The purpose of this note is to present a short proof for the following theorem.

THEOREM. Let A and B be two complex $m \times n$ matrices. If $B^*A = 0$ and $AB^* = 0$ then rank(A + B) = rank(A) + rank(B).

<u>Proof.</u> Let A^{\dagger} and B^{\dagger} be the generalized inverses of A and B, respectively, in the sense of Penrose [1]. Now,

 $B^*A = 0 \Rightarrow (B^*B)^{\dagger}B^*A = 0 \Rightarrow B^{\dagger}A = 0$ $B^*A = 0 \Rightarrow A^*B = 0$ $AB^* = 0 \Rightarrow AB^*(BB^*)^{\dagger} = 0 \Rightarrow AB^{\dagger} = 0$ $AB^* = 0 \Rightarrow BA^* = 0 \Rightarrow BA^*(AA^*)^{\dagger} = 0 \Rightarrow BA^{\dagger} = 0.$

Using these together with the fact that $A^*AA^{\dagger} = A^*$, we may write

$$\begin{bmatrix} A^* \\ BB^{\dagger} \end{bmatrix} \quad (A + B) \quad [A^{\dagger} \qquad B^{\dagger}B] = \begin{bmatrix} A^* & 0 \\ 0 & B \end{bmatrix} .$$

Therefore, $rank(A) + rank(B) = rank(A^*) + rank(B) = rank \begin{bmatrix} A^* & 0 \\ 0 & B \end{bmatrix} \leq rank(A + B).$

Since it is always true that $rank(A + B) \leq rank(A) + rank(B)$, we have rank(A + B) = rank(A) + rank(B).

REFERENCE

 R. Penrose, A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1955) 406-413.

North Carolina State University

508