character χcan of E in the

sense of Rohrlich [Ro80]. Since χcan restricts to the quadratic character, χ1 = χ
n
can

and χ2 = χ
m
can satisfy (1.2) so long as n and m have opposite parity. When n = 2

and m = 3 + 2l > 3, B1 is the split quaternion algebra M2(Q) and B2 is the
definite quaternion algebra B ramified at exactly 7 and ∞. The newform f in
the automorphic induction πχ2

can
has weight 3 and level Γ1(7) with nebentypus

εQ(
√
−7)/Q, and δl

3 f is a test vector for the torus period against χ 3+2l
can , where δl

3
is the lth iterate of the Shimura–Maass differential operator. The Main Theorem
gives an explicit automorphic form f B

l in the Jacquet–Langlands transfer of πχ3+2l
can
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to a definite quaternion algebra such that∫
[E×]

(δl
3 f )(g) · χ 3+2l

can (g) dg =
∫
[E×]

f B
l (g) · χ

2
can(g) dg. (1.5)

As l changes, the δl
3 f live in the same representation, but on the definite side,

the representation space containing f B
l also varies. This set-up is now primed

for arithmetic application: after dividing by a canonical period and taking p-adic
limits in l, the left-hand side of (1.5) is related to logarithms of generalized
Heegner cycles via Bertolini–Darmon–Prasanna [BDP13]. Although we do not
consider arithmetic consequences of the Main Theorem here, we plan to explore
this in future work.

1.1. Outline. We begin by establishing notation and background in Sections 2
and 3. In Section 4, we give a simple description of the relationship between
B1 and B2. We then construct dual reductive pairs (UB(V ),UB(W ∗)) and
(UE(Res V ),UE(W )) that both capture the behavior of E× ⊂ B×1 , B×2 and also
compatibly map into the same symplectic group. The goal of this paper is then to
study the following seesaw of similitude unitary groups with respect to the theta
correspondence:

GUE(Res V ) GUB(W ∗)

GUB(V ) GUE(W )

‘= ’
B×2 B×1

E× E×

In Section 5, we use Kudla’s splittings for unitary groups and explicitly
study their compatibility on E× × E×. Many of the calculations are similar
to the calculations in [IP18++]. From the compatibility statements about the
splittings, we can deduce precise information about how the Weil representations
on GUB(V )× GUB(W ∗) and GUE(Res V )× GUE(W ) are related.

In Section 6, we give a representation theoretic description of the global theta
lifts. This requires a careful study of Kudla’s splittings at the places v where
everything is unramified (Section 5.6). We prove (Theorem 6.1) that the global
theta lifts can be described in terms of automorphic induction and Jacquet–
Langlands and that the global theta lift vanishes if and only if the Jacquet–
Langlands transfer does not exist. Combining these results with the compatibility
results of Section 5, we obtain our Main Theorem (Theorem 6.17).

In Sections 7 and 8, in the case E/F is CM, we construct a Schwartz function
ϕ whose theta lift θϕ(χ) to GL2(F) is the newform. We prove an explicit Rallis
inner product formula relating θϕ(χ) to L(1, χ̃), which in particular shows that
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the theta lift is nonvanishing. These Schwartz functions have been considered in
various places before. At the finite places, they have appeared for example in [P06,
Proposition 2.5.1], [X07, N1]. At the infinite places, our choice is constructed
from a confluent hypergeometric function 1 F1(a, b, t) of the first type.

We conclude the paper (Section 9) with details on the canonical Hecke
character χcan of Q(

√
−7), the example mentioned earlier in Section 1.

2. Definitions

For a number field F , let O be the ring of integers of F and D the different ideal
of F over Q. Let r1 be the number of real embeddings of F and 2r2 be the number
of complex embeddings of F . For each finite place v of F , let Ov be the ring of
integers of Fv, πv a uniformizer of Ov, and qv the cardinality of the residue field
Ov/πv. Let D = DF be the discriminant of F and for each finite place v of F , let
dv be the nonnegative integer such that D ⊗O Ov = π

dv
v Ov. Set δv = π−dv

v . Then
|D| =

∏
v-∞ qdv

v .
Throughout this paper, let E be a (possibly split) quadratic extension of F and

let B be a quaternion algebra over F containing E . The main groups in this paper
are A×E , A1

E , and B×A . For shorthand, we write

[E×] := A×F E×\A×E , [E
1
] := E1

\A1
E , [B

×
] := A×F B×\B×A ,

where in the last definition, we view A×F as the center of B×A .

2.1. Measures. Throughout this paper, all integrations over adelic groups are
performed with respect to the Tamagawa measure. We define dx =

∏
v dxv to be

the measure on AF that is self-dual with respect to a chosen additive character ψ
of F . We now describe the Tamagawa measure explicitly in a few special cases.

EXAMPLE 2.1. The standard additive character of F\AF is ψ := ψ0 ◦ TrF/Q,
where ψ0 = ⊗vψ0,v is the nontrivial additive character of Q\AQ given by

ψ0,v(x) =

{
e2π
√
−1x if v = ∞,

e−2π
√
−1x if v -∞.

Observe that if v is a finite place of F , then ψv is trivial on π−dv
v OFv but nontrivial

on π−dv−1
v OFv . The measure dx on AF that is self-dual with respect to ψ has the

property that

· if v is finite, then vol(OFv , dxv) = q−dv/2
v ;

· if v is infinite, then dxv is the Lebesgue measure.
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More generally, if ψ ′ is any additive character of AF , then for any finite place v,
we have vol(Ov, dxv) = qc(ψv)/2

v , where c(ψv) is the smallest integer such that ψv
is trivial on π c(ψv)

v OFv .

EXAMPLE 2.2. For any number field k, put

ρk := Ress=1 ζF(x) =
2r1(2π)r2 h R
|D|1/2w

,

where r1 is the number of real places of k, r2 is the number of complex places
of k, h = hk is the class number of k, R = Rk is the regulator of k, D = Dk is
the discriminant of k, and w = wk is the number of roots of unity in k. Then the
Tamagawa measure of A×k is

d×xTam
= ρ−1

k ·
∏
v

d×xTam
v ,

where

d×xTam
v :=

{
(1− q−1

v )
−1 dxv/|x |v if v is finite,

dxv/|x |v if v is infinite.

Observe that if v is finite, then vol(O×v , d×xTam
v ) = q−dv/2

v . The Tamagawa number
of Gm is 1, that is, vol(k×\A×k , d×xTam) = 1.

EXAMPLE 2.3. The previous example explicitly describes the Tamagawa
measure of A×F and A×E . For each place v of F , one has a short exact sequence

1→ F×v → E×v → E1
v → 1,

and hence we may define a local measure d1gTam
v on E1

v as the quotient measure.
Then the Tamagawa measure of E1

A is

d1gTam
:=

ρF

ρE
·

∏
v

d1xTam
v .

Observe that if v is a finite place of F , then

vol(E1
v ∩O×Ev , d1xTam

v ) =

{
q−1/2

Fv if v ramifies in E ,

q−dFv /2
Fv if v is inert or split in E .

Observe that vol(E1
v ∩ O×Ev , d1xTam

v ) = 1 for all but finitely many places v. If F
is totally real and E/F is totally imaginary, then one can show (for example, by
calculating the measure of an annulus in C containing the unit circle) that

vol(C1, d1xTam
∞
) = 2π.
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2.2. Conductors. In this section, we briefly review the notion of the conductor
of an admissible representation. First, let k be a non-Archimedean local field with
a ring of integers Ok and a fixed uniformizer π . For any integer N ∈ Z>0, let

K ′0(N ) :=
{(

a b
c d

)
∈ GL2(Ok) : c ∈ π NOk

}
.

THEOREM 2.4 (Casselman). Let ρ be an irreducible admissible infinite-
dimensional representation of GL2(k) with central character ω. Let c(ρ) ∈ Z>0

be the smallest integer such that{
v ∈ ρ : ρ(g)v = ω(a)v for all g =

(
a b
c d

)
∈ K ′0(c(ρ))

}
6= {0}.

Then this space has dimension one.

We call c(ρ) the conductor of ρ. For a smooth character χ : k× → C×, define
its conductor c(χ) ∈ Z>0 to be the smallest number such that χ |U c(χ)

k
= 1, where

U 0
k := O×k and U n

k = 1 + π nOk for n > 0. Now let L/k be a (possibly split)
quadratic extension of k. Let χ be a smooth character of L× and let πχ denote
its automorphic induction to GL2(k). It will be useful for us to have an explicit
description of c(πχ ) in terms of c(χ) for each place v of F . This calculation
follows from facts about Artin conductors of Galois representations and the fact
that conductors of admissible representations of GL2(k) are compatible with Artin
conductors of Galois representations under the local Langlands correspondence.
We have

c(πχ ) =


c(χ1)+ c(χ2) if L = k ⊕ k and χ = χ1 ⊗ χ2,
c(πχ ) = valk(4)+ 2c(χ) if L/k is unramified,
c(πχ ) = 1+ valk(4)+ c(χ) if L/k is ramified.

(2.1)

3. Weil representations

Let k be any field. Let V be a vector space over k with a symplectic form
〈〈·, ·〉〉. The Weil representation of Sp(V) is a representation of a cover of Sp(V).
It arises in a very natural way, which we briefly recall. The symplectic space V
gives rise to a Heisenberg group H(V), which is a central extension of V by k.
The natural action of Sp(V) on V extends to an action on H(V) fixing the center
Z(H(V)) = k. Let V = X + Y be a complete polarization. By the Stone–von
Neumann theorem, the irreducible representations of H(V)with nontrivial central
character are uniquely determined by their central character and can be realized
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on the vector space S(X) of Schwartz functions. Thus by Schur’s lemma, the
Sp(V) action on H(V) induces an automorphism φg of S(X) that is unique up to
scalars. We therefore have a group homomorphism

[ωψ ] : Sp(V)→ PGL(S(X)), g 7→ [φg],

where [φg] denotes the image of φg under the quotient map GL(S(X)) →
PGL(S(X)). This is the projective Weil representation of Sp(V).

It is natural to try to understand when [ωψ ] lifts to a genuine representation of
Sp(V). When k = Fq , there exists a lift, but this is not the case in general. The
assignment g 7→ φg satisfies

φgφh = zY(g, h)φgh, for g, h ∈ Sp(V).

It is a straightforward check that (g, h) 7→ zY(g, h) defines a 2-cocycle in
H 2(Sp(V),C×). The 2-cocycle zY corresponds to a central extension Mp(V) of
Sp(V) and certainly the projective Weil representation of Sp(V) lifts to a genuine
representation of Mp(V). But we can realize the Weil representation on Sp(V)
itself if and only if zY is in fact a 2-coboundary.

In this paper, we will be interested in the adelic Weil representation, which is
composed of Weil representations of local fields. For the rest of this section, let k
be a local field of characteristic zero, fix an additive character ψ : k → C×, and
fix a complete polarization V = X+ Y.

3.1. Metaplectic groups over local fields. Following [R93, Lemma 3.2],
there is an explicit unitary lift r : Sp(V) → GL(S(X)) (a map of sets) of the
projective Weil representation given by

(r(σ )ϕ)(x) =
∫
Y/ ker γ

fσ (x + y)ϕ(xα + yγ )µσ (d ȳ)

for any ϕ ∈ S(X) and any σ =
(
α β
γ δ

)
, where µσ is a Haar measure on Y/ ker γ , ȳ

is the coset y + ker γ ∈ Y/ ker γ , and fσ (x + y) = ψ(qσ (x + y)) for

qσ (x + y) = 1
2 〈〈xα, xβ〉〉 + 1

2 〈〈yγ, yδ〉〉 + 〈〈yγ, xβ〉〉.

Moreover, this lift is the unique lift satisfying the properties in [R93,
Theorem 3.5]. We then define the 2-cocycle zY : Sp(V)× Sp(V)→ C1 by

r(gh) = zY(g, h)−1
· r(g) · r(h).

This represents a class in H 2(Sp(V),C1) and therefore gives rise to a
C1-extension Mp(V) of Sp(V), which we call the metaplectic group. Explicitly,
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this group is the set Sp(V)× C1 together with the multiplication rule

(g, x) · (h, y) = (gh, xy · zY(g, h)).

We define the Weil representation ωψ on the metaplectic group Mp(V) to be

ωψ : Mp(V)→ GL(S(X)), (g, z) 7→ z · r(g).

Oftentimes, it is easier to work with the following description of ωψ :

ωψ

((
a

(at)−1

)
, z
)
ϕ(x) = z · |det a|1/2 · ϕ(xa) (3.1)

ωψ

((
1n b

1n

)
, z
)
ϕ(x) = z · ψ

(
1
2

xbtx
)
· ϕ(x) (3.2)

ωψ

((
1n

−1n

)
, z
)
ϕ(x) = z ·

∫
kn
ϕ(y)ψ(x t y) dy (3.3)

for ϕ ∈ S(X), x ∈ X ∼= kn , a ∈ GL(X) ∼= GLn(k), b ∈ Hom(X,Y) ∼=Mn(k) with
bt
= b, and z ∈ C1. In (3.3), we take dy to be the product of the self-dual Haar

measure on k with respect to ψ .
It will later (for example, in Section 7) be convenient to understand how

changing the additive character ψ affects the Weil representation ωψ . One can
check that the Weil representation with respect to the additive character ψν(x) :=
ψ(νx) satisfies

ωψ(d(ν)−1g d(ν), z) = ωψν (g, z), where d(ν) :=
(

1 0
0 ν

)
for ν ∈ k. (3.4)

If for a subgroup ι : G ↪→ Sp(V), the restriction of zY represents the trivial
class in H 2(G,C1), then via an explicit trivialization s of zY|G×G , we can define
the Weil representation ωψ on G as

ωψ : G → GL(S(X)), g 7→ ωψ(g, s(g)).

One feature that makes the Weil representation computable is the fact that
the 2-cocycle zY can be expressed in terms of the Weil index of the Leray
invariant. Let k be a local field. For any nontrivial additive character ψ of k
and any nondegenerate symmetric k-bilinear form q : V × V → k, we write
γF(ψ ◦ q) ∈ µ8 to denote the Weil index associated with the character of second
degree x 7→ ψ(q(x, x)) (see [R93, Appendix], [IP18+, Section 3.1.1]). For any
maximal isotropic subspaces Y,Y′,Y′′ of V, the Leray invariant q(Y,Y′,Y′′) is
a nondegenerate symmetric k-bilinear form on V (see [R93, Sections 2.3,2.4],
[IP18+, Section 3.1.2]). Then for any g1, g2 ∈ Sp(V),

zY(g1, g2) = γF(
1
2ψ ◦ q(Y,Yg−1

2 ,Yg1)).
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3.2. The doubled Weil representation. Now consider the doubled symplectic
space V� := V+V−, where V− has the negated form. Let X� = X+X−, Y� =
Y + Y−, and let ω�ψ denote the Weil representation on the metaplectic group
Mp(V�)with respect to V� = X�+Y�.We will also make use of the polarization
V� = V4 + V5, where V4 = {(v, v) : v ∈ V} and V5 = {(v,−v) : v ∈ V}.
Identifying Sp(V−) with Sp(V)op, we have a natural homomorphism

ι̃ : Mp(V)×Mp(V)op
→ Mp(V�), ((g, z), (h, w)) 7→ (diag(g, h−1), zw−1).

3.3. Dual reductive pairs and the Howe correspondence. A dual reductive
pair (G,G ′) in Sp(V) is a pair of reductive subgroups of Sp(V), which are mutual
centralizers of each other. There is a natural map

i : G × G ′→ Sp(V), (g, g′) 7→ (v 7→ g−1vg′).

If the cocycle zY can be trivialized on i(G×G ′) ⊂ Sp(V), we can define the Weil
representation on i(G × G ′) and pull back to a Weil representation of G × G ′. In
[K94], Kudla wrote down explicit splittings of zY. We will make use of this work
heavily in the present paper.

The Weil representation ωψ on G × G ′ has the following multiplicity-one
property. For an irreducible G-representation π , let S(π) denote the largest
quotient of S(X) such that G acts by π . By [MVW, Ch. 2, Lemma III.4], there
exists a unique irreducible G ′-representation Θ(π) such that

S(π) ∼= π ⊗Θ(π).

We call Θ(π) the local theta lift of π .

4. Waldspurger, Tunnell–Saito, and a pair of quaternion algebras

For any quaternion algebra B over F , we write ΣB := {places v of F such that
Bv is ramified}.

4.1. Waldspurger’s formula. Let π be an irreducible cuspidal automorphic
representation of GL2(AF) with central character ωπ that has a nonzero Jacquet–
Langlands transfer π B to B×A . Recall that this means that πv is a discrete series at
all v ∈ ΣB . Let Ω be any Hecke character of E× such that Ω|A×F = ω

−1
π . Define

P(π B,Ω) : π B
→ C, f 7→

∫
[E×]

f (t)Ω(t) dt.
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We have the following classical theorem, which follows from combining
Waldspurger’s formula with the local ε-dichotomy theorem of Tunnell and
Saito.

THEOREM 4.1 (Waldspurger [W85a], Tunnell [T83], Saito [S93]). Let π be
an irreducible cuspidal automorphic representation of GL2(AF) with central
character ωπ . If

L(BC(π)⊗Ω, 1
2 ) 6= 0, and Ω|A×F = ω

−1
π ,

then there exists a unique quaternion algebra B = Bπ,Ω over F such that

P(π B,Ω) 6= 0.

Moreover, B is the unique quaternion algebra with ramification set

Σπ,Ω := {v : εv(BC(π)⊗Ω) · ωv(−1) = −1}.

Proof. If L(BC(π)⊗Ω, 1
2 ) 6= 0, then ε(BC(π)⊗Ω) = +1. Since ω is a Hecke

character of A×, we must have ω(−1) = +1. Therefore, there must be an even
number of places v of F such that εv(BC(π)⊗Ω)·ωv(−1) = −1, and hence there
exists a unique quaternion algebra Bπ,Ω over F with ramification set Σπ,Ω , and
the conclusion now follows from Waldspurger’s formula and the local branching
criterion of Tunnell and Saito.

4.2. A pair of quaternion algebras. We now specialize to the setting where
π comes from automorphic induction. Let χ, χ ′ be Hecke characters of A×E . One
has

L(BC(πχ )⊗ χ ′, s) = L(πχ ⊗ πχ ′, s) = L(BC(πχ ′)⊗ χ, s),

and let us assume that

L(BC(πχ )⊗ χ ′, 1
2 ) = L(BC(πχ ′)⊗ χ, 1

2 ) 6= 0. (4.1)

It is a standard calculation to see that the central character of πχ (and of any
Jacquet–Langlands transfer π B

χ ) is χ |A×F · εE/F , where εE/F is the quadratic
character of A×F associated with the quadratic extension E/F . Therefore the
central character condition in Theorem 4.1 is

χ |A×F · χ
′
|A×F · εE/F = 1. (4.2)

If χ, χ ′ satisfy (4.2), then by Theorem 4.1, B = Bπχ ,χ ′ and B ′ = Bπχ ′ ,χ are the
unique quaternion algebras such that P(π B

χ , χ
′) 6= 0 and P(π B ′

χ ′ , χ) 6= 0.

https://doi.org/10.1017/fms.2020.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.21


C. Chan 12

PROPOSITION 4.2. Let χ, χ ′ be Hecke characters of A×E satisfying (4.1) and (4.2),
and let E = F(i) with i2

= u ∈ F×. If B = Bπχ ,χ ′ is the quaternion algebra that
corresponds to the Hilbert symbol (u, J ), then B ′ = Bπχ ′ ,χ corresponds to the
Hilbert symbol (u,−J ).

Proof. It is a standard computation to show that

εv(BC(πχ )⊗ χ ′) = εv(BC(πχ ′)⊗ χ).

Equation (4.2) implies that ωπχ · ωπχ ′ · εE/F = 1. Using Theorem 4.1, we see that
Σπχ ′ ,χ

can be described in terms of Σπχ ,χ ′ :

Σπχ ′ ,χ
=

{
v :
v ∈ Σπχ ,χ ′ and εEv/Fv (−1) = 1, or
v /∈ Σπχ ,χ ′ and εEv/Fv (−1) = −1.

}
An equivalent way to state this relationship is the following. The quaternion
algebra B can be given an F basis 1, i, j, ij such that E = F[i]. Write i2

= u
and j2

= J so that B is the quaternion algebra associated with the Hilbert symbol
(u, J ). That is,

(u, J )v = −1 ⇐⇒ v ∈ Σπχ ,χ ′ .

By the bimultiplicativity of the Hilbert symbol, B ′ is the quaternion algebra
associated with

(u, J ) · εE/F(−1) = (u, J ) · (u,−1) = (u,−J ).

4.3. A seesaw of unitary groups. In this section, we introduce the main dual
reductive pairs of interest in this paper. Fix i ∈ E with trE/F i = i+i = 0. Note that
E = F[i]. Let B be a (possibly split) quaternion algebra over F and let 1, i, j,k
be a standard basis for B over F . Viewing B = E ⊕ Ej, we set pr : B → E to be
the projection onto the E-component. We consider the following spaces:

• V = B = 1-dimensional right B-space with skew-Hermitian form 〈x, y〉 =
x∗iy;

• W ∗
= E⊗E B = 1-dimensional left B-space with Hermitian form (x, y)= xy∗;

• Res V = 2-dimensional right E-space with skew-Hermitian form 〈x, y〉 =
pr(x∗iy);

• W = E = 1-dimensional left E-space with Hermitian form (a, b) = ab;

• V0 = 1-dimensional right E-space with Hermitian form 〈a, b〉0 = ab;
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• W0 = B = 2-dimensional left E-space with skew-Hermitian form (x, y)0 =
−i pr(xy∗);

• V = ResB/F(V ⊗B W ∗) = ResE/F(Res V ⊗E W ) = ResE/F(V0 ⊗E W0) =

4-dimensional F-space with symplectic form 1
2 TrE/F(〈·, ·〉 ⊗ (·, ·)).

Then both pairs (UB(V ),UB(W ∗)) and (UE(Res V ),UE(W )) are irreducible dual
reductive pairs (of type 1) in Sp(V). (See, for example, [P93].) For any pair
(V,W ) = (V,W ∗), (Res V,W ), or (V0,W0), we take as our convention

GL(V )× GL(W )→ GL(V ⊗W ), (g, h) 7→ (v ⊗ w 7→ g−1v ⊗ wh).

It is clear that UB(V ) ⊂ UE(Res V ) and that UE(W ) ⊂ UB(W ∗). Furthermore,
we have a commutative diagram

UB(V ) × UB(W ∗) Sp(ResB/F(V ⊗B W ∗))

UE(Res V ) × UE(W ) Sp(ResE/F(Res V ⊗E W ))

= (4.3)

Therefore we have the following seesaw of dual reductive pairs:

UE(Res V ) UB(W ∗)

UB(V ) UE(W )

∼=

G(E× × (B ′)×)/F× B1

E1
∪ E

1
J j E1

Here, B ′ =
( i2,−j2

F

)
, the superscript r ∈ Q picks out the norm-r elements, and

G(E×× (B ′)×) is the subgroup of E×× (B ′)× consisting of elements (α, β) with
NmE/F(α) = NrdB ′/F(β). Note that F× maps antidiagonally into G(E×× (B ′)×).
The analogous seesaw with similitudes is

GUE(Res V ) GUB(W ∗)

GUB(V ) GUE(W )

∼=

(E× × (B ′)×)/F× B×

E× ∪ E×j E×

(4.4)

The only isomorphism that is not straightforward to see is GUE(Res V ) ∼=
((B ′)× × E×)/F×. The E× factor comes from the fact that Res V is a right
E-space, and the (B ′)× factor comes from a natural left action of (B ′)× on
Res V = B defined by

j′ · 1 = j, j′ · j = −J
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and extending this action left E-linearly. Observe that this action commutes with
right multiplication by E× on Res V .

We note that the point of introducing the E-spaces V0 and W0 is that we have
natural maps

UB(V )0 ∼= UE(V0), UB(W ∗) ↪→ UE(W0).

This will allow us to compute splittings on the quaternionic unitary groups UB(V )
and UB(W ∗) by pulling back splittings on UE(V0) and UE(W0).

5. Splittings for unitary similitude groups

Fix an additive character ψ of AF trivial on F . In this section, we define the
Weil representation ωψ on the dual reductive pairs introduced in Section 4.3 using
the explicit splittings of zY defined by Kudla [K94]. The properties of the Weil
index and the Leray invariant we will use in this section can be found in [R93]
and [IP18+, Sections 3.1.1, 3.1.2]. We prove that the splittings are compatible
with the seesaws constructed in Section 4.3. In Section 5.5, we combine the
local considerations from Sections 5.1–5.4 into the global picture. Many of these
calculations (especially in Sections 5.3 and 5.4) are similar to those in [IP18+,
Appendix C] and [IP18++].

In order to describe the global automorphic theta lift from a Hecke character
to a quaternion algebra, which we will do later in Section 6, we will need to give
an explicit description of the local splittings in Section 5.3 in the special case that
the quaternion algebra is unramified (that is, split) at the place in question. We do
this in Section 5.6.

NOTATION. In Sections 5.1–5.4 and 5.6, we fix a place v of F and suppress v
from the notation so that E is a (possibly split) quadratic extension of a local
field F . The only subsection in this section where E/F is a quadratic extension
of global fields is Section 5.5.

5.1. Kudla’s splitting for split unitary groups. We first recall Kudla’s
splitting [K94] of Rao’s cocycle [R93] for split unitary groups over E . Let
W ∼= E2n (row vectors) be an E-vector space of dimension 2n with ε-skew
Hermitian form

〈(x1, y1), (x2, y2)〉 = x1 yt
2 − εy1x t

2,

and let e1, . . . , en, e′1, . . . , e′n be the E-basis of W giving the isomorphism
W ∼= E2n . Let V be an E-vector space of dimension m with a nondegenerate
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ε-Hermitian form (·, ·). (Here, x denotes the image of x under the nontrivial
involution of E over F and the superscript t denotes transposition.) Then (UE(V),
UE(W)) is a dual reductive pair and there is a natural map

ι : UE(V)× UE(W)→ Sp(V⊗E W), (h, g) 7→ (w ⊗ v 7→ h−1w ⊗ vg).

We denote by ιW : UE(V)→ Sp(V⊗E W) and ιV : UE(W)→ Sp(V⊗E W) the
restrictions of ι to UE(V)× {1} and {1} × UE(W), respectively.

For 0 6 j 6 n, let τ j ∈ UE(W) be the element defined by

eiτ j =

{
−εe′i if 1 6 i 6 j ,
ei if i > j ,

and e′iτ j =

{
ei if 1 6 i 6 j ,
e′i if i > j .

Then

UE(W) =

n⊔
j=0

Pτ j P,

where P = PY ⊂ UE(W) is the parabolic subgroup stabilizing the maximal
isotropic subspace Y := spanE{e

′

1, . . . , e′n}. If g = p1τ j p2 ∈ Pτ j P , then we define

j (g) := j, and x(g) := det(p1 p2|Y ) ∈ E×.

For any m-dimensional E-vector space V0 endowed with a nondegenerate
Hermitian form, define

γF(
1
2ψ ◦ RV0) := (u, det(V0))FγF(−u, 1

2ψ)
mγF(−1, 1

2ψ)
−m,

where for any a ∈ F×, we set γF(a, 1
2ψ) := γF(

a
2ψ ◦ q)/γF(

1
2ψ ◦ q) ∈ µ8, a

quotient of Weil indices.

DEFINITION 5.1. Define

βV,ξ : UE(W)→ C1, g 7→

{
ξ(x(g))γF(

1
2ψ ◦ RV)− j (g) if ε = +1,

ξ(x(g))ξ(i) jγF(
1
2ψ ◦ RV′)− j (g) if ε = −1,

where V′ is the Hermitian form obtained by scaling the skew-Hermitian form on
V by i.

THEOREM 5.2 (Kudla, [K94, Theorem 3.1]). Let ξ be a unitary character of
E× whose restriction to F× is εm

E/F , where εE/F(x) = (x, u)F is the quadratic
character corresponding to the extension E/F. Then for the maximal isotropic
subspace Y := V⊗E Y of V⊗E W,

zY(ιV(g1), ιV(g2)) = βV,ξ (g1g2)βV,ξ (g1)
−1βV,ξ (g2)

−1.
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In other words, with respect to the isomorphism Mp(V⊗E W)∼= Sp(V⊗E W)×C1

determined by zY, the following diagram commutes:

Mp(V⊗E W)Y

UE(W) Sp(V⊗E W)

(ιV,βV,ξ )

ιV

5.2. Changing polarizations.

LEMMA 5.3 (Kudla, [K94, Lemma 4.2]). Let X + Y and X′ + Y′ be two
polarizations of a symplectic space V. Then

zY′(g1, g2) = λ(g1g2)λ(g1)
−1λ(g2)

−1
· zY(g1, g2),

where λ : Sp(V)→ C1 is given by a product of Weil indices of Leray invariants:

λ(g) := λY Y′(g) := γF(
1
2ψ ◦ q(Y,Y′g−1,Y′)) · γF(

1
2ψ ◦ q(Y,Y′,Yg)).

In particular, the bijection

Mp(V)Y→ Mp(V)Y′, (g, z) 7→ (g, z · λ(g))

is an isomorphism.

5.3. Three seesaws of unitary groups. For any two unitary similitude groups
GUE(V) and GUE(W), we write

G(UE(V)× UE(W)) := {(g, h) ∈ GUE(V)× GUE(W) : ν(g) = ν(h)}.

Fix a complete polarization V = X + Y. In this section, we define splittings (of
zY or zY� , depending on context) for the unitary groups G(UE(V�0 ) × UE(W0)),
G(UE(V0)×UE(W0)), G(UE(Res V )×UE(W�)), and G(UE(Res V )×UE(W )),
which fit into the seesaw

UE(Res V ) UE(W0)

UE(V0) UE(W )

(5.1)

and the two corresponding doubling seesaws:

UE (V �
0 ) UE (W0)× UE (W0)

UE (V0)× UE (V0) UE (W0)
4

UE (Res V ) UE (W�)

UE (Res V )4 UE (W )× UE (W )

(5.2)
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5.3.1. Splittings for G(UE(V�0 )×UE(W0)) and G(UE(V0)×UE(W0)). Consider
the 2-dimensional E-space V0⊗E W0 with skew-Hermitian form given by (·, ·)⊗
〈·, ·〉. By a straightforward computation, we see that this allows us to identify
V0 ⊗E W0 = W0 as E-spaces endowed with skew-Hermitian forms. Define

i : G(UE(V0)× UE(W0))→ UE((V0 ⊗W0)
�),

(g, h) 7→ ((v ⊗ w, v− ⊗ w−) 7→ (g−1v ⊗ wh, v− ⊗ w−)),
i− : G(UE(V0)× UE(W0))→ UE((V0 ⊗W0)

�),

(g, h) 7→ ((v ⊗ w, v− ⊗ w−) 7→ (v ⊗ w, g−1v− ⊗ w−h)),
i� : G(UE(V�0 )× UE(W0))→ UE(V�0 ⊗W0),

(g, h) 7→ (v ⊗ w 7→ g−1v ⊗ wh).

We may identify V�0 ⊗W0 = (V0 ⊗W0)
�
= W�0 . We have natural embeddings

G(UE(V0)× UE(V0)× UE(W0)) ↪→ G(UE(V0)× UE(W0))

× G(UE(V0)× UE(W0))

G(UE(V0)× UE(V0)× UE(W0)) ↪→ G(UE(V�0 )× UE(W0)).

Observe that for (g1, g2, h) ∈ G(UE(V0)× UE(V0)× UE(W0)),

i(g1, h)i−(g2, h) = i�(g1, g2, h) ∈ UE(W�0 ).

We identify ResE/F(W�0 ) = V� and let

ι : UE(W�0 )→ Sp(ResE/F(W�0 )) = Sp(V�)

be the natural embedding. We will often identify UE(W�0 ) with ι(UE(W�0 )).

DEFINITION 5.4. Pick a character ξ : E×→ C1 such that ξ |F× = εE/F . Define

β : UE(W�0 )→ C1, g 7→ ξ(x(g)) · ((u,−1)FγF(u, 1
2ψ))

− j (g).

Define λ := λV0⊗W40  Y� : Sp(V�)→ C1 and

ŝ := i∗β, ŝ− := (i−)∗β, ŝ� := (i�)∗β,
s := i∗(βλ), s− := (i−)∗(βλ), s� := (i�)∗(βλ).

LEMMA 5.5. (a) ŝ, ŝ−, and ŝ� are splittings of zV0⊗W40
on the images of i , i−,

and i�, respectively.

(b) s is a splitting of zY on the image of i , s− is a splitting of z−1
Y on the image

of i−, and s� is a splitting of zY� on the image of i�.

https://doi.org/10.1017/fms.2020.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.21


C. Chan 18

Proof. Observe that det(V0) = 1 and dim(V0) = 1 so that

γF(
1
2ψ ◦ RV0) = (u, 1)FγF(−u, 1

2ψ)γF(−1, 1
2ψ)

−1
= (u,−1)FγF(u, 1

2ψ).

This implies that β = βUE (V0),ξ (see Definition 5.1) and hence is a splitting of
zV0⊗E W40

. Since ŝ, ŝ−, and ŝ� are pullbacks of β, they must also be splittings of
the same cocycle.

LEMMA 5.6. For any (g, h) ∈ G(UE(V0)× UE(W0)),

ŝ−(g, h) = ŝ(g, h) · ξ(det(g, h)).

Proof. Let dW40
(−1) =

(
1 0
0 −1

)
and set

jW40
: UE(W�0 )→ UE(W�0 ), g 7→ dW40

(−1)gdW40
(−1).

Let g ∈ G(UE(V0)× UE(W0)). By a straightforward computation, we have

x(i−(g)) = (−1) j (g)x(i(g)), and j (i−(g)) = j (i(g)).

Therefore, since γF(u, 1
2ψ)

2
= (u,−1)F ,

ŝ−(g) = ξ(x(i−(g)))((u,−1)FγF(u, 1
2ψ))

− j (i−(g))

= ξ(x(i(g)))((u,−1)FγF(u, 1
2ψ))

j (i(g))

= ξ(x(i(g)))2ŝ(g) = ξ(det(g))ŝ(g).

LEMMA 5.7. For (g1, g2, h) ∈ G(UE(V0)× UE(V0)× UE(W0)),

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

Proof. This is [HKS96, Lemma 1.1]. See also [IP18++, Lemma D.4].

5.3.2. Splittings for G(UE(Res V ) × UE(W�)) and G(UE(Res V ) × UE(W )).
This section is completely analogous to Section 5.3.1. The 2-dimensional E-space
Res V ⊗E W with skew-Hermitian form (·, ·)⊗〈·, ·〉 can be identified with Res V .
Define

i ′ : G(UE (Res V )× UE (W )) → UE (Res V�), (g, h) 7→ ((v, v−) 7→ (g−1vh, v−)),

i−′ : G(UE (Res V )× UE (W )) → UE (Res V�), (g, h) 7→ ((v, v−) 7→ (v, g−1v−h),

i�′ : G(UE (Res V )× UE (W
�)) → UE (Res V�), (g, h) 7→ (v 7→ g−1vh).
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We have natural embeddings

G(UE(Res V )× UE(W )× UE(W )) ↪→ G(UE(Res V )× UE(W ))

× G(UE(Res V )× UE(W )),

G(UE(Res V )× UE(W )× UE(W )) ↪→ G(UE(Res V )× UE(W�)).

Observe that for (g, h1, h2) ∈ G(UE(Res V )× UE(W )× UE(W )),

i ′(g, h1)i−′(g, h2) = i�′(g, h1, h2) ∈ UE(Res V�).

We identify ResB/F(V�) = V� and let

ι′ : UE(Res V�)→ Sp(V�)

be the natural embedding. We will often identify UE(Res V�) with
ι(UE(Res V�)).

DEFINITION 5.8. Pick a character ξ ′ : E×→ C1 such that ξ ′|F× = εE/F . Define

β ′ : UE(Res V�)→ C1, g 7→ ξ ′(x(g)) · ((u,−1)FγF(u, 1
2ψ))

− j (g).

Define
λ′ := λRes V4⊗W Y� : Sp(V�)→ C1.

Define

ŝ ′ := (i ′)∗β ′, ŝ−′ := (i−′)∗β ′, ŝ�′ := (i�′)∗β ′,
s ′ := (i ′)∗(β ′λ′), s−′ := (i−′)∗(β ′λ′), s�′ := (i�′)∗(β ′λ′).

LEMMA 5.9. (a) ŝ ′, ŝ−′, and ŝ�′ are splittings of zRes V4⊗W on the images of i ′,
i−′, and i�′, respectively.

(b) s ′ is a splitting of zY on the image of i ′, s−′ is a splitting of z−1
Y on the image

of i−′, and s�′ is a splitting of zY� on the image of i�′.

LEMMA 5.10. For (g, h1, h2) ∈ G(UE(Res V )× UE(W )× UE(W )),

s�′(g, h1, h2) = s ′(g, h1) · s ′(g, h2) · ξ
′(det(i ′(g, h2))).

5.4. Compatibility between the splittings for the three seesaws. In this
section, we investigate the compatibility of the splittings of the four pairs
of unitary groups relative to the three seesaws presented in (5.1) and (5.2).
Compatibility of the splittings in the two doubling seesaws of (5.2) is explicated
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in Lemmas 5.7 and 5.10. Hence it remains to investigate the compatibility of the
splittings

s : G(UE(V0)× UE(W0))→ C1 and s ′ : G(UE(Res V )× UE(W ))→ C1.

Precisely, we would compare s and s ′ on the subgroup

G(UE(V0)× UE(W )) ∼= {(α, β) ∈ E× × E× : Nm(α) = Nm(β)}.

We prove a sequence of lemmas that break up the computation showing
Proposition 5.14.

Let α, β ∈ E× with Nm(α)= Nm(β) so that (α, β) ∈ G(UE(V0)×UE(W )). Let
g ∈ UE(W�0 ) denote the map (w,w−) 7→ (α−1wβ,w−) and let g′ ∈ UE(Res V�)
denote the map (v, v−) 7→ (α−1vβ, v−). Define

v1 :=

(
−

i
2u
,

i
2u

)
, v2 :=

(
ij

2u J
,−

ij
2u J

)
, v′1 := (1, 1), v′2 := (j, j).

This defines an E-basis of W�0 and of Res V� with the following property:

(vi , v
′

j)0 = δi j , (vi , v j)0 = (v
′

i , v
′

j)0 = 0,
〈vi , v

′

j 〉 = δi j , 〈vi , v j 〉 = 〈v
′

i , v
′

j 〉 = 0.

With respect to the basis {v1, v2, v
′

1, v
′

2},

g =



1+ α−1β

2
0

1− α−1β

4u
i 0

0
1+ α−1β

2
0 −

1− α−1β

4u J
i

(1− α−1β)i 0
1+ α−1β

2
0

0 −(1− α−1β)iJ 0
1+ α−1β

2


(5.3)

g′ =



1+ α−1β

2
0

1− α−1β

4u
i 0

0
1+ α−1β

2
0

1− α−1β

4u J
i

(1− α−1β)i 0
1+ α−1β

2
0

0 (1− α−1β)iJ 0
1+ α−1β

2


. (5.4)
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Here, we view each unitary group as a subgroup of GL4(E) with GL4(E) acting
formally by right multiplication. Note however that W�0 is a left E-space, and
so we interpret the formal multiplication v · a for v ∈ W�0 and a ∈ E as av.
Throughout this section, we write g when we want to refer to one of g or g′

simultaneously.

LEMMA 5.11. We have

Conditions x(g) x(g′) j (g)
α−1β = 1, α−1β = 1 1 1 0
α−1β = 1, α−1β 6= 1 −(1− α−1β)iJ (1− α−1β)iJ 1
α−1β 6= 1, α−1β = 1 (1− α−1β)i (1− α−1β)i 1
α−1β 6= 1, α−1β 6= 1 −(1− α−1β)(1− α−1β)u J (1− α−1β)(1− α−1β)u J 2

Proof. The proof amounts to giving explicit decompositions

g = p1wp2, where pi ∈ PV4 and w = τ j =


12− j

−1 j

12− j

1 j

 .
There are four cases:

(a) If α−1β = 1 and α−1β = 1, then

g = 1, g′ = 1.

(b) If α−1β = 1 and α−1β 6= 1, then g = p1τ1 p2 and g′ = p′1τ1 p′2 for

p1 =


1 0 0 0

0 1 0
1+ α−1β

2(−1+ α−1β)iJ
0 0 1 0
0 0 0 1

 ,

p2 =



1 0 0 0

0 (−1+ α−1β)iJ 0
1+ α−1β

2
0 0 1 0

0 0 0
α−1β

(−1+ α−1β)iJ


,
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p′1 =


1 0 0 0

0 1 0 −
1+ α−1β

2(−1+ α−1β)iJ
0 0 1 0
0 0 0 1

 ,

p′2 =



1 0 0 0

0 −(−1+ α−1β)iJ 0
1+ α−1β

2
0 0 1 0

0 0 0 −
α−1β

(−1+ α−1β)iJ


.

(c) If α−1β 6= 1 and α−1β = 1, then

g = g′ =


0 1 0

1+ α−1β

2i(1− α−1β)

1 0 0 0
0 0 0 1
0 0 1 0

 · τ1 ·



0 1 0 0

(1− α−1β)i 0
1+ α−1β

2
0

0 0 0 1

0 0
α−1β

(1− α−1β)i
0


.

(d) If α−1β 6= 1 and α−1β 6= 1, then g = p1τ2 p2 and g′ = p′1τ2 p′2 for

p1 =



1 0
1+ α−1β

2(1− α−1β)i
0

0 1 0 −
1+ α−1β

2(1− α−1β)iJ
0 0 1 0
0 0 0 1


,

p2 =



(1− α−1β)i 0
1+ α−1β

2
0

0 −(1− α−1β)iJ 0
1+ α−1β

2

0 0
α−1β

(1− α−1β)i
0

0 0 0 −
α−1β

(1− α−1β)iJ


,
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p′1 =



1 0
1+ α−1β

2(1− α−1β)i
0

0 1 0
1+ α−1β

2(1− α−1β)iJ
0 0 1 0
0 0 0 1


,

p′2 =



(1− α−1β)i 0
1+ α−1β

2
0

0 (1− α−1β)iJ 0
1+ α−1β

2

0 0
α−1β

(1− α−1β)i
0

0 0 0
α−1β

(1− α−1β)iJ


.

From the above decompositions, we can easily read off the desired information.

LEMMA 5.12. Let α = a1 + b1i. Then

ŝ(α, α) =

{
ξ(α−1) · (a1, u)F if b1 = 0,

ξ(α−1) · (−2b1u J, u)F · γF(u, 1
2ψ) · (−1,−u)F otherwise.

ŝ ′(α, α) =

{
ξ ′(α−1) · (a1, u)F if b1 = 0,

ξ ′(α−1) · (−2b1u J, u)F · γF(u, 1
2ψ) · (−1,−u)F otherwise.

Proof. We use Lemma 5.11 in the two cases where α−1β = 1. If α−1α = 1, then
α = α and so b1 = 0. By Lemma 5.11, we have

ŝ(α, α) = ŝ ′(α, α) = 1 = ξ(α−1) · (a1, u)F = ξ
′(α−1) · (a1, u)F .

If α−1α 6= 1, then b1 6= 0. Note that

1− α−1α = α−1(α − α) = α−1
· 2b1i, 1− α−1α = 1− α−1α = −α−1

· 2b1i.

The desired conclusion now follows by Lemma 5.11.
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LEMMA 5.13. Let ζ = a + bi ∈ E1. Then

ŝ(1, ζ ) =

{
1 if a = 1,
((2− 2a)u J, u)F if a 6= 1,

ŝ ′(1, ζ ) =

{
1 if a = 1,
ξ ′(ζ ) · ((2− 2a)u J, u)F if a 6= 1.

Proof. We use Lemma 5.11. If ζ = 1, this corresponds to the case α−1β = 1,
α−1β = 1, and

ŝ(1, ζ ) = ŝ ′(1, ζ ) = 1.

If ζ 6= 1, this corresponds to the case α−1β 6= 1, α−1β 6= 1, and

ŝ(1, ζ )= ξ(−(1−ζ )(1−ζ )u J )·(−1, u)F , ŝ ′(1, ζ )= ξ ′((1−ζ )2u J )·(−1, u)F .

The desired conclusion follows from the simple observation

(1− ζ )(1− ζ ) = 2− 2a, (1− ζ )2 = −ζ(1− ζ )(1− ζ ) = −ζ(2− 2a).

PROPOSITION 5.14. Let g ∈ G(UE(V0)×UE(W )) ⊂ G(UE(V0)×UE(W0)) and
g′ ∈ G(UE(V0) × UE(W )) ⊂ G(UE(Res V ) × UE(W )) correspond to (α, β) ∈
E× × E× with Nm(α) = Nm(β). Then

s ′(g′) = ξ(α)ξ ′(β)s(g).

Proof. We use the formulas given in Lemmas 5.12 and 5.13 together with
Lemma 5.3. Recall that g = g1 · g2, g′ = g′1 · g

′

2, where g1 corresponds to (α, α)
and g2 corresponds to (1, β/α).

First note that under the natural maps

i : UE(V0 ⊗W0)→ Sp(V), i� : UE(V0 ⊗W0)→ Sp(V�),
i ′ : UE(Res V ⊗W )→ Sp(V), i�′ : UE(Res V ⊗W )→ Sp(V�),

we have

i(g•) = i ′(g′
•
) ∈ Sp(V), i�(g•) = i�′(g′

•
) ∈ Sp(V�),

where g• denotes any of g, g1, g2. This implies that for λ := λV4 Y� ,

λ(i�(g•)) = λ(i�′(g′•)) and zY(i(g1), i(g2)) = zY(i ′(g′1), i ′(g′2)).

By definition,

s(g) = ŝ(g1) · µ(g1) · ŝ(g2) · µ(g2) · zY(i(g1), i(g2)),

s ′(g) = ŝ ′(g1) · µ(g1) · ŝ ′(g2) · µ(g2) · zY(i ′(g1), i ′(g2)).
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Thus we have

χ(α, β) = s(g) · s ′(g′)−1
= ŝ(g1) · ŝ(g2) · ŝ ′(g′1)

−1
· ŝ ′(g′2)

−1.

Now we combine the results of Lemmas 5.12 and 5.13 to compute χ(α, β).
Using the fact

α−1
· β · α−1

= β
−1
,

in the calculation of ŝ ′(g′1)ŝ
′(g′2) when α 6= β, we have

ŝ(g1) · ŝ(g2) =



ξ(α−1) · (a1, u)F α ∈ F×, α = β

ξ(α−1) · (a1, u)F · ((2− 2a)u J, u)F α ∈ F×, α 6= β

ξ(α−1) · (−2b1u J, u)F · γF(u, 1
2ψ) · (−1,−u)F α 6∈ F×, α = β

ξ(α−1) · (−2b1u J, u)F · γF(u, 1
2ψ) · (−1,−u)F

· ((2− 2a)u J, u)F α 6∈ F×, α 6= β

ŝ ′(g′1) · ŝ
′(g′2) =



ξ ′(α−1) · (a1, u)F α ∈ F×, α = β

ξ ′(β
−1
) · (a1, u)F · ((2− 2a)u J, u)F α ∈ F×, α 6= β

ξ ′(α−1) · (−2b1u J, u)F · γF(u, 1
2ψ) · (−1,−u)F α 6∈ F , α = β

ξ ′(β
−1
) · (−2b1u J, u)F · γF(u, 1

2ψ) · (−1,−u)F

· ((2− 2a)u J, u)F α 6∈ F×, α 6= β.

Therefore

χ(α, β) =


ξ(α−1) · ξ ′(α) α ∈ F×, α = β

ξ(α−1) · ξ ′(β) α ∈ F×, α 6= β

ξ(α−1) · ξ ′(α) α 6∈ F×, α = β

ξ(α−1) · ξ ′(β) α 6∈ F×, α 6= β

= ξ(α−1) · ξ ′(β) = ξ(α−1) · ξ ′(β−1) · ξ ′(ββ) = ξ(α−1)ξ ′(β−1).

5.5. Product formula. In this section, we put the local considerations of
Sections 5.1–5.4 into the global picture. Once and for all, pick Hecke characters

ξ, ξ ′ : E×\A×E → C1 such that ξ |A×F = ξ
′
|A×F = εE/F .

Note that UE(V0) ∼= E× ∼= UB(V )0 and hence we have natural embeddings

G(UB(V )0 × UB(W )) ↪→ G(UE(V0)× UE(W0))

G(UB(V�)0 × UB(W )) ↪→ G(UE(V�0 )× UE(W0)).

Thus functions defined on the unitary spaces pull back to functions on the
quaternionic unitary spaces. For each place v of F , by Definitions 5.4 and 5.8,
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we have functions

sv : G(UB(Vv)× UB(W ∗

v ))→ C1, s�v : G(UB(V�v )
0
× UB(W ∗

v ))→ C1,

s ′v : G(UE(Res Vv)× UE(Wv))→ C1, s�v
′
: G(UE(Res Vv)× UE(W�v ))→ C1.

Formally define

s :=
∏
v

sv, s ′ :=
∏
v

s ′v, s� :=
∏
v

s�v , s ′� :=
∏
v

s ′v
�.

These products converge by the following lemma, where we write ‘a.a.’ for ‘all
but finitely many’.

LEMMA 5.15. (a) Let γ ∈ G(UB(V )(F) × UB(W )(F)). Then sv(γ ) = 1 for
a.a. v and s(γ ) = 1.

(b) Let γ ∈ G(UB(V�)0(F) × UB(W )(F)). Then s�v (γ ) = 1 for a.a. v and
s�(γ ) = 1.

(c) Let γ ∈ G(UE(Res V )(F) × UE(W )(F)). Then s ′v(γ ) = 1 for a.a. v and
s ′(γ ) = 1.

(d) Let γ ∈ G(UE(Res V )(F)×UE(W�)(F)). Then s�v
′(γ ) = 1 for a.a. v and

s�′(γ ) = 1.

PROPOSITION 5.16. (a) [Lemma 5.7] For (g1, g2, h) ∈ G(UB(V )0(A) ×
UB(V )0(A)× UB(W )(A)),

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

(b) [Lemma 5.10] For (h, g1, g2) ∈ G(UE(Res V )(A) × UE(W )(A) ×
UE(W )(A)),

s�′(h, g1, g2) = s ′(h, g1) · s ′(h, g2) · ξ
′(det(i ′(h, g2))).

(c) [Proposition 5.14] For α, β ∈ A×E such that Nm(α) = Nm(β),

s ′(α, β) = ξ(α)ξ ′(β)s(α, β).

5.6. Two splittings on E×v × GL2(Fv). To calculate the theta lift at all the
unramified places, we will have to understand the Weil representation more
concretely. In particular, we will need to explicate the local splittings defined in
Section 5 in the cases v /∈ΣB and v /∈ΣB ′ . These exactly correspond, respectively,
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to the cases when W0,v and Res Vv are split Hermitian spaces. For notational
convenience, we drop the subscript v in this section.

Consider the group

R := G(E× × GL2(F)) = {(α, g) ∈ E× × GL2(F) : Nm(α) = det(g)}.

Assume that the 2-dimensional E-spaces W0 and Res V are hyperbolic planes
(that is, they are split Hermitian spaces). Then we have embeddings

R ↪→ G(UE(V0)× UE(W0)), (α, g) 7→ (α, g)
R ↪→ G(UE(Res V )× UE(W )), (α, g) 7→ (g, α).

Furthermore, any decomposition of W0 or Res V into maximal isotropic subspaces
induces a complete polarization

V = X′ + Y′.

Our goal in this section is to explicate the values of the splittings in Section 5.3
associated with this particular polarization. To make it clear that we are working
in this specialized context, we let

s : G(UE(V0)× UE(W0))→ C1, s′ : G(UE(Res V )× UE(W ))→ C1

denote the splittings for zY′ defined in Section 5.3.
We briefly recall the construction of s, s′. Recall that from Sections 5.3.1

and 5.3.2, we have natural maps

i : G(UE(V0)× UE(W0))→ UE(W�0 ),
i ′ : G(UE(Res V )× UE(W ))→ UE(Res V�).

If we let λ : Sp(V�)→ C1 be given by

λ(g) := γF(
1
2ψ ◦ q(V4,Y′�g−1,Y′�)) · γF(

1
2 ◦ q(V4,Y′�,V4g)),

then we have

s := ŝ · λ : G(UE(V0)× UE(W0))→ C1,

s′ := ŝ ′ · λ : G(UE(Res V )× UE(W ))→ C1,

where ∂ ŝ = zV0⊗W40
and ∂ ŝ ′ = zRes V4⊗W .

Let W1 and W2 be isotropic subspaces such that W0 = W1+W2 and fixwi ∈ Wi

so that 〈w1, w2〉 = 1. Analogously, let V1 and V2 be isotropic subspaces such that
Res V = V1 + V2 and fix wi ∈ Vi such that 〈w1, w2〉 = 1. Define

w1 = (
1
2w1,−

1
2w1), w2 = (−

1
2w2,

1
2w2), w∗1 = (w2, w2), w∗2 = (w1, w1)
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so that we have 〈wi ,w j 〉 = 〈w∗i ,w∗j 〉, 〈wi ,w∗j 〉 = δi j , 〈w∗i ,w j 〉 = −δi j , and

W�0 = W5

0 +W4

0 , where W5

0 = span{w1,w2} and W4

0 = span{w∗1,w∗2},
Res V� = Res V5 + Res V4, where Res V5 = span{w1,w2}

and Res V4 = span{w∗1,w∗2}.

Then a symplectic basis preserving the complete polarization V� = V5 + V4 is
given by

w1,
−1
u iw1, w2,

−1
u iw2, w∗1, iw∗1, w∗2, iw∗2. (5.5)

5.6.1. A splitting s of zY′ . For a, d ∈ F×, write D(a, d) := diag(a, d).

LEMMA 5.17. Let (α, D(a, d)) ∈ R. Then

s(α, D(a, d)) = ξ(−(α−1a − 1)(α−1d − 1)).

In particular, for a ∈ F× and α ∈ E×,

s(1, D(a, a−1)) = (u, a)F , s(α, D(1,Nm(α))) = ξ(α−1).

Proof. We have (1, D(1, 1)) = (1,U (0)), and this is proved in Lemma 5.18, so
we assume that (α, D(a, d)) 6= (1, D(1, 1)). This assumption will be necessary
when we calculate ŝ.

Recall that (α, D(a, d)) sends w1 7→ α−1aw1 and w2 7→ α−1dw2. Recalling
that i : UE(W0) → UE(W0 + W−

0 ) is defined by UE(W0) acting linearly on W0

and trivially on W−

0 , it is a straightforward computation to see that the image of
(α, D(a, d)) in UE(W0 +W−

0 ) with respect to the basis w1,w2,w∗1,w∗2 is

α−1a + 1
2

0 0
α−1a − 1

4

0
α−1d + 1

2
−
α−1d − 1

4
0

0 −(α−1d − 1)
α−1d + 1

2
0

−(α−1a − 1) 0 0
α−1a + 1

2


.

We have

i(α, D(a, d)) = p1


1

1
−1
−1

 p2,
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where

p1 =



0 −
(α−1a + 1)2

4(α−1a − 1)
+
α−1a − 1

4
−
α−1a + 1

2
0

(α−1d + 1)2

4(α−1d − 1)
−
α−1d − 1

4
0 0 −

α−1d + 1
2

0 0 0 (α−1d − 1)
0 0 −(α−1a − 1) 0


,

p2 =



1 0 0
α−1a + 1

2(α−1a − 1)

0 1 −
α−1d + 1

4(α−1d − 1)
0

0 0 1 0
0 0 0 1


.

This implies that

x(i(α, D(a, d))) = (α−1a − 1)(α−1d − 1), j (i(α, D(a, d))) = 2,

and therefore by Definition 5.4,

ŝ(i(α, D(a, d))) = ξ((α−1a − 1)(α−1d − 1)) · γF(u, 1
2ψ)

−2

= ξ(−(α−1a − 1)(α−1d − 1)).

With respect to the symplectic basis given in (5.5), the image of i(α, D(a, d)) in
Sp(V�) is

g =



xa + 1
2

−
yau

2
xa − 1

4
ya
4

−
ya
2

xa + 1
2

ya
4u

xa − 1
4

xd + 1
2

−
ydu

2
−

xd − 1
4

−
yd
4

−
yd
2

xd + 1
2

−
yd
4u

−
xd − 1

4

−(xd − 1) ydu
xd + 1

2
yd
2

yd −(xd − 1)
yd
2u

xd + 1
2

xa − 1 −yau
xa + 1

2
ya
2

ya xa − 1
ya
2u

xa + 1
2


∈ Sp(V�).
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By definition,

λ(α, D(a, d)) = γF(
1
2ψ ◦ q(V4,Y′�g−1,Y′�)) · γF(

1
2ψ ◦ q(V4,Y′�,V4g)).

Since g stabilizes Y′�,

γF(
1
2ψ ◦ q(V4,Y′�g−1,Y′�)) = 1.

To calculate the second factor, note that

V4 = {(0, 0, 0, 0, z1, z2, z3, z4)},

Y′� = {(0, 0, z1, z2, z3, z4, 0, 0)},

V4g =
{(
(xa − 1)z2 + yaz4,−yauz3 + (xa − 1)z4,

−(xd − 1)z1 + y dz2, y duz1 − (xd − 1)z2,−
xd + 1

2
z1 −

yd
2u

z2,

−
yd
2

z1 −
xd + 1

2
z2,

xa + 1
2

z3 +
ya
2u

z4,
ya
2

z3 +
xa + 1

2
z4

)}
,

and one can see that this implies that R := V4∩Y′�+V4∩V4g+Y′�∩V4g =
{(0, 0, ∗, ∗, ∗, ∗, 0, 0)} and hence

γF(
1
2ψ ◦ q(V4,Y′�,V4g)) = 1.

We therefore have

s(α, D(a, d)) = ŝ(α, D(a, d)) = ξ(−(α−1a − 1)(α−1d − 1)).

This proves the main assertion and the remaining formulas can be deduced as
follows: assuming a 6= 1 and α 6= 1 (observe that if α ∈ E1, then x = 1 if and
only if α = 1),

s(1, D(a, a−1)) = ξ(−(a − 1)(a−1
− 1)) = ξ(a−1(a − 1)2) = ξ(a−1) = (u, a)F .

If α ∈ E×, then

s(α, D(1,Nm(α))) = ξ(−(α−1
− 1)(α−1αᾱ − 1))

= ξ(α−1)εE/F(Nm(α − 1)) = ξ(α−1).

LEMMA 5.18. Let a ∈ F. Then

s(1,U (a)) = 1.
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Proof. The matrix U (a) sends w1 7→ w1 + aw2 and w2 7→ w2. Recalling that
i : UE(W0) → UE(W0 + W−

0 ) is defined by UE(W0) acting linearly on W0 and
trivially on W−

0 , it is a straightforward computation to see that

i(1,U (a)) =


1 −

a
2

a
4

0

0 1 0 0
0 0 1 0

0 −a
a
2

1

 .

We have
1 −

a
2

a
4

0

0 1 0 0
0 0 1 0

0 −a
a
2

1




1 0 0 0
0 a−1 0 1
0 0 1 0
0 0 0 a

 =


1
a
2

a
4
−

1
2

0 −1 0 a−1

0 0 1 0

0 0
a
2
−1




1
−1

1
1

,

and therefore x(i(1,U (a))) = −a−1 and j (i(1,U (a))) = 1. By Definition 5.4,
we have

ŝ(1,U (a)) =


1 if a = 0,
ξ(−a−1) · (u,−1)F

· γF(u, 1
2ψ)

−1
= (u, a)F · γF(u, 1

2ψ)
−1, if a ∈ F×.

We next calculate λ(1,U (a)). Since g = (1,U (a)) stabilizes Y′�,

λ(g) = γF(
1
2ψ ◦ q), q := q(V4,Y′�,V4g).

Working in the F-basis given in (5.5),

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)},

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)},

V4g =
{(

0, 0,−ay3,
a
u

y4, y1 +
a
2

y3, y2 −
au
2

y4, y3, y4

)}
.

If a = 0, then λ(1,U (0)) = 1, and the lemma holds. It remains to prove the
assertion for the case where a ∈ F×. Then we have that the sum of the pairwise
intersections of V4,Y′�,V4g is R = {(0, 0, 0, 0, ∗, ∗, 0, 0)}. The perpendicular
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subspace to R in V� is equal to R⊥ = {(0, 0, ∗, ∗, ∗, ∗, ∗, ∗)} so that

(V4)R = {(0, 0, 0, 0, 0, 0, y1, y2)},

(Y′�)R = {(0, 0, y1, y2, 0, 0, 0, 0)},

(V4g)R =
{(

0, 0,−ay1,
a
u

y2, 0, 0, y1, y2

)}
,

where the subscript R denotes the corresponding image in R⊥/R. It is clear from
the above equations that

(Y′�)R
(

1 b
0 1

)
= (V4g)R,

where
(

1 b
0 1

)
∈ P(V4)R ⊂ Sp(R⊥/R), for b =

−1
a

0

0
u
a

 .
By definition, q = (Y′�)R with the symmetric bilinear form given by

q((x1, x2), (y1, y2)) = −
1
a

x1 y1 +
u
a

x2 y2.

Therefore we have

dim q = 2, det q = −
u
a2
, hF(q) =

(
−

1
a
,

u
a

)
F

.

Observe that (− 1
a ,

u
a )F = (−a, au)F(−a, a)F = (−a, u)F , and so

λ(1,U (a)) = γF

(
1
2
ψ

)2

· γF

(
−

u
a2
,

1
2
ψ

)
·

(
−

1
a
,

u
a

)
F

= γF

(
−1,

1
2
ψ

)−1

· γF

(
−u,

1
2
ψ

)
· (−a, u)F .

Finally, we have

s(1,U (a)) = (u, a)F · γF(u, 1
2ψ)

−1
· γF(−1, 1

2ψ)
−1
· γF(−u, 1

2ψ) · (−a, u)F = 1.

LEMMA 5.19. We have

s(1,W ) = (u,−1)F · γF(u, 1
2ψ).

In particular, if ord(u) is even, then

s(1,W ) = 1.
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Proof. The matrix W sendsw1 7→ −w1 andw2 7→ −w2. Recalling that i(W ) acts
linearly on W0 and trivially on W−

0 , it is a straightforward computation to see that

i(1,W ) =


1
2 −

1
2

1
4 −

1
4

1
2

1
2

1
4

1
4

−1 1 1
2 −

1
2

−1 −1 1
2

1
2



=


1 −1 − 1

4
1
4

1 1 −
1
4 −

1
4

0 0 1
2 −

1
2

0 0 1
2

1
2




1
1

−1
−1




2 0 −1 0
0 2 0 −1
0 0 1

2 0
0 0 0 1

2

 .
Therefore we have x(i(1,W )) = 1

8 and j (i(1,W )) = 2, and by Definition 5.4,

ŝ(1,W ) = ξ( 1
8 ) · ((u,−1)F · γF(u, 1

2ψ))
−2
= (u,−2)F . (5.6)

We next calculate λ(1,W ). With respect to the symplectic basis given in (5.5), the
image of i(1,W ) in Sp(V�) is

g =



1
2 −

1
2

1
4 −

1
4

1
2

1
2 −

u
4

u
4

1
2

1
2

1
4

1
4

1
2

1
2 −

u
4 −

u
4

−1 1 1
2 −

1
2

u −u 1
2 −

1
2

−1 −1 1
2

1
2

u u 1
2

1
2


∈ Sp(V�).

By definition,

λ(g) = γF(
1
2ψ ◦ q(V4,Y′�g−1,Y′�)) · γF(

1
2ψ ◦ q(V4,Y′�,V4g)).

In the following, when calculating q(Y1,Y2,Y3), we write R to denote the sum
of the pairwise intersections of the Yi and write (Yi)R to mean the image of Yi in
R⊥/R. We have

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)},

Y′�g−1
=

{(
y1, y2, y3, y4,

1
2

y3,−
1

2u
y4,

1
2

y1,−
1

2u
y2

)}
,

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)},
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which implies that R = {(0, 0, ∗, ∗, ∗, ∗, 0, 0)} and hence

γF(
1
2ψ ◦ q(V4,Y′�g−1,Y′�)) = 1. (5.7)

Now we calculate the second factor of λ(1,W ). We have

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)},

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)},

V4g =
{(

y1, y2, y3, y4,−
1
2

y1,
1

2u
y2,−

1
2

y3,
1

2u
y4

)}
,

and hence R = {(0, 0, 0, 0, ∗, ∗, 0, 0)}, R⊥ = {(0, 0, ∗, ∗, ∗, ∗, ∗, ∗)}. This
implies that

(V4)R = {(0, 0, 0, 0, 0, 0, y1, y2)},

(Y′�)R = {(0, 0, y1, y2, 0, 0, 0, 0)},

(V4g)R =
{(

0, 0, y1, y2, 0, 0,−
1
2

y1,
1

2u
y2

)}
,

and we have

(Y′�)R
(

1 b
0 1

)
= (V4g)R, for b =

−1
2

1
2u

 .
It follows that

γF

(
1
2
ψ ◦ q(V4,Y′�,V4g)

)
= γF

(
1
2
ψ

)2

· γF

(
−

1
4u
,

1
2
ψ

)
·

(
−

1
2
,

1
2u

)
F

= γF

(
u,

1
2
ψ

)
· (2, u)F . (5.8)

Putting together Equations (5.6)–(5.8), we have

s(1,W ) = ŝ(1,W ) · λ(1,W ) = (u,−2)F · γF(u, 1
2ψ) · (u, 2)F

= (u,−1)F · γF(u, 1
2ψ).

To see the final assertion, first observe that if ord(u) is even, then either E is split
or unramified over F . In either case, (u,−1)F = 1. By [R93, Proposition A.11],
ord(u) even implies that γF(u, 1

2ψ) = 1.
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LEMMA 5.20. Let a ∈ F. Then

s(1, D(−1))s(1,W )s(1,U (a))s(1,W ) = 1.

Proof. We have s(1, D(−1))s(1,W )s(1,U (a))s(1,W ) = (u,−1)F((u,−1)FγF

(u, 1
2ψ))

2
= 1.

LEMMA 5.21. If F = R and E = C, then for any (α, g) ∈ R,

s(α, g) = ξ(α−1).

Proof. Since (α, D(1,Nm(α))) stabilizes Y′,

s(α, g) = s(α, D(1,Nm(α))) · s(1, D(1,Nm(α)−1)g).

By Lemma 5.17, to prove the desired assertion, it remains to show that s(1, g) = 1
for g ∈ SL2(R). But this follows from [R93, Proposition A.10(1)].

5.6.2. A splitting s′ of zY′ . As in the previous subsection, write D(a, d) :=
diag(a, d).

LEMMA 5.22. (i) If (D(a, d), α) ∈ G(GL2(F)× E×), then

s′(D(a, d), α) = ξ ′(−(a−1α − 1)(d−1α − 1)).

In particular, we have s′(D(a, a−1), 1) = (u, a)F and s′(D(1,Nm(α)), α)
= ξ ′(α).

(ii) For a ∈ F, we have s′(1,U (a)) = 1.

(iii) We have s′(1,W ) = (u,−1)F ·γF(u, 1
2ψ). In particular, if ord(u) ∈ 2Z, then

s′(1,W ) = 1.

(iv) For a ∈ F, we have s′(1, D(−1))s′(1,W )s′(1,U (a))s′(1,W ) = 1.

(v) If F = R and E = C, then s′(α, g) = ξ ′(α).

Proof. The proof of (i) is similar to Lemma 5.17 except that (D(a, d), α) sends
w1 7→ a−1αw1 andw2 7→ d−1αw2. Thus the image of (D(a, d), α) in UE(Res V+
Res V−) with respect to the basis w1,w2,w∗1,w∗2 is
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a−1α + 1
2

0 0
a−1α − 1

4

0
d−1α + 1

2
−

d−1α − 1
4

0

0 −(d−1α − 1)
d−1α + 1

2
0

−(a−1α − 1) 0 0
a−1α + 1

2


.

To be more precise, this proof is the proof of Lemma 5.17 except with a replaced
by a−1, b replaced by b−1, and α−1 replaced by α. The proofs of the remaining
parts are exactly the same as that of the analogous statements for s.

6. Global theta lifts

In this section, we examine the global theta lifts in the similitude seesaw (4.4)
in comparison to automorphic induction. Let χ be a Hecke character and recall
that its automorphic induction πχ to GL2(AF) has a Jacquet–Langlands transfer
to B× if and only if the following condition holds:

If Bv is ramified, then χv does not factor through Nm : E×v → F×v .

We write π B
χ to denote the Jacquet–Langlands transfer to B× if the pair (B, χ)

satisfies the above condition, and we set π B
χ = 0 otherwise. The main theorem of

this section is as follows.

THEOREM 6.1. The theta lifts Θ(χ · ξ) from GUB(V ) to GUB(W ∗) ∼= B×

and Θ ′(χ ′ · ξ ′−1) from GUE(W ) to GUE(Res V ) ∼= (E× × (B ′)×)/F× can
be described in terms of automorphic induction and the Jacquet–Langlands
correspondence:

Θ(χ · ξ) ∼= π
B
χ and Θ ′(χ ′ · ξ ′−1)∨ ∼= π

B ′
χ ′ ⊗ (χ

′−1
· ξ ′),

where the right-hand side is viewed as a representation of GUE(Res V ) descended
from (B ′A)

×
× A×E .

To prove Theorem 6.1, we will need two arguments.

(1) If Θ(χ · ξ) = 0, then π B
χ = 0.

(2) If Θ(χ · ξ) 6= 0, then Θ(χ · ξ) ∼= π B
χ .
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To prove (1), we will need to make use of the theory of doubling zeta integrals.
Since the nonvanishing of the global theta lift Θ(χ · ξ) is determined by the
nonvanishing of local doubling zeta integrals (Section 6.2), the crux of (1) is to
establish that the local zeta integral is vanishing only if the local theta lift is. To
prove (2), we will need to calculate the local theta lift from GU(1)v to GU(2)v
at all places where GU(2)v ∼= GU(1, 1)v. After showing that Θ(χ · ξ) must be
cuspidal if it is nonzero, we apply Jacquet–Langlands [JL] to conclude.

6.1. Theta lifts with similitudes. We first recall some general properties of
Weil representations. Denote by ωψ and ω�ψ the Weil representations of Mp(V)
on S(X) and of Mp(V�) on S(X�) = S(X)⊗ S(X). We have a natural map

ι̃ : Mp(V)×Mp(V)→ Mp(V�)

inducing (z1, z2) 7→ z1z2 on C1, and ωψ , ω�ψ enjoy the following compatibility:

ω�ψ ◦ ι̃
∼= ωψ ⊗ (ωψ ◦ j̃Y),

where j̃Y is the automorphism of Mp(V)Y = Sp(V)× C1 defined by

j̃Y(g, z) = (jY(g), z−1), jY(g) = dY(−1) · g · dY(−1).

We make the following definitions:

G� := GUB(V�) G�′ := GUE(W�)
G := GUB(V )◦ ∼= E× ∼= GUE(V0) G ′ := GUE(W )

H := GUB(W ∗) ∼= B× ⊂ GUE(W0) H ′ := GUE(Res V ) ∼= ((B ′)× × E×)/F×.

Recall that these groups fit into the following seesaws:

H ′ H

G G ′

G� H × H

G × G H

H ′ × H ′ G�′

H ′ G ′ × G ′
(6.1)

Adding a subscript 1 to any of the above groups indicates that we take the kernel
of the similitude character. If G(1), . . . ,G(n) is a collection of unitary similitude
groups, we define

GG(1)×···×G(n) := {(g1, . . . , gn) ∈ G(1)
× · · · × G(n)

: ν(g1) = · · · = ν(gn)}.

We also define Z := F× and C := (A×)2(F×)+\(A×)+, where

(A×)+ := ν(G(A)) ∩ ν(H(A)) = ν(G ′(A)) ∩ ν(H ′(A)) = NmE/F(A×E ),
(F×)+ := F× ∩ (A×)+.
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Adding a superscript + to any of the groups G, H,G ′, H ′ means we take the
preimage of (A×)+ (or (F×)+ and so on) under the similitude map.

Fix sections

C → G(A)+, C → H(A)+, C → G ′(A)+, C → H ′(A)+,

of the natural surjections induced by the similitude character. We write gc, hc,

g′c, h′c for the images of c ∈ C under these sections. The following lemma is
straightforward.

LEMMA 6.2. The similitude character induces isomorphisms

Z(A)G1(A)G(F)+\G(A)+ ∼= C, Z(A)H1(A)H(F)+\H(A)+ ∼= C,
Z(A)G ′1(A)G ′(F)+\G ′(A)+ ∼= C, Z(A)H ′1(A)H ′(F)+\H ′(A)+ ∼= C

and

H(A)/(H(F)H(A)+) ∼= H ′(A)/(H ′(F)H ′(A)+) ∼= Gal(E/F),
G�(A)/(G�(F)G�(A)+) ∼= G�′(A)/(G�′(F)G�′(A)+) ∼= Gal(E/F).

Recall that in Section 5 (see Definitions 5.4 and 5.8), for each place v of F ,
we defined splittings of zYv and zY�

v
on certain unitary groups. Recall also that

the discussion in Section 5.5 allowed us to multiply the local splittings to obtain
global splittings of zY

s : GG×H (A)→ C1, s ′ : GH ′×G ′(A)→ C1,

and global splittings of zY�

s� : GG�×H (A)→ C1, s�′ : GH ′×G� ′(A)→ C1.

These allow us to define corresponding Weil representations ωψ , ω′ψ , ω
�
ψ , ω

�
ψ
′. By

Proposition 5.16,

ω�ψ (g1, g2, h) = ωψ(g1, h)⊗ ξ(det(g2, h))ωψ(g2, h), (g1, g2, h) ∈ GG×G×H (A),
(6.2)

ω�ψ
′(h, g1, g2) = ω

′

ψ(h, g1)⊗ ξ
′(det(h, g2))ω

′

ψ(h, g2), (h, g1, g2) ∈ GH ′×G ′×G ′(A),
(6.3)

ωψ(g, g′) = ξ(g)ξ ′(g′)ω′ψ(g, g′), (g, g′) ∈ GG×G ′(A). (6.4)

Define a theta distribution

Θ : S(X(A))→ C, ϕ 7→
∑

x∈X(F)

ϕ(x).
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Let ϕ ∈ S(X(A)) and let χ be a Hecke character. For h = h1hc ∈ H(A)+ where
h1 ∈ H1(A), define

θϕ(χ)(h) :=
∫

G1(F)\G1(A)
Θ(ωψ(g1gc, h)ϕ)χ(g1gc) dg1.

Here, dg =
∏

v dg1,v is the Tamagawa measure on G1(A). Note that θϕ(χ)(γ h) =
θϕ(χ)(h) for γ ∈ H(F) ∩ H(A)+ and h ∈ H(A)+. By declaring

θϕ(χ)(γ h) = θϕ(χ)(h), for all γ ∈ H(F) and h ∈ H(A)+,

we obtain an automorphic form on the subgroup H(F)H(A)+ of H(A). Let ϕ ∈
S(X(A)) and let χ ′ be a Hecke character. For h′ = h′1h′c ∈ H ′(A)+ where h′1 ∈
H ′1(A), define

θ ′ϕ(χ
′)(h′) :=

∫
G ′1(F)\G

′

1(A)
Θ(ω′ψ(h′, g′1g′c)ϕ)χ

′(g′1g′c) dg′1.

Here, dg′1 =
∏

v dg′1,v is the Tamagawa measure on G ′1(A).
Let Θ+(χ) be the automorphic representation of H(F)H(A)+ generated by

θϕ(χ) for ϕ ∈ S(X(A)) and let Θ ′
+
(χ ′) be the automorphic representation of

H ′(F)H ′(A)+ generated by θ ′ϕ(χ
′) for all ϕ ∈ S(X(A)). Define

Θ(χ) := IndH(A)
H(F)H(A)+(Θ+(χ)), Θ ′(χ ′) := IndH ′(A)

H ′(F)H ′(A)+(Θ
′

+
(χ ′)).

By Lemma 6.2, [H(A) : H(F)H(A)+] = 2, so θϕ(χ) extends to an automorphic
form in Θ(χ) via

θϕ(χ)(h) :=

{
θϕ(χ)(h+) if h = γ h+ for γ ∈ H(F) and h+ ∈ H(A)+,
0 otherwise.

Similarly, θ ′ϕ(χ
′) extends to an automorphic form in Θ ′(χ ′) by setting

θ ′ϕ(χ
′)(h′) :=

{
θ ′ϕ(χ

′)(h′
+
) if h′ = γ h′

+
for γ ∈ H ′(F) and h′

+
∈ H ′(A)+,

0 otherwise.

The theta lifts for ω�ψ and ω�ψ
′ are defined analogously.

6.2. The Rallis inner product formula. In this section, we will write down
an equation relating the Petersson inner product of a theta lift, to a theta lift to a
doubled unitary similitude group. To this end, we will use the doubled seesaws
in (5.2) and (6.1).
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For automorphic forms f1, f2 on H(A) ∼= B×A and f ′1, f ′2 on H ′(A) ∼=
(B ′A

×
× A×E )/A

×

F , define

〈 f1, f2〉H :=

∫
[H ]

f1(h) · f2(h) dh, 〈 f ′1, f ′2〉H ′ :=
∫
[H ′]

f ′1(h
′) · f ′2(h′) dh,

where dh =
∏

v dhv and dh′ =
∏

v dh′v are the Tamagawa measures of H(A)
and H ′(A).

Recall from Proposition 5.16 that the splittings s : GG×H (A) → C1 and
s� : GG�×H (A)→ C1 enjoy the property that for (g1, g2, h) ∈ GG×G×H ,

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

This compatibility implies that for any h1 ∈ H1, g1, g′1 ∈ G1, and (gc, hc) ∈

GG×H (A),

Θ(ωψ(g1gc, h1hc)ϕ1) ·Θ(ωψ(g′1gc, h1hc)ϕ2)

= Θ(ω�ψ ((g1gc, g′1gc), h1hc)ϕ1 ⊗ ϕ2) · ξ(det(h1hc))
−1
· ξ(g′1gc)

2.

Hence for ϕ1, ϕ2 ∈ S(X(A)) and Hecke characters χ1, χ2 of E×, by formally
switching the integrals at the equality, we have

〈θϕ1(χ1 · ξ), θϕ2(χ2 · ξ)〉H

=

∫
C

∫
[H1]

θϕ1(χ1 · ξ)(h1hc) · θϕ2(χ2 · ξ)(h1hc) dh1 dc

=

∫
C

∫
[H1]

∫
[G1]

∫
[G1]

Θ(ωψ(g1gc, h1hc)ϕ1)(χ1ξ)(g1gc)

· Θ(ωψ(g′1gc, h1hc)ϕ2)(χ2ξ)(g′1gc) dg1 dg′1 dh dc

=

∫
C

∫
[G1]

∫
[G1]

(χ1ξ)(gcgc) · (χ 2ξ)(g
′

1gc) (6.5)

·

∫
[H1]

Θ(ω�ψ ((g1gc, g′1gc), h1hc)(ϕ1 ⊗ ϕ2)) · ξ(det(h1hc))
−1 dh1 dg1 dg′1 dc.

(6.6)

The inner integral in Equation (6.6) is the theta lift of ξ(det)−1 to GUB(V�), but
to make actual sense of the above, one must be careful about convergence issues.
In the case that B is division, the quotient B×\B×A is compact, and therefore the
integral in (6.6) is absolutely convergent. Hence the formal manipulation above is
completely justified. We can then use the Siegel–Weil formula together with the
theory of doubling integrals [PSR87] to obtain a Rallis inner product formula. In
the case that B is split (that is, B ∼= M2(F)), (6.6) does not converge absolutely
in general, so the last equality does not make sense. In this case, we use the
regularized Siegel–Weil formula of [GQT].
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6.2.1. The Siegel–Weil formula for division quaternion algebras. In this section,
we explain how to obtain a Rallis inner product formula in the case that B is
division. For ϕ ∈ S(X5(A)), define

E(g,Fϕ) =
∑

γ∈P(F)\U(1,1)

Fϕ(γ g), where Fϕ(g) := (ω�ψ (d(ν(g)
−1)g)ϕ)(0).

This is the value of an Eisenstein series at s = 1
2 . In this case, the Siegel–Weil

formula states that for g, g′ ∈ GU(1) such that ν(g) = ν(g′),

E(i(g, g′),Fϕ) =

∫
[H1]

Θ(ω�ψ ((g, g′), h)(ϕ1 ⊗ ϕ2)) · ξ(det(h))−1 dh,

where i : G(U(1) × U(1)) → U(1, 1) and ϕ ∈ S(V5(A)) is the partial Fourier
transform of ϕ1 ⊗ ϕ2 ∈ S(X�(A)). We now see that, continuing from (6.5)
and (6.6), we have

〈θϕ1(χ1 · ξ), θϕ2(χ2 · ξ)〉H

=

∫
C

∫
[G1]

∫
[G1]

(χ1ξ)(g1gc) · (χ 2ξ)(g
′

1gc) · E(i(g1gc, g′1gc),Fϕ) dg1 dg′1 dc.

We have Fϕ(i(g1gc, g′1gc)) = F(i(g′1−1g1, 1))ξ 2(g′1), and hence unfolding the
above integral and making the substitution g = g1gc, g′ = g′1

−1g1 gives

=

∫
G1(A)

∫
[G]
(χ1ξ)(gg′) · (χ2ξ)(g) ·Fϕ(i(g, 1)) dg dg′.

The Tamagawa measure on G1(A) can be written as a product of local measures
dg1,v on G1,v times a global factor ρF/ρE (see Section 2.1). Hence if χ1 = χ2 = χ

and ϕ1 = ϕ2 = φ = ⊗vφv, we have

〈θϕ(χ · ξ), θφ(χ · ξ)〉H =

∫
G1(A)

Fϕ(i(g, 1))〈(χξ)(g′)(χξ), (χξ)〉[G] dg′

=
ρF

ρE
·

∏
v

Z
(

1
2
,Fϕv , χv

)
,

where

Z
(

1
2
,Fϕv , χv

)
:=

∫
G1,v

〈ωψ(g1,v)φ, φ〉 · (χvξv)(g1,v) dg1,v. (6.7)

6.2.2. The regularized Siegel–Weil formula for (E×,GL(2)). In this section, we
follow [GQT] and describe how to make sense of (6.6) and obtain a Rallis inner
product formula in the case that B is split. We will need to translate between
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the quaternionic unitary groups (GUB(V )◦,GUB(W ∗)) ∼= (E×,GL2(F)) and the
dual reductive pair (GO(2),GSp(2)) ∼= (E×,GL2(F)). In the notation of [GQT],
we have n = m = 2, r = 1, ε = 1, which puts us in the second term range since
1 < 2 6 2 · 1.

Recall that we have an embedding

G(UB(V )◦,UB(W ∗)) ↪→ G(UE(V0)× UE(W0)).

When B is split, then there is a decomposition W0 = W1 +W2 of the E-space W0

into isotropic subspaces of dimension 1. Set

X′ = ResE/F(V0 ⊗W1), Y′ = ResE/F(V0 ⊗W2)

so that V = X′ + Y′ forms a complete polarization. In Section 5.6, we explicated
a splitting s of zY′ . Comparing s to the splitting

s(O(2),Sp(2)) : G(O(2)× Sp(2))A→ C1

defined in [K94], we see that for α ∈ E×, a ∈ F×, and a′ ∈ F ,

s(α, d(Nm(α))) = ξ(α)−1
· s(O(2),Sp(2))(α, d(Nm(α))),

s(1, diag(a, a−1)) = ξ(a)−1
· s(O(2),Sp(2))(1, diag(a, a−1)),

s
(

1,
(

1 a′

0 1

))
= s(O(2),Sp(2))

(
1,
(

1 a′

0 1

))
,

s
(

1,
(

0 1
−1 0

))
= s(O(2),Sp(2))

(
1,
(

0 1
−1 0

))
.

Now set V50 := {(v,−v) : v ∈ V0} and V40 := {(v, v) : v ∈ V0} so that

V5 = ResE/F(V
5

0 ⊗W0), V4 = ResE/F(V
4

0 ⊗W0)

gives a complete polarization V� = V5 + V4 of the doubled symplectic space.
Let ŝ(O(2,2),Sp(2)) denote the splitting of zV4 defined in [K94] and define

s(O(2,2),Sp(2))(h, g) := ŝ(O(2,2),Sp(2))(h, g) · λ−1
Y′� V4(g, h)

for (g, h) ∈ G(O(2, 2),Sp(2)),

where λ := λY′� V4 is the change-of-polarization function defined in Lemma 5.3.
Then using Proposition 5.16(a),

ŝ(g1, g2, h) = s�(g1, g2, 1) · λ(g1, g2, h)
= s(g1, h) · s(g2, h) · ξ(det(i(g2, h))) · λ(g1, g2, h)
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= s(O(2),Sp(2))(g1, h)ξ(g1)
−1
· s(O(2),Sp(2))(g2, h)ξ(g2)−1

· ξ(g2)
−2ξ(det(h)) · λ(g1, g2, h)

= s(O(2),Sp(2))(g1, h) · s(O(2),Sp(2))(g2, h)
· ξ(g1)

−1ξ(g2)
−1ξ(det(h)) · λ(g1, g2, h)

= s(O(2,2),Sp(2))(g1, g2, h) · ξ(g1)
−1ξ(g2)

−1
· λ(g1, g2, h)

= ŝ(O(2,2),Sp(2))(g1, g2, h) · ξ(g1)
−1ξ(g2)

−1. (6.8)

Define PO ⊂ GO(ResE/F V�0 ) ∼= GO(2, 2) to be the stabilizer of the totally
isotropic subspace ResE/F V40 of ResE/F V�0 . For φ ∈ S(V5(A)), define the
Siegel–Weil sections

Φ(φ)(g) := (ω�ψ (g)φ)(0), for g ∈ GO(2, 2)A ⊂ GUE(V�0 )A,

ΦO,Sp(φ)(g) := (ωO(2,2),Sp(2)
ψ (g)φ)(0), for g ∈ GO(2, 2)A.

Observe that Φ(φ)(g) = ŝ(g) · ŝ(O(2,2),Sp(2))(g)−1
· ΦO,Sp(φ)(g). We make the

analogous definitions for the local objects Φv(φv) and ΦO,Sp
v (φv). The Siegel–

Weil section ΦO,Sp(φ) ∈ IndGO(2,2)
PO

(det) · |det|1/2 determines a standard section
ΦO,Sp

s (φ) ∈ IndGO(2,2)
PO

(det)·|det|s and we may form the associated Eisenstein series

E(s, ΦO,Sp(φ))(g) :=
∑

γ∈PO (F)\GO(2,2)

ΦO,Sp
s (γ g), for g ∈ GO(2, 2)A.

Define

Z(s, Φ, χ) :=
∫
[G(O(2)×O(2))]

E(s, Φ)(g1, g2) · χ(g1) · χ(g2) dg1 dg2.

If Φ = ⊗vΦv, define

Zv(s, Φv, χv) =

∫
E1
v

Φv(gv, 1) · χv(gv) dgv.

By construction of the Tamagawa measure of A1
E (see Section 2.1), one has

Z(s, Φ, χ) :=
ρF

ρE
·

∏
v

Zv(s, Φv, χv).

Define the partial Fourier transform δ : S(X′�(A))→ S(V5(A)) by

δ(ϕ)(u) =
∫
((V4∩Y′�)\V4)(A)

ϕ(x)ψ
(

1
2
(〈〈x, y〉〉 − 〈〈u, v〉〉)

)
dv,

where we write u + v = x + y with u ∈ V5(A), v ∈ V4(A), x ∈ X′�(A),
y ∈ Y′�(A), and dv is the Tamagawa measure.
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Observe that if φ ∈ S(V5(A)) is the partial Fourier transform of ϕ1 ⊗ ϕ2 for
ϕ1, ϕ2 ∈ S(X′(A)), then for the Siegel–Weil section Φ = ΦO,Sp(δ(ϕ1 ⊗ ϕ2)), we
have

Zv

(
1
2
, Φv, χv

)
= vol(E1

v)

∫
E1
v

ΦO,Sp(δ(ϕ1 ⊗ ϕ2))(i(g1,v, 1)) · χv(gv) dgv

= vol(E1
v)

∫
E1
v

(ω
O(2,2),Sp(2)
ψ (gv, 1)δ(ϕ1 ⊗ ϕ2))(0) · χv(gv) dgv

= vol(E1
v)

∫
E1
v

(ω�ψ (gv, 1)δ(ϕ1 ⊗ ϕ2))(0) · χv(gv) · ξv(gv) dgv

= vol(E1
v)

∫
E1
v

〈ωψ(gv)ϕ1, ϕ2〉 · (χvξv)(gv) dgv. (6.9)

PROPOSITION 6.3. For ϕ1, ϕ2 ∈ S(X′(A)), we have

〈θϕ1(χξ), θϕ2(χξ)〉 =
ρF

ρE
·

∏
v

Zv

(
1
2
, ΦO,Sp

v (δ(ϕ1 ⊗ ϕ2)), χv

)
.

Proof. We use (6.8) to translate between our setting and that of [GQT,
Proposition 11.1]. We have

〈θϕ1(χ · ξ), θϕ2(χ · ξ)〉H

=

∫
C

∫
[H1]

θϕ1(χ · ξ)(h1hc) · θϕ2(χ · ξ)(h1hc) dh1 dc

=

∫
C

∫
[H1]

∫
[G1]

∫
[G1]

Θ(ωψ(g1gc, h1hc)ϕ1)(χξ)(g1gc)

·Θ(ωψ(g′1gc, h1hc)ϕ2)(χξ)(g′1gc) dg1 dg′1 dh dc

=

∫
C

∫
[Sp(2)]

∫
[O(2)]

∫
[O(2)]

Θ(ω
O,Sp
ψ (g1gc, h1hc)ϕ1)(χξ)(g1gc)

·Θ(ω
O,Sp
ψ (g′1gc, h1hc)ϕ2)(χξ)(g′1gc) · ξ

−1(g1)ξ
−1
(g′1) dg1 dg′1 dh dc

= Vals=1/2

∫
C

∫
[O(2)]

∫
[O(2)]

E(s, ΦO(2,2, Sp(2))(δ(ϕ1 ⊗ ϕ2)))(g1gc, g′1gc)

· χ(g1gc) · χ(g′1gc) dg1 dg′1 dc
= Vals=1/2 Z(s, Φ(δ(ϕ1 ⊗ ϕ2)), χ).

6.3. Local doubling zeta integrals. Let v be a nonsplit place of F . For
notational convenience, we drop all subscripts v in this section. We preemptively
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note that the notation we use to describe the zeta integrals in this section differs
from the notation used to describe the same (local) zeta integrals in the rest of the
paper. We learned the proof of Proposition 6.6 from Ichino. Similar arguments
appear in [GI14].

Consider the Siegel parabolic subgroup

P =
{(

a ∗

0 (a∗)−1

)
∈ GL2(E)

}
⊂ U(1, 1),

and for any unitary character η : U(1)→ C1, consider the functional

Z(s, η, ξ 2) : I (s, ξ 2)→ C, F 7→
∫

E1
F(i(g, 1))η(g) dg,

where ι : U(1)× U(1)→ U(1, 1) is the natural map and

I (s, ξ 2) := IndU(1,1)
P (ξ 2

· | · |
s)

:=

{
F : U(1, 1)→ C

∣∣∣∣ F(pg) = ξ 2(a)|a|s+1/2
E F(g)

for all g ∈ U(1, 1) and p =
(a ∗

0 a−1

)
∈ P

}

is the normalized principal series representation. One has an intertwining operator

M(s, ξ 2) : I (s, ξ 2)→ I (−s, ξ−2) ∼= I (−s, ξ 2)

given by

M(s, ξ 2)F(g) =
∫

NP

F(wng) dn,

where w = diag(1,−1) and NP is the unipotent radical of the parabolic P .
Following Lapid–Rallis (see also Gan–Ichino, Section 10), after normalizing

the intertwining operator by some rational function cψ(s, ξ 2),

MLR
ψ (s, ξ

2) := cψ(s, ξ 2)M(s, ξ)

has a functional equation of the shape

Z(−s, η, ξ 2)(MLR
ψ (s, ξ

2)F) = ∗ · γ (s + 1
2 , η, ξ , ψ) · Z(s, η, ξ

2)(F), (6.10)

where ∗ denotes some nonzero factors. In particular, if we understand the behavior
of the intertwining operator M(s, η) and if γ (s0 +

1
2 , η) 6= 0, the functional

equation gives a relation between the nonvanishing of Z(−s0, η, ξ
2) and the

nonvanishing of Z(s0, η, ξ
2).
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We take a short detour to examine when the local theta lift to the nonsplit unitary
group U(2) vanishes. Define

V+n := Hn, V−n := D ⊕Hn−1,

where Hn is the 2n-dimensional split Hermitian E-space and D is the nonsplit
quaternion algebra over F viewed as a 2-dimensional Hermitian E-space via
〈x, y〉 = prE(x

∗y). For a character η : U(1) ∼= E1
→ C1, denote its theta lift

to U(V±n ) by ΘV±n (η). To make this tower ‘compatible’ one takes the Weil
representation for U(1) × U(V+n ) to be such that the splitting on U(1) is given
by ξ . In particular, the Weil representation on U(1) × U(V+0 ) = U(1) × {1} is
given by the 1-dimensional representation ξ. The first occurrence of the theta lift
in the towers {U(V+n ) : n > 0}, {U(V−n ) : n > 0} is defined to be

n+ = min{n : ΘV+n (η) 6= 0}, n− = min{n : ΘV−n (η) 6= 0}.

The following result is a special case of a theorem of Sun–Zhu [SZ15].

THEOREM 6.4 (Sun–Zhu). n+(η)+ n−(η) = 2.

We can describe the first occurrence in this setting more explicitly. By the
compatible choice of splittings in the tower of unitary groups U(V+n ), we have that
ΘV+0

(χξ) 6= 0 if and only if χ is the trivial character. Hence we must necessarily
be in the setting n+(χξ)+ n−(χξ) = 0+ 2, and in particular, ΘV−1

(χξ) = 0.
Now suppose that χ is nontrivial. Then by the previous paragraph, ΘV+0

(χξ)

= 0. We now argue that ΘV+1
(χξ) 6= 0. One explicit way to see this is as follows.

Let V+1 = V51 + V41 be a decomposition of V+1 into totally isotropic E-subspaces.
For the Schwartz function ϕ(x) = χ(x)1O×E (x) ∈ S(ResE/F V51 ), we have∫

E1
(ωψ(g)ϕ)(0) · (χξ)(g) dg 6= 0,

which proves that there is a nontrivial E1-equivariant map

(S(ResE/F V51 ), ωψ)→ (C, χξ).

HenceΘV+1
(χξ) 6= 0 by the definition of the local theta lift. This now implies that

we must necessarily be in the setting n+(χξ)+n−(χξ)= 1+1, andΘV−1
(χξ) 6= 0.

In summary, the above arguments prove the following lemma.

LEMMA 6.5. (a) ΘV−1
(χξ) 6= 0 if and only if χ : E1

→ C× is nontrivial.

(b) If χ : E1
→ C1 is nontrivial, ΘV+1

(χξ) 6= 0.
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We now discuss the relationship between the theory of the doubling zeta
integral and the local theta correspondence. Consider the two doubling seesaws
for V+1 and V−1 :

U(1, 1) U(V±1 )× U(V±1 )

U(1)× U(1) U(V±1 )

If we have U(1, 1) = U(W ), then one has a decomposition W = W1 + W2 of W
into 1-dimensional isotropic E-spaces, and hence by viewing V±1 as the F-space
ResE/F(W1 ⊗E V±1 ) = ResE/F(V±1 ), the Weil representation ω�ψ for U(1, 1) ×
U(V±1 ) can then be modeled on the space of Schwartz functions S(V±1 ). Define

S(V±1 )→ I ( 1
2 , ξ

2), ϕ 7→ (g 7→ (ω�ψ (i(g, 1))ϕ)(0)),

where i : U(1)×U(1)→ U(1, 1) is the natural map. Let R(V±1 ) denote the image
of this map. Since ξ 2

|F× = 1, there is a unique 1-dimensional representation
ξ̃ 2 of U(1, 1) extending the representation defined by

(a ∗

0 a−1

)
7→ ξ 2(a). For the

0-dimensional Hermitian space V+0 , we define a map

S(V+0 ) = C→ I (− 1
2 , ξ

2), z 7→ (g 7→ ξ̃ 2(g)).

Let R(V+0 ) denote the image of this map. We say thatΘV+0
(χξ) 6= 0 if and only if

HomU(1)(̃ξ
2, χξ) 6= 0. Since ξ̃ 2 is 1-dimensional, we have HomU(1)(̃ξ

2, χξ) 6= 0
if and only if Z(− 1

2 , χξ, ξ
2)|R(V+0 ) 6= 0. Observe also that ΘV+0

(χξ) 6= 0 if and
only if χ = 1.

The goal of the remainder of this section is to prove the following.

PROPOSITION 6.6. Let ξ : A×E → C1 be such that ξ |A×F = εE/F . Then

ΘV−1
(χξ) 6= 0 H⇒ Z( 1

2 , χξ, ξ
2)|R(V−1 ) 6= 0.

We first remark that the converse of Proposition 6.6 is true and straightforward
to see: If Z( 1

2 , χξ, ξ
2)|R(V−1 ) 6= 0, then this immediately implies that

HomU(1)(ω
�
ψ |i(U(1)×{1}), (χξ)

−1) 6= 0. But since ω�ψ ∼= ωψ⊗ωψξ
2 (see Lemma 5.7)

as a representation of U(1) × U(1), we have HomU(1)(ωψ , (χξ)
−1) 6= 0, and so

ΘV−1
(χξ) 6= 0 by definition.

Before we prove Proposition 6.6, we recall a special case of a theorem of Kudla–
Sweet.

THEOREM 6.7 (Kudla–Sweet, [KS97, Theorem 1.2(1),(4)]). (i) R(V+0 ) is the
unique irreducible submodule of I (− 1

2 , ξ
2).
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(ii) I (− 1
2 , ξ

2)/R(0, ξ 2) is an irreducible representation of U(1, 1).

(iii) R(V+1 ) = I ( 1
2 , ξ

2).

(iv) R(V−1 ) is the unique maximal submodule of I ( 1
2 , ξ

2) and is irreducible of
codimension 1.

We are now ready to prove the proposition.

Proof of Proposition 6.6. By Lemma 6.5(a), we may assume that χv : E1
v → C×

is nontrivial. Since χξξ = χ and χξξ = χ , by the ‘Ten Commandments’ for
γ -factors [LR05, Theorem 4], we have

L S(s, χ) =
∏
v∈S

γv(s, (χξ)v, ξ v, ψv) · L
S(1− s, χ),

where S is a finite set of places containing all the Archimedean places and all
places where χv is ramified. Now, since χ is nontrivial, we must have L S(0, χ) 6=
0 and L S(1, χ) 6= 0, and therefore

γv(0, (χξ)v, ξv, ψv) 6= 0.

This implies that Equation (6.10) gives

Z( 1
2 , χξ, ξ

2)(MLR
ψ (−

1
2 , ξ

2)(F)) = ∗ · Z(− 1
2 , χξ, ξ

2)(F), (6.11)

where ∗ is nonzero. We now investigate the intertwining operator

MLR
ψ (−

1
2 , ξ) : I (− 1

2 , ξ
2)→ I ( 1

2 , ξ
2).

We refer to Theorem 6.7 for the decomposition of the U(1, 1)-representations
I (± 1

2 , ξ
2). By [KS97, Proposition 6.4],

ker(MLR
ψ (−

1
2 , ξ

2)) = R(0, ξ 2), Im(MLR
ψ (−

1
2 , ξ

2)) = R(V−1 ).

Since χ is nontrivial, ΘV+0
(χξ) = 0, and therefore Z(− 1

2 , χξ, ξ
2)|R(V+0 ) = 0. On

the other hand, Z(− 1
2 , χξ, ξ

2) is a nonzero functional, and therefore one can find
F ∈ I (− 1

2 , ξ
2) such that MLR

ψ (−
1
2 , ξ

2)(F) 6= 0. By Theorem 6.7(iv), it follows
that Z( 1

2 , ξχ, ξ
2)|R(V−1 ) 6= 0.
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6.4. Unramified local theta lifts from GU(1) to GU(1, 1). For convenience
of notation, in this subsection, we drop the subscript v. We denote by x the image
of x ∈ E under the nontrivial involution of E/F .

Consider the 2-dimensional E-space V ′ = V ′1 + V ′2 with skew-Hermitian form

〈(x1, x2), (y1, y2)〉 = x1 y2 + x2 y1

for (x1, x2), (y1, y2) ∈ V ′1 + V ′2 . Then

GU(V ′) = GU(1, 1)

=

{
g ∈ GL2(E) : gt

(
0 1
−1 0

)
g = ν(g)

(
0 1
−1 0

)
for some ν(g) ∈ F×

}
.

The upper-triangular matrices in GU(V ′) form a parabolic subgroup

P :=
{(

a ν ′a
0 νa

)
∈ GL2(E) : a ∈ E×, ν ∈ F×, ν ′ ∈ F

}
.

Let PF denote the Borel subgroup of GL2(F) consisting of upper-triangular
matrices in GL2(F). Observe that there are natural inclusions GL2(F) ↪→ GU(V ′)
and E× ↪→ GU(V ′) given by

GL2(F) =
{(

a b
c d

)
∈ GU(V ′) : a, b, c, d ∈ F

}
,

E× =
{(

a
a

)
∈ GU(V ′) : a ∈ E×

}
.

We have GU(V ′) ∼= (GL2(F)× E×)/F× and P ∼= (PF × E×)/F×.
Endow E with the Hermitian form (x, y) = x y so that GU(E) = GU(1) = E×.

Note that the similitude character on GU(E), which we also denote by ν, is given
by the norm map E×→ F×. Now consider the group

R := {(h, g) ∈ E× × GU(V ′) : ν(g) = ν(h)}.

Endow the 4-dimensional F-space V′ = ResE/F(V ′) with the symplectic form
〈〈v,w〉〉 = 1

2 TrE/F(〈v,w〉). There is a natural map

ι : R→ Sp(V), (h, g) 7→ (v 7→ h−1vg).

The decomposition V ′1 + V ′2 of V ′ into isotropic subspaces induces a polarization
of V′ given by

V′ = X′ + Y′, where X′ = ResE/F(V ′1) and Y′ = ResE/F(V ′2).
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Choose a basis e1, e2, e∗1, e∗2 of V′ such that

X′ = Fe1 + Fe2, Y′ = Fe∗1 + Fe∗2, 〈〈ei , e∗j 〉〉 = δi j .

Now assume that we have a splitting β : R→ C1 of zY′ . Then

R→ Mp(V′)Y′, g 7→ (ι(g), β(g))

is a group homomorphism and the Weil representation ωψ on Mp(V′)Y′ pulls back
to a representation of R, which we also denote by ωψ .

Abusing notation, define

β : E×→ C1, h 7→ β(h, d(ν(h))).

Observe that this defines a character since for any h ∈ E×, ι(h, d(ν(h)))
stabilizes Y′. Define

L(h)φ(x) := ωψ(h, d(ν(h)))φ(x) = β(h)|h|−1/2φ(xh−1)

for h ∈ E× and φ ∈ S(X′). Then for any (h, g) ∈ R,

ωψ(h, g)φ(x) = L(h)ωψ(d(ν(g)−1)g)φ(x)
= β(h)|h|−1/2(ωψ(d(ν(g)−1)g)φ)(xh−1). (6.12)

Consider the semidirect product E× n U(V ′) with multiplication

(h1, g1) ∗ (h2, g2) = (h1h2, d(ν(h2))g1d(ν(h2)
−1)g2),

where h ∈ E× and g ∈ U(V ′).

This defines a group multiplication since the map d is multiplicative and ν is a
group homomorphism to F×, an Abelian group. It is easy to show the following
lemma.

LEMMA 6.8. The Weil representation ωψ on R extends to a representation of
E× n U(V ′) defined by

ωψ(h, g) = L(h)ωψ(g), h ∈ E×, g ∈ U(V ′).

In particular, the Weil representation on the quotient

Θ (1)(triv) := S(X′)
/ ⋂
α∈HomE1 (S(X′),triv)

ker(α)

extends to a representation of GU(V ′)+ ∼= {d(ν) : ν ∈ Nm(E×)} n U(V ′)
satisfying

ωψ(d(ν)) = L(h),

where h ∈ E× is any element such that ν(h) = ν.
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DEFINITION 6.9. For any character η0 : F×→ C and any φ ∈ S(X′), define

Fφ,η0 : GU(V ′)→ C×, g 7→ |ν(g)|−1/2η0(ν(g))−1(ωψ(d(ν(g)−1)g)φ)(0).

The following is straightforward.

LEMMA 6.10. For any p =
(

a b
0 d

)
∈ GU(V ′),

Fφ,η0(pg) = |a|1/2|d|−1/2η0(ad)−1β(a)−1Fφ,η0(g)

for all g ∈ GU(V ′) so that

Fφ,η0 ∈ IndGU(V ′)
P (̃η0), where η̃0

(
a b
0 d

)
:= η0(ad)−1β(a)−1.

In particular, Fφ,η0 |GSp(2) is an element of the (normalized) principal series
representation

IndGSp(2)
B (η−1

0 β
−1
⊗ η−1

0 ).

LEMMA 6.11. We have a nonzero R-equivariant map

(ωψ ,S(X′))→ IndGU(V ′)
P (̃η0)⊗ (η0(Nm) · β), φ 7→ Fφ,η0 .

The right-hand side is irreducible and we have an isomorphism

IndGU(V ′)
P (̃η0) ∼= IndGL2(F)

PF
(η−1

0 ⊗ (η0 · β)
−1)⊗ (η0(Nm) · β)−1,

where the right-hand side is a representation of GL2(F) × E× that descends to
the quotient (GL2(F)× E×)/F× ∼= GU(V ′).

Proof. It is clear by definition that the map is nonzero. For R-equivariance,

Fωψ (h′,g′)φ,η0(g)

= |ν(g)|−1/2η0(ν(g))−1(ωψ(d(ν(g)−1)g)L(h′)ωψ(d(ν(g′)−1)g′)φ)(0)
= |ν(g)|−1/2η0(ν(g))−1(L(h′)ωψ(d(ν(gg′)−1)gg′)φ)(0)
= |ν(g)|−1/2η0(ν(g))−1

|ν(h′)|−1/2β(h′)(ωψ(d(ν(gg′)−1)gg′)φ)(0)
= β(h′)η0(ν(h′))|ν(gg′)|−1/2η0(ν(gg′))−1(ωψ(d(ν(gg′)−1)gg′)φ)(0)
= β(h′)η0(ν(h′))Fφ,η0(gg′).

The last assertion in the lemma holds since P ∼= (PF × E×)/F× and GU(V ′) ∼=
(GL2(F) × E×)/F×. The representation IndGL2(F)

PF
(̃η0) is irreducible since the

character η−1
0 β

−1η0 = β−1 is not | · | or | · |−1. It follows that IndGU(V ′)
P (̃η0) is

irreducible.
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The map defined in Lemma 6.11 factors through

Θ (1)(β) := S(X′)
/ ⋂
α∈HomE1 (S(X′),β)

kerα,

the largest quotient of S(X′) such that E1 acts by β. Note that by construction,
Θ (1)(β), as a representation of U(V ′), is the local theta lift of β to U(V ′).

There are many extensions of Θ (1)(β) to a representation of E× × GU(V ′)+,
but specifying an action of E× determines such an extension. Explicitly, define
Θur,β(β · η0(Nm)) to be the unique representation of GU(V ′)+ such that for g =(

1 0
0 ν

)
∈ GU(V ′)+,

Θur,β(β · η0(Nm))(g) := η0(Nm(h))−1
·Θ (1)(β)(h, g),

where h ∈ E× is any element such that ν(h) = ν(g) = ν.

THEOREM 6.12 (Rallis). The R-equivariant map in Lemma 6.11 factors through
Θur,β(β · η0(Nm)) and induces an injective map:

(ωψ ,S(X′)) IndGU(V ′)
P (̃η0)

Θur,β(β · η0(Nm))

Moreover,

Θur,β(β · η0(Nm)) ∼= IndGL2(F)
PF

(η−1
0 εE/F ⊗ η

−1
0 )⊗ (η0(Nm)−1

· β−1),

where the right-hand side is viewed as a representation of GL2(F) × E× that
descends to the quotient (GL2(F)× E×)/F× ∼= GU(V ′).

Proof. This is due to Rallis [R84, Theorem II.1.1]. By the injectivity of

Θur,β(β · η0(Nm)) ↪→ IndGU(V ′)
P (̃η0)

and the irreducibility of IndGU(V ′)
P (̃η0), by Lemma 6.11, we have an isomorphism

Θur,β(β · η0(Nm)) ∼= IndGL2(F)
PF

(η−1
0 β

−1
⊗ η−1

0 )⊗ (η0(Nm)−1
· β−1).

Finally, by Lemma 5.17, the restriction of β to F× is exactly the quadratic
character εE/F , and this completes the proof.
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6.5. Proof of Theorem 6.1. In this section, we use the calculations in the
preceding sections to prove Theorem 6.1, the main theorem of this section.

Let χ and χ ′ be Hecke characters of E×. Recall from Section 6.1 that for every
Schwartz function ϕ ∈ S(X(A)), we have automorphic forms θϕ(χ) and θ ′ϕ(χ

′)

on the adelic groups H(A) ∼= B×A and H ′(A) ∼= ((B ′A)× × A×E )/A
×

F , respectively.
LetΘ(χ) denote the automorphic representation of H(A) generated by θϕ(χ) for
all ϕ ∈ S(X(A)) and let Θ ′(χ ′) denote the automorphic representation of H ′(A)
generated by θ ′ϕ(χ

′) for all ϕ ∈ S(X(A)).

PROPOSITION 6.13. If π B
χ 6= 0, thenΘ(χ · ξ) 6= 0. Analogously, if π B ′

χ ′ 6= 0, then
Θ ′(χ ′ · ξ ′) 6= 0.

Proof. Recall that π B
χ 6= 0 if and only if χv|E1

v
6= 1 for every place v where

Bv is nonsplit. Let v be such a place, that is, Bv is nonsplit and χv|E1
v
6= 1.

By Lemma 6.5(a), we have Θv(χvξv) 6= 0, and by Proposition 6.6, we have
Zv( 1

2 ,−, χvξv) 6= 0. Now let v be a place such that Bv is split. By Lemma 6.5(b),
we have Θv(χvξv) 6= 0, and by Theorem 6.7(c), we have Zv( 1

2 ,−, χvξv) 6= 0. By
the Rallis inner product formula (Proposition 6.3), Θ(χ · ξ) 6= 0 if and only if
all the local zeta integrals Zv( 1

2 ,−, χvξv) 6= 0, and hence we have shown that
Θ(χ · ξ) 6= 0.

LEMMA 6.14. If χ, χ ′ are Hecke characters of A×E whose restriction to A1
E is

nontrivial, then Θ(χ · ξ) is a cuspidal automorphic representation of B×A and
Θ ′(χ ′ · ξ ′) is a cuspidal automorphic representation of B ′A

×.

Proof. If B 6= M2(F), then the statement holds trivially. Now assume B = M2(F).
We would like to prove that for any Schwartz function φ ∈ S(X(A)),∫

F\AF

θφ(χ)(n(b)g) db = 0, where n(b) :=
(

1 b
0 1

)
. (6.13)

Observe that if g /∈ GL+2 (AF), then n(b)g /∈ GL+2 (AF), and hence the integrand
in (6.13) is identically zero. Now assume g ∈ GL+2 (AF) and pick α ∈ A×E with
Nm(α) = det(g). Then by definition,

θφ(χ)(n(b)g) = θωψ (α,g)φ(χ)(n(b)),

and therefore it remains only to show∫
F\AF

θφ(χ)(n(b)) db = 0.
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Recall that if B is split, then the 2-dimensional E-space W0 is a split Hermitian
space and one has a decomposition W0 = W1 + W2 into isotropic subspaces of
dimension 1. This induces a complete polarization V = X′ + Y′ given by X′ =
ResE/F(V0⊗W1) and Y′ = ResE/F(V0⊗W2). Then A1

E ⊂ U(V0) stabilizes X′ and
Y′, and so for α ∈ A1

E , b ∈ AF , and φ′ ∈ S(X′(A)),

ωψ(α,n(b))φ′(x) = ξ−1(α) · ψ( 1
2 bxx t) · φ′(xα).

We have∫
F\AF

θφ(χ)(n(b)) db

=

∫
F\AF

∫
E1\A1

E

∑
x∈X′(F)

(ωψ(α,n(b)))φ′(x) · (χξ)(α) dα db

=

∫
E1\A1

E

∑
x∈X′(F)

∫
F\AF

ξ−1(α) · ψ( 1
2 bxx t) · φ′(xα) · (χξ)(α) db dα

=

∫
E1\A1

E

ξ−1(α) · φ′(0) · (χξ)(α) dα = φ′(0)
∫

E1\A1
E

χ(α) dα = 0.

THEOREM 6.15. Let χ , χ ′ be Hecke characters of A×E whose restriction to A1
E is

nontrivial.

(a) If Θ(χ · ξ) is nonzero, then

Θ(χ · ξ) ∼= π
B
χ .

(b) If Θ ′(χ ′ · ξ ′−1) is nonzero, then

Θ ′(χ ′ · ξ ′−1)∨ ∼= π
B ′
χ ′ ⊗ (χ

′
· ξ ′−1),

where the right-hand side is viewed as a representation of H ′(A) ∼=
((B ′A)

×
× A×E )/A

×

F descended from the (B ′A)
×
× A×E representation written

above.

Proof. We prove (a) first. By our normalization (compare the local definition
in Section 3.3 to the global definition in Section 6.1), at a place v, the local
representation corresponding to the global theta lift of χ · ξ is the local theta
lift of (χv · ξv)−1. That is,

Θ(χ · ξ)v ∼= Θv((χv · ξv)
−1) ∼= Θv(χ

−1
v · ξ

−1
v ).

Theorem 6.12 gives a description of the right-hand side for every place v such
that
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· v splits completely in E ; or

· v lies under a single place w of E and χw : E×w → C× factors through
Nm : E×w → F×v .

For each such place v, by Lemma 5.17, we have

s(α, d(ν(α))) = ξ(α)−1, for all α ∈ E×v .

Writing χv = χv,0(Nm), we have

Θv(χ
−1
v · ξ

−1
v )
∼= Θur,ξ−1

v
(χ−1

v ξ
−1
v )
∼= IndGL2(Fv)

PFv
(χv,0εEv/Fv ⊗ χv,0),

and therefore by Jacquet–Langlands, we have that Θ(χ · β) ∼= π B
χ .

The proof of (b) is very similar. In this case, because we complex-conjugate the
theta kernel in the definition of the global theta lift Θ ′ (see Section 6.1), we have

Θ ′(χ ′ · ξ ′−1)∨v
∼= Θv((χ

′

v · ξ
′

v
−1)−1) = Θv(χ

′

v
−1
· ξ ′v).

At every place v of F where everything is unramified, by Lemma 5.22,

s′(d(ν(α)), α) = ξ ′(α), for all α ∈ E×v .

Writing χ ′v = χ
′

v,0(Nm) at each such place, Theorem 6.12 implies

Θv(χ
′

v
−1
· ξ ′v)
∼= Θur,ξ ′v (χ

′

v
−1
· ξ ′v)
∼= IndGL2(Fv)

PFv
(χ ′v,0ξ

′

v ⊗ χ
′

v,0)⊗ (χ
′

v,0 · ξ
′

v
−1).

Since ξ ′v|F×v = εEv/Fv , therefore by Jacquet–Langlands, Θ ′(χ ′ · ξ ′−1)∨ ∼= π B ′
χ ′ ⊗

(χ ′−1
· ξ ′).

Theorem 6.1 now follows from Proposition 6.13 and Theorem 6.15.

Proof of Theorem 6.1. If Θ(χ · ξ) = 0, then by Proposition 6.13, we must have
π B
χ = 0 and therefore Θ(χ · ξ) = π B

χ . If Θ(χ · ξ) 6= 0, then by Theorem 6.15,
we must have Θ(χ · ξ) ∼= π B

χ . The same argument holds to conclude the desired
isomorphism for Θ ′(χ ′ · ξ ′−1).

6.6. Period identities of CM forms. We are now ready to prove an identity of
toric integrals of automorphic forms in π B

χ and π B ′
χ ′ . We use the seesaw

H ′ H

G G′

=

GUE (Res V ) GUB(W∗)

GUB(V )◦ GUE (W )

∼=

((B′)× × E×)/F× B×

E× E×
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Recall from Proposition 5.14 that our choice of splittings

s : GG×H (A)→ C1, s ′ : GG ′×H ′(A)→ C1

enjoys the property that for (α, β) ∈ GG×G ′(A),

s ′(α, β) = ξ(α) · ξ ′(β) · s(α, β).

THEOREM 6.16. For any Hecke characters χ and χ ′ of E,

〈θϕ(χ · ξ), χ ′〉G ′ = 〈χ, θ
′

ϕ(χ
′ · ξ ′−1)〉G .

Proof. Unwinding definitions and using Proposition 5.14, we have

〈θϕ(χ · ξ), χ ′〉G ′

=

∫
[G ′]
θϕ(χ · ξ)(g′) · χ ′(g′) dg′

=

∫
C

∫
[G ′1]

θϕ(χ · ξ)(g′1g′c) · χ
′(g′1g′c) dg′1 dc

=

∫
C

∫
[G ′1]

∫
[G1]

Θ(ωψ(g1gc, g′1g′c)ϕ) · χ(g1gc) · ξ(g1gc) · χ
′(g′1g′c) dg1 dg′1 dc

=

∫
C

∫
[G1]

∫
[G ′1]

χ(g1gc)Θ(ω
′

ψ(g1gc, g′1g′c)ϕ) · ξ
′(g′1g′c)

−1
· χ ′(g′1g′c) dg′1 dg1 dc

=

∫
C

∫
[G1]

χ(g1gc)θ ′ϕ(χ
′ · ξ ′−1)(g1gc) dg1 dc

= 〈χ, θ ′ϕ(χ
′ · ξ ′−1)〉G .

Combining Theorems 6.15 and 6.16, we obtain the following result.

THEOREM 6.17. Let χ, χ ′ be Hecke characters of E and let ϕ ∈ S(X(A)). Then

f B
χ := θϕ(χ · ξ) ∈ π

B
χ , f B ′

χ ′ := θ
′
ϕ(χ

′ · ξ ′−1) ∈ π B ′
χ ′ ,

and we have∫
A×F E×\A×E

f B
χ (g) · χ

′(g) dg =
∫
A×F E×\A×E

χ(g) · f B ′
χ ′ (g) dg.

We point out that by Theorem 6.17, if f B
χ is a test vector for the Waldspurger

torus period of π B
χ with χ ′, then f B ′

χ ′ is a test vector for the Waldspurger torus
period of π B ′

χ ′ with χ .
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7. Special vectors in the Weil representation

Recall that F is a totally real field and E = F(i) is a CM extension of F . We
choose the trace-free element i ∈ E so that u = i2

∈ F has the property that for
any finite place v of F ,

valv(u) =

{
0 if Ev/Fv is unramified
1 if Ev/Fv is ramified.

For the rest of the paper, we take ψ to be the standard additive character of F\AF

(see Section 2.1). Recall that if v is a finite place of F , thenψv is trivial on π−dv
v Ov

but nontrivial on π−dv−1
v Ov. Furthermore, recall that we let dx be the additive Haar

measure on AF self-dual with respect to ψ and that vol(OFv , dxv) = q−dv/2
v .

In this section, we will explicitly realize the positive-weight Hecke eigenforms
as theta lifts. More precisely, let η1, . . . , ηn be the real embeddings of F . For
any n-tuple of nonnegative integers l = (l1, . . . , ln) and any n-tuple of integers
k = (k1, . . . , kn), we will specify a Schwartz function φ′l such that if χηi (z) = z−ki

for i = 1, . . . , n, then the theta lift θφ′l (χξ) is a Hecke eigenform whose weight
at each infinite place ηi is |ki | + 1 + 2li . Note that by construction (Section 6.1),
negative-weight Hecke eigenforms are not theta lifts since they are not supported
on GL2(F)GL2(AF)

+.
Fix a place v of F . In this section, we work place by place, and drop the

subscript v throughout. Let W be a 2-dimensional E-vector space endowed with
the skew-Hermitian form

〈(x1, x2), (y1, y2)〉 = x1 y2 − x2 y1

with respect to a fixed basis w1, w2 of W. Let V be a 1-dimensional E-vector
space endowed with the Hermitian form (α, β) = αβ. Setting Wi = spanC(wi)

for i = 1, 2, we have a decomposition W =W1+W2 of W into maximal isotropic
subspaces, and this induces a complete polarization of V given by

V = X′ + Y′, X′ = V⊗W1, Y′ = V⊗W2.

Fix a splitting
s : G(U(V)× U(W))→ C1

of the cocycle zY′ with respect to the map

ι : G(U(V)× U(W))→ Sp(V), (h, g) 7→ (v ⊗ w 7→ h−1v ⊗ wg).

This determines a homomorphism

ι̃ : G(U(V)× U(W))→ Mp(V)Y′, (h, g) 7→ (ι(h, g), s(h, g)).

https://doi.org/10.1017/fms.2020.21 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.21


C. Chan 58

Recall from Equation (6.12) and Lemma 5.17 that for φ ∈ S(X′) and (h, g) ∈
G(U(V)× U(W)),

ωψ(h, g)φ(x) = ξ−1(h)|h|−1/2(ωψ(d(ν(g)−1)g)φ)(xh−1). (7.1)

One can choose a basis of X′ and Y′ so that

ι(D(a)) =


a

a
a−1

a−1

 , ι(U (a′)) =


1 a′

1 a′

1
1

 ,

ι(W ) =


1

1
−1
−1

 .
By the computations of Section 5.6 and Equations (3.1)–(3.3),

ωψ(1, D(a))ϕ(x) = ξ(a)−1
· | det a| · ϕ(xa) (7.2)

ωψ(1,U (a′))ϕ(x) = ψ( 1
4 TrE/F(a′xx)) · ϕ(x) (7.3)

ωψ(1,W )ϕ(x) = (u,−1)F · γF

(
u,

1
2
ψ

)
·

∫
F2
ϕ(y)ψ

(
1
2

TrE/F(x y)
)

dy. (7.4)

If v is a finite place, let c(πχ ) be the conductor of πχ and let K ′0(N ) be the
compact open subgroup as defined in Section 2.2. Writing d(ν)=

(
1 0
0 ν

)
∈ GL2(F)

for ν ∈ F×, define

K0(N ) :=

{
K ′0(N ) if F has odd residue characteristic,
d(2)K ′0(N )d(1/2) if F has even residue characteristic.

7.1. Schwartz functions. In this section, we introduce Schwartz functions
that transform nicely under the Weil representation. These functions have been
considered in various places before. At the finite places, they have appeared
for example in [P06, Proposition 2.5.1], [X07, N1]. At the infinite places, our
choice is constructed from a confluent hypergeometric function 1 F1(a, b, t) of
the first type. This is related to the role of hypergeometric functions in matrix
coefficients of representations of SL2(R) (see, for example, [X07, Appendix],
[VK91, Ch. 6, 7]).

7.1.1. Infinite places. In this section, let v be an infinite place of F .
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DEFINITION 7.1. For k ∈ Z and l ∈ Z>0, define

φ′k,l(z) :=

{
1 F1(−l, k + 1, 4π zz)zke−2π zz if k > 0,

1 F1(−l,−k + 1, 4π zz)z−ke−2π zz if k < 0,

where 1 F1(a, b, t) is the Kummer confluent hypergeometric function for constants
a, b

1 F1(a, b, t) :=
∞∑
j=0

(a) j

(b) j

1
j !

t j , where (a)0 := 1,

and (a) j := a(a + 1)(a + 2) · · · (a + j − 1).

Observe that 1 F1(a, b, t) is entire in t so long as b /∈ Z60, so that in particular, φ′k,l
is entire for all k ∈ Z and l ∈ Z>0.

The following lemma is well known.

LEMMA 7.2. (a) The function 1 F1(a, b, t) is a solution to the differential
equation

t f ′′(t)+ (b − t) f ′(t)− a f (t) = 0.

(b) If Re(α) > 0 and Re(c) > 0, then∫
∞

0
tα−1e−ct

1 F1(a, b,−t) dt = c−αΓ (α)2 F1

(
a, α, b,−

1
c

)
,

where

2 F1

(
a, α, b,−

1
c

)
=

∞∑
j=0

(a) j(α) j

(b) j

1
j !

(
−

1
c

) j

.

LEMMA 7.3. For α ∈ C1 and r(θ) =
( cos(θ) sin(θ)
−sin(θ) cos(θ)

)
∈ SO(2),

ωψ(α, r(θ))φ′k,l = ξ(α
−1)α−kei(|k|+1+2l)θφ′k,l .

Proof. We follow a similar proof strategy to [X07, Proposition 2.2.5]. We
compute on the Lie algebra sl2(R). It is well known that for X+ =

(
0 1
0 0

)
,

X− =
(

0 0
1 0

)
,

ωψ(X+)φ = 2π i zzφ, ωψ(X−)φ = −
1

2π i
∂

∂z

(
∂

∂z
φ

)
.

We first handle the case k > 0. For any doubly differentiable function f satisfying
the differential equation

t f ′′(t)+ (k + 1− t) f ′(t) = −l f (t),
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we have, following from a long calculus computation,

ωψ(X+ − X−)( f (4π zz)zke−2π zz)

= i[(k + 1) f (4π zz)− 2((k + 1− 4π zz) f ′(4π zz)
+ 4π zz f ′′(4π zz))]zke−2π zz

= i(k + 1+ 2l) f (4π zz)zke−2π zz.

By Lemma 7.2(a), 1 F1(−l, k + 1, t) is such an f (t) and hence the desired
conclusion follows.

Now assume k < 0. For any doubly differentiable function f satisfying the
differential equation

t f ′′(t)+ (−k + 1− t) f ′(t) = −l f (t),

we have

ωψ(X+ − X−)( f (4π zz)z−ke−2π zz)

= i[(−k + 1) f (4π zz)− 2((−k + 1− 4π zz) f ′(4π zz)
+ 4π zz f ′′(4π zz))]z−ke−2π zz

= i(−k + 1+ 2l) f (4π zz)z−ke−2π zz.

By Lemma 7.2(a), 1 F1(−l,−k + 1, t) is such an f (t), and so the desired
conclusion follows.

Finally, it is easy to see that ωψ(α, 1)φ′k,l = ξ(α
−1)α−kφ′k,l , and it follows that

ωψ(α, r(θ))φ′k,l = ξ(α
−1)α−ke−(|k|+1+2l)θφ′k,l .

The following lemma is useful in understanding the relationship between the
φ′k,l with respect to the Maass–Shimura operator on modular forms.

LEMMA 7.4. Write z = x + yi ∈ C. For y 6= 0, we have

δl
|k|+1(y

1/2e2π i xvvφ′k,0(v
√

y)) =
(|k| + 1)l
(2π i)l(2i)l

· (y−l+1/2e2π i xvvφ′k,l(v
√

y)).

Proof. This amounts to showing(
∂

∂z
+
|k| + 1+ 2l

z − z

)
[y−l+1/2e2π i xvvφ′k,0(v

√
y)]

=
|k| + 1+ l

2i
· (y−l−1+1/2e2π i xvvφ′k,l+1(v

√
y)).
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Unwinding definitions, this amounts to showing(
∂

∂z
+
|k| + 1+ 2l

z − z

)
(y−l

1 F1(−l, |k| + 1, 4πvvy)e2π ivvz)

=
|k| + 1+ l

2i
· (y−l−1

1 F1(−l − 1, |k| + 1, 4πvvy)e2π ivvz).

Verifying this is a straightforward calculation. For example, the coefficient of
y−l−1 on the left-hand side is equal to (−l

2i +
|k|+1+2l

2i ) · e2π ivvz , and this agrees
with the right-hand side.

7.1.2. Finite nonsplit places. In this section, let v be a finite nonsplit place of
F lying under a single prime w of E . Then Ew is a field and Ew/Fv is either
unramified or ramified. Assume that Ew, Fv have odd residue characteristic. We
drop the subscripts w and v throughout this section.

DEFINITION 7.5. Define

φ′(x) :=

{
1OE (x) if χ is unramified,
χ(x)1O×E (x) otherwise.

LEMMA 7.6. Let ψ ′ be an unramified nontrivial additive character of F. For
h ∈ O×E and g =

(
a b
c d

)
∈ K0 := K0(c(ρχ )) such that Nm(h) = det(g), we have

ωψ ′(h, g)φ′ = (χξ)−1(h) · (χεE/F)(a) · φ′.

Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], and [Ch18,
Lemma 8.6].

LEMMA 7.7. For h ∈ O×E and g =
(

a b
c d

)
such that Nm(h) = det(g), we have

ωψ(h, d(δ)−1gd(δ))φ′ = (χξ)−1(h) · (χεE/F)(a) · φ′.

Proof. Since ψ has conductor δ, ψ ′(x) := ψ(δx) is an unramified nontrivial
additive character of F . The conclusion follows by Equation (3.4) and Lemma 7.6.

7.1.3. Finite split places. In this section, we let v be a finite split place of F .
Then Ev

∼= Fv ⊕ Fv. We drop the subscript v throughout this section.
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DEFINITION 7.8. For a character χ = χ1 ⊗ χ2 : F× × F×→ C×, define

φ′(x1, x2) :=

{
1OF (x1)1OF (x2) if χ is unramified,
χ(x1, x2)1O×F (x1)1O×F (x2) otherwise.

LEMMA 7.9. Let ψ ′ be an unramified nontrivial additive character of F. For
h ∈ O×F ×O×F and g =

(
a b
c d

)
∈ K0 with Nm(h) = det(g), we have

ωψ ′(h, g)φ′ = (χξ)−1(h) · χ1(a)χ2(a) · φ′.

Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], and [Ch18,
Lemma 8.9].

By the same argument as in Lemma 7.7, we have the following lemma.

LEMMA 7.10. For h ∈ O×F ×O×F and g =
(

a b
c d

)
∈ K0 with Nm(h) = det(g), we

have
ωψ(h, d(δ)−1gd(δ))φ′ = (χξ)−1(h) · χ1(a)χ2(a) · φ′.

7.2. Local zeta integrals. In this section, we calculate the local zeta
integrals Z( 1

2 , Φv, χv) for the Siegel–Weil section Φv = ΦO,Sp
v (δ(φ′v ⊗ φ′v))

(see Section 6.2).

7.2.1. Infinite nonsplit places. Let v be an infinite nonsplit place. We say that
χv has infinity type (k1, k2) if

χv : C×→ C×, z 7→ z−k1 z−k2 .

Assume that χv(z) = zk for z ∈ C1, so that either χv is of type (−k + j, j) or
(− j, k − j) for some integer j . Pick an integer l ∈ Z>0 and take

φ′v(z) := φ
′

k,l(z) =

{
1 F1(−l, k + 1, 4π zz)zke−2π zz if k > 0,

1 F1(−l,−k + 1, 4π zz)z−ke−2π zz if k < 0.

LEMMA 7.11. Let v be an infinite nonsplit place. Then

Zv

(
1
2
, Φv, χv

)
= vol(C1)〈φ′, φ′〉 =

(2π)2

4|k|+1π |k|+1
·

l!(|k|)!2

(l + |k|)!
.

Proof. By Lemma 7.3, ωψ(α, 1)φ′v = ξ(α
−1)α−kφ′v. Thus

Zv( 1
2 , Φv, χv) =

∫
C1
〈ωψ(g, 1)φ′v, φ

′

v〉(χvξv)(g) dg

= vol(C1)〈φ′v, φ
′

v〉 = π
−1
〈φ′v, φ

′

v〉.
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We have

〈φ′v, φ
′

v〉 =

∫
C

1 F1(−l, |k| + 1, 4π zz)2 · (zz)|k| · e−4π zz dz dz

=
2π

(4π)(4π)|k|

∫
∞

0
1 F1(−l, |k| + 1, t)2 · t |k| · e−t dt

=
2π

(4π)|k|+1

l!(|k|)!2

(l + |k|)!
=

2π
(4π)|k|+1

(|k|)!(l+|k|
|k|

) .
7.2.2. Finite nonsplit places. Recall from Section 7 that we set

φ′v(x) =

{
1OEv

(x) if χv is unramified,
χv(x)1O×Ev

(x) if χv is ramified.

LEMMA 7.12. Let v be a finite nonsplit place. If Ev/Fv is unramified, then

Zv( 1
2 , Φv, χv)

=


q−dv/2
v if Ev/Fv is unramified and χv is unramified,

q−dv/2
v (1− q−2

v ) if Ev/Fv is unramified and χv is ramified,
q−1
v q−dv/2

v if Ev/Fv is ramified and χv is unramified,
q−1
v q−dv/2

v (1− q−1
v ) if Ev/Fv is ramified and χv is ramified.

Proof. By Lemma 7.7, for g ∈ E1
v , we have ωψ(g, 1)φ′ = (χvξv)−1(g) · φ′. This

implies that

Zv( 1
2 , Φv, χv) = vol(E1

v , d1xTam
v )

∫
E1
v

〈ωψ(g, 1)φ′, φ′〉(χξY′)v(g) dg

= vol(E1
v , d1xTam

v )2〈φ′, φ′〉

=

{
vol(E1

v , d1xTam
v )2 vol(OEv , dxv) if χv is unramified,

vol(E1
v , d1xTam

v )2 vol(O×Ev , dxv) otherwise.

The desired conclusion now follows from the measures in Section (2.1).

7.2.3. Finite split places. Let v be a finite split place and write χv = χ1,v ⊗

χ2,v : F×v × F×v → C×. Recall that

φ′(x1, x2) :=

{
1OFv

(x1)1OFv
(x2) if χv is unramified,

χv(x1, x2)1O×Fv
(x1)1O×Fv

(x2) otherwise.
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LEMMA 7.13. Let v be a finite split place and assume that χv is unramified. Then

Zv

(
1
2
, Φv, χv

)
= q−3dv/2

v ·
Lv(1, χ1,v ⊗ χ

−1
2,v )Lv(1, χ

−1
1,v ⊗ χ2,v)

Lv(2, εE/F)
.

Proof. In this setting, E1
v = {(a, a−1) ∈ F×v × F×v }. By Lemma 5.17,

ωψ((a, a−1), 1)φ′(x1, x2) = ξv(a, a−1)−1φ′(x1a−1, x2a)
= ξv(a, a−1)−11aOFv

(x1)1a−1OFv
(x2).

Hence

〈ωψ((a, a−1), 1)φ′, φ′〉

=

∫
X′v
ξv(a, a−1)−11aOFv

(x1)1a−1OFv
(x2)1OFv

(x1)1OFv
(x2) dx1 dx2

= ξv(a, a−1)−1 vol(aOFv ∩OFv , dxv) vol(a−1OFv ∩OFv , dxv)

= ξv(a, a−1)−1 1

q |val(a)|
v

vol(OFv , dxv)2 = ξv(a, a−1)−1 1

q |val(a)|
v

q−dv
v .

We therefore have, writing π = πv for a uniformizer of Fv,

Zv

(
1
2
, Φv, χv

)
=

∫
F×v

〈ωψ(a, a−1)φ′v, φ
′

v〉ξv(a, a−1)χv(a, a−1) da

=

∑
n∈Z

∫
O×Fv

〈ωψ(π
na, π−na−1)φ′v, φ

′

v〉ξv(π
na, π−na−1)χv(π

na, π−na−1) da

= q−3dv/2
v ·

1− q−2
v

(1− q−1
v χv(π

−1, π))(1− q−1
v χv(π, π

−1))

= q−3dv/2
v ·

Lv(1, χ1,v ⊗ χ
−1
2,v )Lv(1, χ

−1
1,v ⊗ χ2,v)

Lv(2, εE/F)
.

LEMMA 7.14. Let v be a finite split place and assume that χv is ramified. Then

Zv( 1
2 , Φv, χv) = q−3dv/2

v (1− q−1
v )

2.

Proof. We have ωψ((a, a−1), 1)φ′(x1, x2) = ξv(a, a−1)−1χv(a, a−1)−11aO×Fv
(x1)

1a−1O×Fv
(x2) so that

〈ωψ((a, a−1), 1)φ′, φ′〉 = ξv(a, a−1)−1χv(a, a−1)−1 vol(O×Fv , dxv)21O×Fv
(a).

Thus Zv( 1
2 , Φv, χv) = vol(O×Fv , dxv)2 vol(O×Fv , d1xTam

v ).
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8. An explicit Rallis inner product formula

Let F be a totally real number field and let E/F be a CM extension. Assume
that every place v of F over 2 splits in E . Let η1, . . . , ηn be the real embeddings
of F . Let χ : E×\A×E → C× be a Hecke character of infinity type (k + j, j),
where k = (k1, . . . , kn), j = ( j1, . . . , jn) ∈ Zn . Assume that B = M2(F) and let
W0 = ResB/E B = W1 + W2 be a decomposition of the E-space W0 into totally
isotropic subspaces. Set X′ = ResE/F(E⊗W1),Y′ = ResE/F(E⊗W2), and define
a Schwartz function φ′ = ⊗vφ′v ∈ S(X′(A)) as in Section 7:

φ′l,v(z) :=



1 F1(−li , ki + 1, 4π zz)zke−2π zz if v = ηi | ∞ and k > 0,

1 F1(−li ,−ki + 1, 4π zz)z−ke−2π zz if v = ηi | ∞ and k < 0,
1OEv

(z) if v is nonsplit and χv is unramified,
χv(z)1O×Ev

(z) if v is nonsplit and χv is ramified,

1OFv
(z1)1OFv

(z2) if v splits and χv is unramified,
χv(z1, z2)

−11O×Fv
(z1)1O×Fv

(z2) if v splits and χv is ramified.

Define

Σχ := {v : χv is unramified}, Σχ̃ := {v : χ̃v is unramified}.

For each place v of F , define

Cv :=



(2π)2

4|ki |+1π |ki |+1
·

li !(|ki |)!
2

(li + |ki |)!
if v = ηi | ∞

q−dv/2
v if v /∈ Σχ , v /∈ Σχ̃ , v unram

q−dv/2
v (1− q−2

v ) if v ∈ Σχ , v /∈ Σχ̃ , v unram

q−dv/2
v if v ∈ Σχ , v ∈ Σχ̃ , v unram

q−dv/2
v q−1

v (1− q−2
v )
−1(1− χ̃w(πw)q−1

v ) if v /∈ Σχ , v /∈ Σχ̃ , v ram

q−dv/2
v q−1

v (1− q−1
v )(1− q−2

v )
−1(1− χ̃v(πv)q−1

v ) if v ∈ Σχ , v /∈ Σχ̃ , v ram

q−dv/2
v q−1

v (1− q−1
v )(1− q−2

v )
−1 if v ∈ Σχ , v ∈ Σχ̃ , v ram

q−3dv/2
v if v /∈ Σχ , v /∈ Σχ̃ , v split

q−3dv/2
v

(1− (χ1,vχ
−1
2,v )(πv)q

−1
v )(1− (χ

−1
1,vχ2,v)(πv)q−1

v )

(1+ q−1
v )

if v ∈ Σχ , v /∈ Σχ̃ , v split

q−3dv/2
v (1− q−1

v )(1+ q−1
v )
−1 if v ∈ Σχ , v ∈ Σχ̃ , v split.

THEOREM 8.1. The Petersson inner product of the theta lift θφ′(χξ) is

〈θφ′(χξ), θφ′(χξ)〉 =
ρF

ρE
·

L(1, χ̃)
ζ(2)

·

∏
v

Cv,

where Cv = 1 at all but finitely many places. In particular, θφ′(ξχ) 6= 0 if χ is
nontrivial on A1

E .
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Proof. By the results of Section 7.2, it is a straightforward comparison to see that

Z
(

1
2
, Φv, χv

)
= Cv ·

Lv(1, χ̃)
ζv(2)

for all places v of F .

Since all but finitely many places simultaneously satisfy the conditions dv = 0,
v /∈ Σχ , v /∈ Σχ̃ , and v is split or unramified, we see that Cv = 1 for all but finitely
many places, and the desired equation now follows from the doubling method.
Observe that the factor ρF/ρE comes from the definition of the Tamagawa
measure on A1

E and the local measures on E1
v (Section 2.1).

Finally, since Cv 6= 0 for all v, it follows that θφ′(χξ) 6= 0 if and only if L(1,
χ̃) 6= 0. But L(1, χ̃) 6= 0 if and only if χ is trivial on A1

E , so the final assertion
holds.

The Shimura–Maass differential operator

δk :=
1

2π i

(
∂

∂z
+

k
z − z

)
maps real analytic modular forms of weight k to real analytic modular forms of
weight k + 2. Define the composite operator

δl
k := δk+2l−2 ◦ · · · ◦ δk+2 ◦ δk (8.1)

mapping real analytic modular forms of weight k to real analytic modular forms
of weight k + 2l.

Let fχ be the normalized newform of weight

|k| + 1 = (|k1| + 1, . . . , |kn| + 1)

in πχ . For l = (l1, . . . , ln), let F l
χ denote the automorphic form on GL2(AF)

corresponding to δl
|k|+1 fχ .

THEOREM 8.2. If χ does not factor through the norm map A×E → A×F , we have

θφ′l (χξ) = Dl · F l
χ , for some Dl 6= 0.

Proof. First recall that by Theorem 6.15(a), the theta lift θφ′(χξ) is an
automorphic form in the automorphic induction πχ to GL2(AF). If f is a
Hecke eigenform of weight |k| + 1 + 2l in πχ , then it must satisfy that for all
r(θ) := r(θ1) · · · r(θn) with r(θ j) ∈ SO(2) and k0 =

(
a b
c d

)
∈ K0 :=

∏
v-∞ K0,v

with det(k0) = 1, we have

f (gr(θ)d(d)−1k0d(d)) =
n∏

j=1

ei(|k j |+1+2l j )θ j (χεE/F)(a) f (g) for all g ∈GL2(AF).

(8.2)
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By Casselman’s theorem [Ca73, Theorem 1], the dimension of automorphic
forms satisfying (8.2) must have dimension 1. Therefore to see that θφ′(χξ) is
a (possibly zero!) multiple of F l

χ , we need only see that it satisfies (8.2).
We first recall the definition of the theta lift θφ′(χξ) on GL2(AF). If g ∈

GL2(AF)
+
:= {g ∈ GL2(AF) : det(g) ∈ Nm(A×E )}, then for any h ∈ A×E such

that det(g) = Nm(h),

θφ′(χξ)(g) =
∫
[E1]

Θ(ωψ(hh1, g)φ′) · (χξ)(hh1) dh1.

We define θφ′(χξ) on

GL2(F)GL2(AF)
+
= {g ∈ GL2(AF) : det(g) ∈ F×Nm(A×E )}

by
θφ′(χξ)(γ g) = θφ′(χξ)(g), for γ ∈ GL2(F), g ∈ GL2(AF)

+.

Note that GL2(F)GL2(AF)
+ is an index-2 subgroup of GL2(AF). We define

θφ′(χξ) on GL2(AF) by extending by 0 outside GL2(F)GL2(AF). Define K0 :=∏
v K0,v, where K0,v ⊂ GL2(OFv ) as defined in Section 7. Note that K0 ⊂

GL2(F)GL2(AF)
+. By Lemmas 7.3, 7.7, and 7.10, for r(θ) = r(θ1) · · · r(θn)with

r(θ j) ∈ SO(2) and k0 =
(

a b
c d

)
∈ K0 ∩ GL2(AF)

+,

ωψ(h0, r(θ)d(d)−1k0d(d))φ′l =
n∏

j=1

ei(|k j |+1+2l j )θ j (χξ)−1(hh0)(χεE/F)(a)φ′l ,

where h0 ∈ A×E is such that Nm(h0) = det(k0). This implies that for any g ∈
GL2(AF)

+ and any h ∈ A×E with Nm(h) = det(g),

θφ′l (χξ)(gr(θ)d(d)−1k0d(d))

=

∫
[E1]

Θ(ωψ(hh1h0, gr(θ)d(d)−1k0d(d))φ′l) · (χξ)(hh1h0) dh1

=

n∏
j=1

∫
[E1]

Θ(ωψ(hh1, g)φ′l) · e
i(|k j |+1+2l j )θ j

· (χξ)−1(h0) · (χεE/F)(a) · (χξ)(hh1h0) dh1

=

n∏
j=1

ei(|k j |+1+2l j )θ j (χεE/F)(a) ·
∫
[E1]

Θ(ωψ(hh1, g)φ′l) · (χξ)(hh1) dh1

=

n∏
j=1

ei(|k j |+1+2l j )θ j (χεE/F)(a) · θφ′l (χξ)(g).
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In the next result, we give an exact formula (up to C1) for the constant Dl in the
case that F = Q. One can do this for the general case by comparing Theorem 8.1
to known formulas for the Petersson inner product of Hilbert modular forms, but
the formula for Dl will be more complicated. In the following, we use [S76,
Equation (2.5)], [H81, Section 5] together with the factors at bad places as
determined in [Co18, Section 4.2].

Let g be a twist of fχ , which is twist-minimal by χg. Let N , Ng, be the levels
of fχ , g, and let Nχ,g be the conductor of χg. For every prime p, let prg be the
exact power of p dividing Ng, and prχg be the exact power of p dividing Ng,χ . We
denote by L(s, ad, fχ ) the adjoint L-function of fχ . Define

`p :=



1 if p - N ,
(1+ 1/p)L p(ad, f, 1) if p - Ng and p | N ,
(1+ 1/p) if p || Ng and p || N ,
(1+ 1/p)(1− 1/p2)−1 if p || Ng and p2

| N ,
(1+ 1/p) if rg = rχg > 1 and prg || N ,
(1+ 1/p)(1− 1/p)−1 if rg = rχg > 1 and prg+1

| N ,
1 if rg > 2 and r > rχg .

Note that, comparing to [Co18, Section 4.2], the last case comes from the fact
that πχ ∼= πχ ⊗ det(εE/F).

THEOREM 8.3. Assume F = Q and let K0 be any maximal compact subgroup of
GL2(AQ,fin) containing K :=

∏
v, K0,v(cv(πχ )) (Sections 2.2 and 7). Then

|Dl |
2
=

∣∣∣∣ (2π i)l(2i)l

(|k| + 1)l

∣∣∣∣2 · ρ−2
E ·

∏
v

Cv · ζ(2) · (2π)−1
· 2

·
[K0 : K ]

π

3 · [PSL2(Z) : Γ1(N )]
·
(4π)|k|+1

|k|!
·

∏
p

`p.

In particular, |Dl | ∼ π l and, up to an element of C1, θφ′0(χξ) is an algebraic
holomorphic Hecke eigenform of weight k + 1 and level c(χ).

Proof. By Lemma 7.4, we have

θφ′l (χξ) =
(2π i)l(2i)l

(|k| + 1)l
· δl
|k|+1(θφ′0(χξ)).

It therefore suffices to calculate |D0|
2
= 〈θφ′0(χξ), θφ

′

0
(χξ)〉/〈Fχ , Fχ 〉.
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Following [IP18+, Lemmas 6.1, 6.3], we have

〈Fχ , Fχ 〉 = (2π) · ζ(2)−1
· 2−1
· [K0 : K ]−1

·
π

3
[PSL2(Z) : Γ1(N )] · 〈 fχ , fχ 〉,

where 〈 fχ , fχ 〉 is normalized as in [S76, Equation (2.1)]: for any cusp form f of
weight κ and level Γ , set

〈 f, f 〉 :=
1

vol(h/Γ )

∫
h/Γ

f (x + iy) f (x + iy)yk dx dy
y2

.

By [S76, Equation (2.5)], [H81, Section 5], and [Co18, Section 4.2],

〈 fχ , fχ 〉 = ζ(2)−1
·
|k|!

(4π)|k|+1
·

∏
p|N

`−1
p · L(1, ad, fχ ).

We have L(1, ad, fχ ) = L(1, χ̃) · L(1, εE/F) = L(1, χ̃) · ρE . Therefore, by
Theorem 8.1,

|D0|
2
= ρ−2

E ·
∏
v

Cv · ζ(2) · (2π)−1
· 2 ·

[K0 : K ]
π

3 · [PSL2(Z) : Γ1(N )]
·
(4π)|k|+1

|k|!
·

∏
p

`p.

Since E is CM by construction so that ρE ∼ π and since C∞ ∼ π 2/π |k|+1, we see

|D0|
2
∼ π−2

· π 2
· π 2
· π−1

· π−1
∈ Q.

9. An example: the canonical Hecke character for Q(
√
−7)

Let F = Q and let E = Q(
√
−7). Then E has class number 1 and there is a

unique canonical character χ ′can in the sense of Rohrlich [Ro80] (see also [Y95,
page 52]). Explicitly, χ ′can can be described as follows. First consider the character

ε : OE/(
√
−7) ∼= Z/7Z

( ·7 )

−→ {±1}.

Then ε(−1) = −1, and hence the map on principal ideals

P(
√
−7) = {αOE : α ∈ E× is relatively prime to 7} → E×, αOE 7→ ε(α)α

is a well-defined homomorphism. Since E has class number 1, then P(
√
−7) =

I (
√
−7), and the above defines a Hecke character of E×. We define χcan := χ

′

can ·

‖ · ‖
1/2
AE

to be the normalized unitary Hecke character of E×. It is easy to see that
for n > 0:

(a) χ n
can has∞-type (n, 0)+ (−n/2,−n/2) = (n/2,−n/2).

(b) χ n
can has conductor

√
−7OE if n is odd and conductor OE if n is even.

(c) χcan|A×F = εE/F .
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9.1. Two quaternion algebras. We now compute the local epsilon factors
εv(BC(πχn

can
)⊗ χm

can). At v = ∞, this calculation depends on whether n + 1 > m
or n + 1 6 m. At the local places, this can be calculated using [T83, Section 1].
The interesting finite place is v = 7.

(a) Momentarily, let v be a real place of a number field F , take f to be any
automorphic form of GL2 of weight k at v, and let Ω be a Hecke character
of E such that Ωv(z) = zl1 zl2 . Then

εv( f,Ω) · ωv(−1) =

{
+1 if k 6 l1 − l2,
−1 if k > l1 − l2.

Since πχn
can

has weight n + 1, this implies that

ε∞(BC(πχn
can
)⊗ χm

can) · ω∞(−1) =

{
+1 if n + 1 6 m,
−1 if n + 1 > m.

(b) Since χcan,v factors through Nm for all v - 7, the representation
IndWFv

WEv
(χcan,v) is decomposable. By [T83, Proposition 1.6], for any Hecke

character Ω , we have

εv(BC(πχcan)⊗Ω) · ωv(−1) = +1 for all v - 7.

(c) First, observe that ResWE IndWF
WE
(χ) = χ ⊕ χ τ for any character χ of WE .

Since base change on the GL2 side corresponds to restriction on the Galois
side, we have

ε7(BC(πχcan)⊗Ω) = ε7(ResWE IndWF
WE
(χ)⊗Ω) = ε7(χcanΩ)ε7(χ

τ
canΩ),

where the last equality holds because local ε-factors change direct sums to
products. By [Y95, Lemma 3.2], we have

ε7(χcanΩ) = −(
2
7 )
√
−1 = ε7(χ

τ
canΩ).

Since χcan|F× = εE/F , the automorphic representation πcan has trivial
central character, and hence the above calculation shows ε7(BC(πχcan) ⊗

Ω)ω7(−1) = −1. By the above argument,

ε7(BC(πχn
can
)⊗ χm

can) · ω7(−1) =

{
+1 if n is even,
−1 if n is odd.
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We can now discuss the possibilities for the quaternion algebra determined by
the pair of Hecke characters χ n

can and χm
can. First, observe that the central character

condition χ n
canχ

m
canεE/F = 1 on A× implies that n and m must have different parity.

We now have two cases:

(i) If n is odd, then εv(BC(πχn
can
) ⊗ χm

can) = −1 if and only if v = 7. This
implies that if L(BC(πχn

can
) ⊗ χm

can,
1
2 ) 6= 0, then necessarily n + 1 > m so

that ε∞(BC(πχn
can
)⊗ χm

can) = −1 and hence Σπχn
can
,χm

can
= {7,∞}.

(ii) If n is even, then εv(BC(πχn
can
) ⊗ χm

can) = +1 for all finite v. This implies
that if L(BC(πχn

can
) ⊗ χm

can,
1
2 ) 6= 0, then necessarily n + 1 6 m so that

ε∞(BC(πχn
can
)⊗ χm

can) = +1 and hence Σπχn
can
,χm

can
= ∅.

Summarizing, take n,m to have opposite parity. We have the following chart:

n + 1 > m
ε∞ = −1

n + 1 6 m
ε∞ = +1

ε = +1
n odd, m even
ε7 = −1

(definite, ramified at 7,∞)

n even, m odd
ε7 = +1

(indefinite—in fact, split!)

ε = −1
n even, m odd
ε7 = +1

n odd, m even
ε7 = −1

(9.1)

Waldspurger’s formula is in the setting of ε = +1, and our Main Theorem
(Theorem 6.17) gives an identity between the two ε = +1 boxes, taking B =
M2(F) and B ′ = B{7,∞}. In Sections 7 and 8, we constructed a family of Schwartz
functions such that their theta lifts realize the newform and its images under
iterates of the Shimura–Maass operator. We recall this construction next.

9.2. Torus periods of a weight-(3+2l)CM form. Take the special case n = 2
and let m = 3+ 2l, where l > 0. As in Section 7.1, we take φ′l := ⊗vφ

′

l,v, where

φ′l,v(z) =

{
1 F1(−l, 3, 4π zz)z2e−2π zz if v | ∞,
1OFv

(z1) · 1OFv
(z2) if v -∞.

If we set ξ = χcan,

Cv =



(2π)2

43π 4
·

l! · 4
(l + 2)!

=
1

2(l + 2)(l + 1)π 2
if v | ∞,

1 if v 6= 7,
1
7
(1− 49−1)−1(1− 7−1) =

1
8

if v = 7,
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so that by Theorems 6.15(b) and 8.2, the theta lift θφ′l (χ
2
canξ) is a Hecke eigenform

on GL2(AQ) in πχ2
can

. Furthermore, again by Theorem 8.1,

〈θφ′l (χ
2
canξ), θφ′l (χ

2
canξ)〉 =

(
2π
√

7 · 2

)−1

·
1

16 · (l + 2) · (l + 1) · π 2
·

L(1, χ̃ 2
can)

ζ(2)
.

And as before, by Theorem 6.16,∫
[E×]

θφ′l (χ
2
can · ξ)(g) · χ

3+2l
can (g) dg =

∫
[E×]

χ 2
can(g) · θ

′

φ′l
(χ 3+2l

can · ξ
′−1)(g) dg,

where by Theorem 6.15(b) the theta lift θ ′
φ′l
(χ 3+2l

can · ξ
′−1) is an automorphic form

in π B ′

χ3+2l
can

.

9.3. Nonvanishing torus periods. Recall that by Theorem 8.2, θφ′l (χ
2
canξ) is a

nonzero Hecke eigenform of weight 3+ 2l in πχ2
can

. For a basis 1, i, j, ij of M2(Q)
with i2

= u = −7, j2
= −1/7,

E× ↪→ GL2(Q), a + bi 7→
(

a −2b
−bu/2 a

)
.

In particular, for any finite place p of Q, the induced embedding E×p ↪→ GL2(Qp)

makes

K0,p :=


GL2(Zp) if p 6= 7,{(

a b
c d

)
∈ GL2(Z7) : c ∈ 7Z7

}
if p = 7

an optimal compact open subgroup (in the sense of Gross [G88, Proposition 3.2])
with respect to χ 3+2l

can , which is unramified at v - 7 and has conductor 1 at v | 7.
By [GP91, Proposition 2.3], since χ 2

can is unramified at every place p of Q, a
Hecke eigenform with respect to the above compact open subgroup of GL2(AQ)

is locally (up to a scalar) the Gross–Prasad test vector. By Waldspurger,∫
[E×]

θφ′l (χ
2
canξ)(g) · χ

3+2l
can (g) dg 6= 0 ⇐⇒ L

(
BC(πχ2

can
)⊗ χ 3+2l

can ,
1
2

)
6= 0.

Combining this with Theorems 6.17, 8.2, and 8.3, we obtain the following
corollary.

COROLLARY 9.1. Let B ′ = B{7,∞} denote the definite quaternion algebra over Q
ramified at exactly 7 and∞. Define

f (l)
χ2

can
:= θφ′l (χ

2
canξ), f B ′

χ3+2l
can
:= θ ′

φ′l
(χ 3+2l

can ξ ′).
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Then, we have the following:

(a) π−l
· f (l)

χ2
can

is an algebraic Hecke eigenform of weight 3+ 2l in πχ2
can

.

(b) f B ′

χ3+2l
can

is an automorphic form in the Jacquet–Langlands transfer π B ′

χ3+2l
can

.

(c) There is an identity of torus periods∫
[E×]

f (l)
χ2

can
(g) · χ 3+2l

can (g) dg =
∫
[E×]

χ 2
can(g) · f B ′

χ3+2l
can
(g) dg,

nonzero if and only if the central value L(BC(πχ2
can
) ⊗ χ 3+2l

can , 1
2 ) is

nonvanishing.

Note in particular that if L(BC(πχ2
can
)⊗ χ 3+2l

can ) 6= 0, then the automorphic form
f B ′

χ3+2l
can

on the definite quaternion algebra B ′ is a test vector for the Waldspurger

torus period for the cuspidal representation π B ′

χ3+2l
can

paired with χ 2
can.

Acknowledgements

I would like to thank my advisor Kartik Prasanna for introducing me to this
area of research and Atsushi Ichino for many helpful conversations. A further
thank you goes to both Kartik and Atsushi for sharing their impeccably written
preprints with me at an early stage. This work was partially supported by NSF
grants DMS-0943832, DMS-1160720, and DMS-1802905.

Conflict of Interest: The author declares that there is no conflict of interest.

References

[BDP13] M. Bertolini, H. Darmon and K. Prasanna, ‘Generalized Heegner cycles and p-adic
Rankin L-series. With an appendix by Brian Conrad’, Duke Math. J. 162(6) (2013),
1033–1148.

[Ca73] W. Casselman, ‘On some results of Atkin and Lehner’, Math. Ann. 201 (1973), 301–314.
[Ch18] C. Chan, ‘Period identities of CM forms on quaternion algebras’, PhD Thesis, University

of Michigan, 2018.
[Co18] D. Collins, ‘Numerical computation of Petersson inner products and q-expansions’,

Preprint, 2018, arXiv:1802.09740.
[GI14] W. T. Gan and A. Ichino, ‘Formal degrees and local theta correspondence’, Invent. Math.

195(3) (2014), 509–672.
[GQT] W. T. Gan, Y. Qiu and S. Takeda, ‘The regularized Siegel–Weil formula (the second term

identity) and the Rallis inner product formula’, Invent. Math. 198(3) (2014), 739–831.

https://doi.org/10.1017/fms.2020.21 Published online by Cambridge University Press

http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
http://www.arxiv.org/abs/1802.09740
https://doi.org/10.1017/fms.2020.21


C. Chan 74

[G88] B. Gross, ‘Local orders, root numbers, and modular curves’, Amer. J. Math. 110 (1988),
1153–1182.

[GP91] B. Gross and D. Prasad, ‘Test vectors for linear forms’, Math. Ann. 291(2) (1991),
343–355.

[HKS96] M. Harris, S. Kudla and W. Sweet, ‘Theta dichotomy for unitary groups’, J. Amer. Math.
Soc. 9(4) (1996), 941–1004.

[H81] H. Hida, ‘Congruence of cusp forms and special values of their zeta functions’, Invent.
Math. 63(2) (1981), 225–261.

[IP18+] A. Ichino and K. Prasanna, ‘Periods of quaternionic Shimura varieties’, Mem. Amer.
Math. Soc, to appear.

[IP18++] A. Ichino and K. Prasanna, ‘Periods of quaternionic Shimura varieties, II’, Preprint,
2020.

[JL] H. Jacquet and R. Langlands, Automorphic Forms for GL2, Lecture Notes in
Mathematics, 114 (Springer, Berlin, New York, 1970), vii + 548.

[K94] S. Kudla, ‘Splitting metaplectic covers of dual reductive pairs’, Israel J. Math. 87(1–3)
(1994), 361–401.

[KS97] S. Kudla and W. Sweet, ‘Degenerate principal series representations for U (n, n)’,
Israel J. Math. 98 (1997), 253–306.

[LR05] E. M. Lapid and S. Rallis, ‘On the local factors of representations of classical groups’, in
Automorphic Representations, L-Functions and Applications: Progress and Prospects,
Ohio State University Mathematics Research Institute, 11 (de Gruyter, Berlin, 2005),
309–359.
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