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On the stability of impulsively

perturbed differential systems

S.G. Pandit

This paper deals with the study of uniform asymptotic stability

of the measure differential system Dx = F(t, x) + G(t, x)Du ,

where the symbol D stands for the derivative in the sense of

distributions. The system is viewed as a perturbed system of the

ordinary differential system x' = Fit, x) , where the

perturbation term Git, x)Du is impulsive and the state of the

system changes suddenly at the points of discontinuity of u .

It is shown, under certain conditions, that the uniform asymptotic

stability property of the unperturbed system is shared by the

perturbed system. To do this, the well-known Gronwall integral

inequality is generalized so as to be applicable to Lebesgue-

Stieltjes integrals.

1. Introduction

For any vector a; = (a;, , . .., x ) ( JT , let

Denote by C[X, R~\ , the class of all continuous mappings from X into

fP . Let J = [t , <*>) , tQ 2 0 . We consider the following measure

differential equation [4]:
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424 S . G . P a n d i t

(1.1) Dx = Fit, x) + Git, x)Du ,

where x (. H , Du denotes the distributional derivative of the function

u F, G € C[jXtf , 1^2 , and u : J •* R is a right-continuous function of
bounded variation on every compact subinterval of J . Here Du can be
identified with a Stieltjes measure and has the effect of instantaneously
changing the state of the system at the points of discontinuity of u (.
Equation ( l . l ) arises in several ways. For example, when Fit, x) = Ax ,

oo

Git, x) = 1 , and uit) = u At) + £ a, 6 [t-t.) , where A is an n x n

k=l K K

constant matrix, u. it) i s a locally integrable function, a. € a , and

6 ( t - t , ) i s the Dirac function, system ( l . l ) may be regarded as a l ink in

an automatic control chain transmitting the distr ibution associated with

the function u . System ( l . l ) may also be t reated as a perturbed system

of the ordinary d i f ferent ia l system

(1.2) x' = Fit, x) (' = d/dt) ,

where the perturbation Git, x)Du is impulsive [4, 6]- In this latter set

up, it is natural to ask: under what conditions are the stability

properties of (1.2) shared by the solutions of (l.l)? As pointed out in

[4, 6 ] , it is difficult to get a satisfactory answer to this question. It

may be so because differential and integral inequalities play a crucial

role in the stability theory. But the fact that the solutions of (l.l)

are discontinuous renders the existing differential inequalities

unapplicable, and the integral inequalities for' Stieltjes integrals are

not available.

The purpose of this paper is to obtain an integral inequality of

Gronwall type involving Lebesgue-Stieltjes integrals and apply it to

investigate a stability property of solutions of (l.l) with respect to the

solutions of (1.2).

We use the following lemmas in our subsequent discussion.

LEMMA 1.1 [3, p. 19]. Let x and K be scalar nonnegative

functions defined and integrable on [a, b] . Then, for any nonnegative

constant c , the inequality
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r
>a

implies

I*
x(£) < c + K(s)x(s)ds , t $ [a, b] ,

x(t) S e.exp K{s)ds\ , t € [a, b] .

LEMMA 1.2. Let (X, M, g) i>e a finite measure space and {E } be a

fl E .

n=l J

Let x ( t ) = x ( t , t Q , xQ) and j / ( t ) =z / ( t , t_ , x J be solutions of

(1.2) and (l.l) respectively, through [tQ, xfl) existing on the right of

tQ > 0 in sir) , where sir) = {x € i1 : \x\ S r] .

DEFINITION [3, p. 51]. The null solution of (l.l) is said to be

uniformly asymptotically stable if the following two conditions hold:

(i) for each e > 0 , there is a 6 = 6(e) > 0 such that if

\y(t')\ < 6 for some t' > tQ then \y(t)\ < e for all

t > t' ;

(ii) there is a &„ > 0 , and, for each £ > 0 , a corresponding

T = T(c) > 0 such that if |j/(t')| < 6 for some t' 2 tQ

then \y(t)\ < e for all t > t' + T .

Z. Main theorem

Since u i s of bounded variation on J , i t s discontinuit ies may be

enumerated as t < £„ < . . . . u has a canonical representation

u = w, + Up where M i s an absolutely continuous function of bounded

variation and Up is a sum of jump functions, the jumps being those of

u • I t follows that u' exis ts and i s equal to u' almost everywhere on

J . Let X. = u[t,) - w(tii-) denote the jump of u a t t = i , ,

k = 1, 2, . . . . In the following, a l l functions of one variable wi l l be

assumed to be defined, real-valued, and measurable on J . We ca l l such a
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426 S . G . P a n d i t

function w{t) locally du-integrable on J if, for each t £ J , i ts

i:Lebesgue-Stieltjes integral | w(s)du(.s) is finite.

*0

THEOREM 2.1. Suppose that

(i) x and f are non-negative functions, locally du-

integrable on J ;

(ii) u is a right-continuous function of bounded variation on

J and u! is non-negative and integrable on J ;

(iii) the discontinuities t, , k = 1, 2, . . . , of u are

isolated and are such that

(2.1) Xkf(tfe) < 1

for each k 2; 1 ; the series

(2.2) ^ | XjfltJ

converges absolutely.

Then for any positive constant c , the inequality

(2.3) x{t) 2 c + f[s)x{s)du{s) , t € J ,

implies

(2.U) x(t) S P^.c.explf f(s)w'(s)ds| , t € J ,

00

(2.5) P =TT {l-X/(tk)} •

Proof. Denote the quantity on the right side of (2.3) by r(t)

Then, for t = t , we have
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A
*(* ) = a + /(s)a:(s)du(e)

f /(s)ar(s)<iu(s) + f f(s)x(s)du{s) ,
>t. it -e

= e +

where e > 0 i s arbi t rary . Since u is absolutely continuous on

[tQ, t.-e] , the discontinuit ies being isolated, by Lemma 1.1 we obtain

*1 H
(2.6) r[t^) £ e.expjj f(s)u^is)ds) + [ f(s)x(s)du{s) .

'o • "i~€

We prove that

t.
f 1

(2.7) f(s)x(s)du(s) = X1/(*1)x(t1) .

Consider the measure p defined by

f(s)x(s)du(s) .

Let {a } be a decreasing sequence of positive real numbers tending to

zero and E = ft, - a , t ] . Then E r> Eo r> ... and fl E = {t } . By

Lemma 1.2, u ( t f j ^ P l i ^ } ) = ^ / ( ^ J ^ f * ! ) • T11113 ( 2 -T ) i s e s t a b l i s h e d .

Letting e •* 0+ in (2.6) and using (2.1) and the fact that x(*1) < P ( * 0

we obtain

t j SP^.e.expff /(s)wj(s)cfsj ,

where

Assume
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t
m

£ P^.c.expfj m f(s)u[(s)ds\

for some integer m > 1 • Then

which, as before, gives

h*, J

- l {(tm+1 ^
5 P^.c.explj f(s)u^s)ds\ .

Therefore, by induction, it follows that

) j = 1, 2,
t.

(2.8) xft,l £ At.) £ P, .e.exp /(S)M'

By hypothesis (Hi) , we observe that P, , £ Pj, for each k and that

lim P, = P . Hence (2.8) can be written as

(2.9) x[t-h] - p~ .e.exp /(s)w'(s)ds , k = 1, 2, . . . ,

*0

so that (2.U) is verified at all points of discontinuity of u • Finally,

if t is any point of continuity of u , then t € (t, , , t.) for some

& 5 1 . In this case, we have

x(t) £ r{t ) + f /(s)a;

Since u is absolutely continuous on [t. . , t] , we may apply Lemma 1.1

along with (2.9) to obtain the desired conclusion. This completes the

proof.
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COROLLARY 2.1. Under the conditions of Theorem 2.1, if g is a
non-negative funartcn defined and integrable on J , then the inequality

{t ,t
x(t) 5 a + j g(s)x(s)ds + j f(s)x(s)du(s) , t f J ,

implies

1 (f* 1
x(t) < P .a.explj {g{shf{s)u'1(s)}ds\ s t 6 J .

REMARK 2.1. If u(t) = u At) = t , then A, = 0 for each ft , so

that P = 1 and Iheorem 2.1 reduces to Lemma 1.1.

As an illustration of Theorem 2.1, consider the inequality

x(t) 5 a + I s'3x(s)du(s) , t > 1 ,

where

, k = 2, 3, ... .

;=1

Here X , the characteristic function of the set A , is defined as

XAt) = 1 if t ( A and equal to zero otherwise. It is easily seen that

u is discontinuous at t, = k , k = 2, 3, ... ; A, = k ,

00

\f{tA = k~2 < 1 for each k 2 2 ; P = TT (l-k~2) = % . Estimate {2.K

gives

3. A stability result

In this section, we obtain sufficient conditions for uniform

asymptotic stability of ( l . l ) in the light of (1.2). I t is known [43,

that the function y(t) is a solution of ( l . l ) through [t , ar j if and

only if i t is a solution of the integral equation
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rt rt
y{t) = xQ + I F{s, y(s))ds + I G[s, y(s))du(s) , t 6 J .

t0 t0

Let F(t, 0) E 0 . We assume that

Hi. F satisfies a Lipschitz condition of the type

\F{t, x)-F(t, y)\ S a(t)\x-y\ , f o r | x | , \y\ 5 a , a > 0 ,

where a(t) is a non-negative function, dy-integrat>le on J . Here u(t)

is the total variation of u{t) on the interval [t , t\ .

H2 • There exists r > 0 such that if \x\ 5 r , then

\G(t, x)\ 5 $(t)\x\ , f o r a l l t 2 t Q ,

where 8(£) i s a non-negative function, dy-integral)le on J . Further,

l e t Xfee(tfe) < 1 , k = 1, 2 , . . . , where Xfe = u(tfe) - v[tk~) , and l e t the

00

series V X,6(*,) converge absolutely.
k=l " "

THEOREM 3.1. Let the null solution of (1.2) be uniformly

asymptotically stable. Suppose that

(i) hypotheses Hi and H2 hold,

(ii) the function v' is non-negative and integrable on J ,

where v = v + v is the canonical decomposition of v ,

(iii) f $(s)dv(s) = L < °° , { c t ( s ) + B ( s ) v ' ( s ) } = M < «> .
Jto Jto

Then there exists 6 > 0 such that if t' 2: t and \x{t')\ < 6 ,

the solution y(t) of ( l . l ) satisfies \y{t)\ -*• 0 a s i -• °» . Iw

particular if G{t, 0) i 0 , then the null solution of ( l . l ) is uniformly

asymptotically stable.

Proof. Following the notation in [6], the constants associated with

(1.2) regarding the stability of the null solution shall be starred whereas

those associated with ( l . l ) shall not be. Without loss of generality, we

may assume that r 2 a - 6* . Let |x | < r . Then we have
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rV rV

\y(t)~x(t)\ < I a(s)\y{s)-x(s)\ds + &(s)\y(s)\dv(s)

rt rt

5 I &(s)\x(s)\dv(s) + a(s)|i/(s)-a:(s)|ds

J!+

Now v(t) is a right-continuous function of bounded variation on J and

its discontinuities are the same as those of u(t) . Invoking Corollary

2.1, we obtain

(3.1) \y{t)-x{t)\ 5 cP~XIM ,

where c = sup \x(t)\ . Let 0 < E < r . Choose 6 = 6(e) = 6*(e/2)

so that 0 < 6 < e . Let t ' 2 t be so large that a <

whenever |arQ[ < 6* . Then from (3 .1) , i t follows that

\ y { t ) \ 5 \ y ( t ) - x ( t ) \ + \ x ( t ) \

< 6/2 + e/2 < e ,

whenever |xQ| < 6 . Hence, if G(t, 0) = 0 , we have shown that the null

solution of (l.l) is uniformly stable. The rest follows from (3.1) and the

fact that |x(t)| -»• 0 as t -»•<».

REMARKS 3.I. In [4, Theorem 2 ] , a result on quasi-equiasymptotic

stability of the null solution of (l.l) is proved by using Lyapunov

functions, in which a stronger type of stability (namely, exponential

asymptotic stability) on the null solution of (1.2) is assumed. Further,

it is assumed that |A, | 5 as , a, a > 0 and a sufficiently

small, which means that the jumps ultimately die down to zero. Our

conclusions are stronger under considerably weaker conditions. This is

perhaps a consequence of Theorem 2.1.

Theorem 2.1 finds many other useful applications. For example, for

the special case
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(3.2) Dx = Ax + Jit, x) + G(t, x)Du ,

where A is an n x n constant matrix and F € C|jXff", i?" | , Theorem 4.1

in [6] and similar results in [ ) , 2 , 7] can be generalized. I t is also

possible to obtain the bounded region for the solutions and the region of

attraction for the stable solutions of ( l . l ) . We omit the details (see

[5] ) .
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