C.D. Meyer

The purpose of this note is to present a short proof for the following theorem.

THEOREM. Let A and B be two complex $m \times n$ matrices. If $B * A=0$ and $A B *=0$ then $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$.

Proof. Let A^{\dagger} and B^{\dagger} be the generalized inverses of A and B, respectively, in the sense of Penrose [1]. Now,

$$
\begin{aligned}
& \mathrm{B}^{*} \mathrm{~A}=0 \Rightarrow\left(\mathrm{~B}^{*} \mathrm{~B}\right)^{\dagger} \mathrm{B}^{*} \mathrm{~A}=0 \Rightarrow \mathrm{~B}^{\dagger} \mathrm{A}=0 \\
& \mathrm{~B}^{*} \mathrm{~A}=0 \Rightarrow \mathrm{~A}^{*} \mathrm{~B}=0 \\
& \mathrm{AB}=0 \Rightarrow \mathrm{AB} *\left(\mathrm{BB}{ }^{*}\right)^{\dagger}=0 \Rightarrow \mathrm{AB}^{\dagger}=0 \\
& \mathrm{AB}=0 \Rightarrow \mathrm{BA}^{*}=0 \Rightarrow \mathrm{BA}^{*}\left(\mathrm{AA} A^{*}\right)^{\dagger}=0 \Rightarrow \mathrm{BA}^{\dagger}=0
\end{aligned}
$$

Using the se together with the fact that $A^{*} A A^{\dagger}=A^{*}$, we may write

$$
\left[\begin{array}{l}
\mathrm{A}^{*} \\
\mathrm{BB}^{\dagger}
\end{array}\right] \quad(\mathrm{A}+\mathrm{B}) \quad\left[\mathrm{A}^{\dagger} \quad \mathrm{B}^{\dagger} \mathrm{B}\right]=\left[\begin{array}{cc}
\mathrm{A}^{*} & 0 \\
0 & \mathrm{~B}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Therefore, } \\
& \qquad \operatorname{rank}(A)+\operatorname{rank}(B)=\operatorname{rank}\left(A^{*}\right)+\operatorname{rank}(B)=\operatorname{rank}\left[\begin{array}{cc}
A^{*} & 0 \\
0 & B
\end{array}\right] \leq \operatorname{rank}(A+B)
\end{aligned}
$$

Since it is always true that $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$, we have $\operatorname{rank}(A+B)=\operatorname{rank}(A)+\operatorname{rank}(B)$.

REFERENCE

1. R. Penrose, A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51 (1955) 406-413.

North Carolina State University

