
AXIOMS FOR ELLIPTIC GEOMETRY 

DAVID GANS 

Introduction. Until recently the literature contained little on the axiomatic 
foundations of elliptic geometry that was non-analytical and independent of 
projective geometry. During the past decade this subject has come in for further 
study, notably by Busemann [2] and Blumenthal [1], who supplied such foun­
dations. This paper presents another and, it is believed, simpler effort in the 
same general direction, proceeding by the familiar synthetic methods of ele­
mentary geometry and using only elementary topological notions and ideas 
concerning metric spaces. Specifically, elliptic 2-space is obtained on the basis 
of six axioms, most notable of which is one assuming the existence of translations. 
The writer wishes to express his deep appreciation to Herbert Busemann for 
his invaluable help. 

I. SOME BASIC TERMS AND NOTATIONS 

Small letters always denote points. The distance between two points a,b of 
any metric space is denoted by ab or ba. A point c is said to be between points 
a,b (denoted by acb or bca) if c ^ a or b and ac + cb = ab, and is said to be a 
midpoint of a and b (denoted by c = mid(a,b) ) if, moreover, ac = cb. An arc, a 
simple arc, and a geodesic arc mean, respectively, a continuous, a topological, 
and a congruent map of a closed Euclidean segment; a simple closed curve 
means the homeomorph of a Euclidean circle. An arc or geodesic arc with 
endpoints a,b is said to lie between a and b, and is denoted by (ab) or [ab], re­
spectively. When no confusion can arise "geodesic arc" is often shortened to 
"arc", as in the phrase "the arc [ab\\ In the interest of clarity of presentation 
and ease of reference, as well as to offer brief proofs, the number of theorems 
used has been large. Each theorem, when first stated, is denoted merely by an 
Arabic numeral, the word "Theorem" being omitted. Some proofs are not given. 

II. GEODESIC ARCS AND STRAIGHT LINES 

AXIOM 1. 2 is a compact metric space with at least two points. 

2 is then bounded, and the function xy, where x and y are arbitrary points of 
2, has a maximum. We take this maximum as unit distance, calling points a 
and b conjugate if ab = 1. 

AXIOM 2. Any distinct points a,b have just one midpoint if non-conjugate, 
just two if conjugate. 

1. If abc, then a and b have a unique midpoint, and likewise for b and c. 
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2 is convex by Axiom 2, i.e., there is a point between each two points. From 
Menger [4] we then infer Theorems 2 to 4; Theorem 5 is immediate; Theorem 6 
follows from Theorem 1, Menger [4], and Axiom 1. 

2. There exists a geodesic arc between any two distinct points. 

3 . An arc (ab) is a geodesic arc if and only if its length equals ab, or if it is the 
shortest arc between a and b. 

4. The geodesic arcs [ab] are distinguished among all the arcs (ab) by the property 
that if p,q are inner points of [ab], then apq or qpb or p = q. 

5. If p is an inner point of [ab], then apb. 

6. There is just one geodesic arc between two non-conjugate points, just two 
between two conjugate points. 

7. If ab = 1 the two geodesic arcs [ab] have only a and b in common. 

8. If p,q are inner points of [ab], and apq, then pqb. 

9. If abc, then there is only one arc [ab] and one arc [be], [ab] -\- [be] is an arc 
[ac], and b is an inner point of an arc [ac]. 

A X I O M 3a. If abc and abd, then either c = d or bed or cbd. 

b. If abc and bed, where ab + be + cd < 1, then abd. 

A X I O M 4. If c is a midpoint of a and b, then a point d exists such that 
cd = 1, cad, and cbd. 

10. If abc and abd, then either c — d; or acd, bed; or adc, bdc. 

Proof. Menger showed tha t abc, abd, acd imply bed [4, p. 107]. Similarly 
one can easily show tha t abc, abd, bed imply acd. Now assume abc and abd. 
Then either c = d or bed or bdc by Axiom 3a. If bed, then acd by the proposition 
stated two sentences back. If bdc, then adc, as can be seen by interchanging c 
and d in the proposition stated in the first sentence. 

11. The point d described in Axiom 4 -is unique. 

Proof. Assume d' is another point having the same properties as d. Then 
cd' = 1, cad', and cbd'. Since cad and cad' we infer by Theorem 10 tha t either 
d = d'; or edd', add'; or cd'd, ad'd. Now odd1 means tha t cd + dd- = cd', 
where c,d,d' are all distinct, and this is impossible since cd = cd' = 1. Likewise 
cd'd is impossible. Hence d — d'. 

D E F I N I T I O N 1. Let a,b be any distinct points, c = mid(a,b), and d the unique 
point such tha t cd = 1, cad, and cbd. The point-set consisting of c, d, and all 
points between c and d is called a straight line (or line) determined by a and b. 

12. A unique straight line is determined by any two distinct points a and b, this 
straight line being denoted by -ab-. Every straight line is a simple closed curve of 
length 2. 
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Proof. If ab < \,a and b have a unique midpoint c and hence determine a 
unique line. If d is the point such tha t cd — 1, cad, and cbd, it follows from 
Theorems 7 and 9 tha t this line is the simple closed curve of length 2 formed by 
the two arcs [cd]. If ab = 1, let c' = mid(a,b) and d' be the point such tha t 
c'd! = 1, dad', and c'bd'. As above, a and b determine a line consisting of the 
two arcs [cfdf]. Now ad' = J since ac' = J, c'd' = 1, and c'ad'. Likewise 
bd' = \. Hence 

ad + db = 1 = ab, 

so tha t d' = mid (a,6). By Theorem 9, [ad'] + [d'b] is a geodesic arc between 
a and &, obviously not the geodesic arc between a and b which contains r . 
Hence the line under discussion consists of the two arcs [ab]. If now we let clf 

be the second midpoint of a,b and d" the point such tha t c"d" = 1, c,fadn', and 
c"bd", then a and & will determine a line formed by the two arcs [c"d"\ But , 
as above, this line also consists of the two arcs [ab], and it is clear t ha t c" = df 

and c' = d". Hence a and b determine a unique line, which is again a simple 
closed curve of length 2. 

13. Every straight line is congruent to a Euclidean circle of length 2. 

Proof. Let ab = 1. Then, as shown in the proof of Theorem 12, -ab-
consists of the two arcs [cd], where c = mid(a,b) and d is the unique point such 
tha t cd = 1, cad, and cbd. We take a Euclidean circle K of length 2, map #,& 
on any two antipodal points A,B of K, and c,d on C,D, the midpoints of A,By 

then map geodesic arcs [cad], [cbd] congruently on semicircles CAD, CBD, re­
spectively. Now if p,q be any distinct points of -ab-, and P,Q their corresponding 
points of K, we must show tha t pa = PQ, where PQ denotes the length of the 
shorter of the two arcs into which P and Q divide K. Since a,b,c,d divide -ab-
into four equal quadrants , with a,b the midpoints of c,d, and vice versa, it is easy 
to see tha t pq — PQ if p and q are in the same quadrant or in adjacent quadrants . 
But suppose p,q are interior points of opposite quadrants , e.g., let ape and bqd. 
Then 

(pc + cb + bq) + {pa + ad + dq) = 2, 

so tha t a t least one expression in parentheses, say the first, does not exceed 1. 
Then pc + cb + bq < 1 . Also />d? and cfo?. Hence />cg by Axiom 3b, so tha t 
pc + cq = pq < 1. Since P C = £c, CQ = cq we see tha t PC + CÇ < 1. 
Hence PQ = PC + CQ = pq. 

Now let ab < 1. Again -a&- consists of the two arcs [cd], as above, and we 
map geodesic arcs [cad], [cbd] congruently on semicircles CAD, CBD, re­
spectively. Let e,f be the midpoints of c,d, chosen so tha t eac and /'be. Thus we 
have eac, acb, and ea + ac + cb < 1, from which we infer eaô by Axiom 3b. 
Then eac, eab, acb permit us to infer ecb by Theorem 10. Now ecb, cbf, and 
ec + cb + bf = 1 imply ecf by Axiom 3b, and from this we infer ebf by Theorem 
10. Hence ef = ec + c/ = 1, and we infer by Theorem 3 tha t ec/ is a geodesic 
arc between e a n d / . Also, since ed + df = 1 = ef we infer tha t (ed/) is a geodesic 
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arc between e and / . Thus c and d are the midpoints of e and / , as well as vice 
versa, so t ha t the proof of the congruence of -ab- and K is just like tha t in the 
case ab = 1 except tha t now we use e a n d / instead of a and b. 

14. If -ab- is any straight line and p,q are any distinct points of -ab-, then each 
arc [pq] is contained in -ab-. 

Proof. I t follows from previous discussions tha t each arc on -ab- of length 
< 1 is a geodesic arc. There are two arcs (pq) on -ab-. If they are of equal 
length, each has length 1 and hence is a geodesic arc ; in this case pq = 1 and 
-ab- consists of the two arcs [pq]. If the two arcs (pq) are unequal in length, only 
the shorter is a geodesic arc since its length is less than 1 ; in this case pq < 1, 
there is jus t one arc [pq], and -ab- contains it. 

15. If -ab- is any straight line and p,q are any distinct points of -ab-, then 
-pq- = -ab-. 

Proof. Let pq = 1. Then, as shown in the proof of Theorem 12, -pq-
consists of the two arcs [pq]. In the proof of Theorem 14 we saw tha t -ab- also 
consists of these two arcs. Hence -ab- — -pq-. Now let pq < 1. Then 
[pq] C -oh- by Theorem 14, so tha t also r C -oh-, where r = mid(p,q). Let d 
be the unique point such tha t rd = 1, rpd, and rqd. Then, as shown in the proof 
of Theorem 12, -pq- consists of the two arcs [rd]. Now let 5 be the point of -ab-
antipodal to r. Then rs — 1, rps, and rqs. I t follows from Theorem 11 t ha t 
d = s. Hence -pq- consists of the two arcs [rs]. But , by the proof of Theorem 
14, -ab- also consists of these two arcs. Hence -ab- = -pq-. 

Combining Theorems 12 and 15 we get : 

16. Any two distinct points are on a unique straight line. 

I I I . O U R SPACE 2 AND THE S. L. SPACES OF B U S E M A N N 

An S. L. space (straight line space) is defined as one satisfying the following 
five axioms [2]: 

A. I t is metric. 
B. I t is finitely compact. 
C. I t is convex. 
D. Each point p has an TV-neighborhood xp < p, p < 0, such t ha t for any 

distinct points a,b of N and each e > 0 there is a positive 8(a,b,e) < e for which a 
unique point bff exists such tha t bba = a and abb^. 

E. Any two distinct points are on, a t most, one geodesic (a geodesic is a 
locally congruent map of the real axis, and hence is not a geodesic arc). 

Clearly 2 has properties A, B, C. T o show it has property D , let p be any 
point and let p < §. If a,b are distinct points in this p-neighborhood of p, then 
ab < ap + pb < 1. Let a,c divide -ab- into equal geodesic arcs. Then b divides 
one of these arcs into arcs [ab] and [be], and also abc. Let x be a point such tha t 
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abx. Then abc and abx, so that c = x; or acx, bcx; or axe, bxc by Theorem 10. 
Sinceac—\, acx is impossible, so that x is on the unique arc [be] by Theorem 9. 
For every positive ô less than be and e there is, of course, a unique point x on 
[be] such that bx = d. Thus 2 has property D. To show that 2 has property 
E we first note that any line -ab- is a geodesic since each point of -ab- has a 
neighborhood on -ab- which is a geodesic arc. Conversely, if G is any geodesic 
in 2 it contains two distinct points a,b such that an arc [ab] is contained in G. 
Now a,b determine -ab-, which also contains this arc [ab]. Thus -ab-, a geodesic, 
and G, also a geodesic, both contain [ab]. But in a space with properties A, B, 
C, D a unique geodesic contains a given geodesic arc [2, p. 21]. Hence G = -ab-. 
It then follows by Theorem 16 that 2 has property E. We have thus proved: 

17. 2 is an S. L. space, its straight lines and geodesies being identical. 

Wishing to confine ourselves to plane geometry we assume: 

AXIOM 5. 2 is two-dimensional in the sense of Menger-Urysohn. 

Since 2 is a two-dimensional S. L. space whose geodesies are all simple closed 
curves, we can infer the following [2, pp. 79, 81]: 

18. 2 is a projective plane and each two of its straight lines meet in a unique 
point. 

19. If p and L are any point and line of 2, respectively, where p Çf L, and S 
is the set of all points on the lines joining p to each point of L, then 5 = 2 . 

IV. MOTIONS AND TRANSLATIONS 

DEFINITION 2. A motion M is a single-valued, distance-preserving transfor­
mation of 2 into itself. M(afi) = a , ft means that M sends subsets a,fi into 
subsets a',ft, respectively. We say a is fixed under M if a = a. A sequence of 
motions Mn converges to a motion M if Mn(x) —> M(x) as n •—> oo for each point 
x of 2. (The existence of motions other than the identity is assumed later.) 

20. Motions are topological transformations, the set of all motions forming a 
group. 

21. Any infinite sequence of motions has a convergent subsequence. 

Proof. If, for an infinite sequence of motions Mn of a finitely compact 
metric space, a point b exists for which the set {Mn(b)\ is bounded, then M„ 
contains a convergent subsequence [2, p. 177]. 2 is finitely compact and 
bounded. Hence [Mn(b)}, b being arbitrary, is bounded. The theorem then 
follows. 

22. Each motion sends between-points into between-points, midpoints into mid­
points, conjugate points into conjugate points, geodesic arcs into geodesic arcs, and 
straight lines into straight lines. 
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To arrive a t our definition of a translation let us suppose tha t a motion M has a 
fixed line L (the existence of motions with fixed lines is formally assumed later). 
If [ab] C L and M{a,b) = a',6', then M ([ai]) = [a'V] C i . Since L is congru­
ent to a Euclidean circle and I f preserves distance on L, it follows tha t if the 
oriented geodesic arcs [ab], [a'b'\ have the same sense so will each oriented geode­
sic arc [xy] of L and its transform [xfyf] = M([xy]) have the same sense, whereas 
if Jab], [a'V] have unlike senses so will [xy], [x'y'] have unlike senses. Thus 
M is either sense-preserving or sense-reversing on L. 

D E F I N I T I O N 3. A translation (of 2) along a line is a motion of 2 leaving tha t 
line fixed and preserving sense on it. (The existence of translations is assumed 
later.) 

23. The set of all translations along the same line forms a group. 

24. Each infinite sequence of translations along the same line has a subsequence 
converging to a translation along that line. 

Proof. If L is the line, each infinite sequence of translations along L has a 
subsequence Tn converging to a motion T by Theorem 21. For any point p of 
L let T{p) = p', Tn(p) = pn. Then pn C L, and pn—>pf when n—>c°. Line Z, 
being a closed set, p' C X, t ha t is, T(L) = L. If g C £ , where 0 < /># < 1, let 
T(g) = g7, ^w(ç) = Qn> Then qn—*qf- Since [ ^ ] , [ ^ n ] have the same 
sense, [p'qr] has this same sense. T must then preserve sense for all geodesic 
arcs of L, and hence be a translation along L. 

25. A translation along a line leaving a point of that line fixed leaves each point 
of the line fixed. 

26. A translation leaving fixed each of two non-conjugate points leaves fixed each 
point of their line. 

D E F I N I T I O N 4. Distinct translations S, T along the same line are called 
equivalent along the line if S(x) = T(x) for each point x of the line. 

27. Distinct translations S, T along the same line are equivalent along the line if a 
point p exists on the line so that S(p) = T(p). 

Proof. Let L be the line, x any point of it, S(p,x) = q,x', and T(x) = x". 
Then TS~~l{q,x') = q,x", the translation T being applied second. TS~l leaves 
each point of L fixed by Theorems 23, 25. Hence x' = x". 

28. Every motion {and hence every translation) has at least one fixed point. 

Proof. A motion being a continuous mapping and S being a projective 
plane, the assertion follows from the fact tha t a continuous mapping of a pro­
jective plane into itself has a fixed point [3, p. 80]. 

29. A translation along a line having no fixed point on that line has one fixed 
point all told. 
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Proof. Let T and L be the translation and line, respectively. A point a 
exists so tha t T(a) = a. Let b 9e a, T(b) = b. Then T(-ab-, L) = -ab-, L by 
Theorem 22. Let -ab-, L meet in c. Then JT(C) = c, which contradicts the 
hypothesis. 

AXIOM 6. Distinct lines G, H exist, each with the property tha t if a, b are any 
points on it (not necessarily distinct), there are exactly two distinct translations 
along it sending a into b. 

30. There is just one translation along G other than the identity leaving each 
point of G fixed. 

This translation is denoted by R, the identity by I. (A corresponding as­
sertion, of course, holds for H. For brevity we shall usually state things only 
in terms of G.) 

31 . If Sj T are equivalent translations along G, then S2 = T2 and ST = TS. 
Furthermore, TS"1 = S~1T = R. 

Proof Let S(p) = T(p) = g, where p C G. Then T~lS(p) = p. Hence 
T~lS, a translation along G, leaves each point of G fixed. Suppose T~XS = I. 
Then 

TiT-'S) = TI = T, 

so tha t (7" r _ 1 )5 = T, or IS = T, and finally S = T, which is a contradiction. 
Hence T~1S = R. Likewise 

TS~' = 5 _ 1 r = ST'1 = £ . 

From ST~X = S~1T and 5 T - 1 = T_1S, respectively, we get S2 = T2 and 

sr = TS. 
32. 7 / 5 , J" are equivalent translations along G with no fixed point on G, they have a 

common fixed point, but no other fixed point. 

Proof. S and T have unique fixed points by Theorem 29, which we denote 

by / and g, respectively. Suppose / 9e g. Let S (g) = g\ T(f) = f. Then 

g^g'J^f- Also 
S\f) = T2(f), 

or T(f) = / . Likewise S(g') - g. By Theorem 31, ST(f) = TS(f), or S ( f ) = / , 
which contradicts the fact tha t 5 has / as its only fixed point. Hence / = g. 

33. All translations along G have a common fixed point, to be denoted by g. 

Proof. Let a, a± be points of G with aa,\ = J, and 7 \ a translation along G 
such that jTi(a,g) = a\,g, where g is the fixed point of 7 \ . Let a2 = mid(a,ai) 
and T2(a) — a2; a3 = mid(a,a2) and Tz(a) = a3; and in general an = mid(a,an_i) 
and Tn(a) = an, where n > 1. Then T"n(g) = g for all positive integers n. For 
any point x, where axa\, we can construct a translation 5 from the translations 
Tn and their limiting translations such tha t S(a,g) = x,g. The powers of all 
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such translations 5 send a into all the points of G. Now the total i ty of t rans­
lations sending a into all the points of G is identical with the set of all translations 
along G. Hence if y, z are any points of G, a t least one of the two translat ions 
along G sending y into z leaves g fixed. Call this translation U, and let V be the 
equivalent translation along G. If y j * z then, by Theorem 25, U and V have 
no fixed point on G; from Theorem 32 and the fact t ha t U(g) = g we then infer 
t ha t V(g) = g. If y = z we note tha t R and / are the only translations along G 
sending y into z, and tha t 1(g) = g. T o show tha t R(g) = g let To, T+ be any 
pair of translations equivalent along G, bu t with no fixed point on G. Then 
T+^To = R by Theorem 31, and To(g) = T+(g) = g, as jus t shown above. 
From this we see tha t R(g) — g. 

34. Each point of G is conjugate to g. 

Proof, gx is constant for any point x on G by Theorem 33 and Axiom 6. 
Assume gx < 1. Now R(x,g) = x,g. I t follows from Theorem 26 tha t R leaves 
fixed each point of -gx-, and hence, by Theorem 19, each point of 2 , so tha t 
R = I. From this contradiction we infer gx = 1. 

35. The translation R has no fixed points other than g and each point of G. 

We let h denote the common fixed point for all translations along H. 

36. The points g and h are distinct, and g is on H if, and only if, h is on G. 

V. ROTATIONS, POLES AND POLARS, AND REFLECTIONS 

D E F I N I T I O N 5. A motion leaving a point c fixed is called a rotation about c. If 
for all points x, y such tha t xc = yc a rotation about c exists sending x into y, 
we say tha t all rotations about c exist. 

37. All rotations about g and h exist. 

Proof. Considering only g, let a, b be any points such tha t ga = gb. Ha 
is on G, so is b, in which case a translation along G, t ha t is, a rotation about g, 
exists sending a into b. Suppose a and b are not on G. Let -ga- T^ -gb-, let -ga-, 
-gb- meet G in a', b', respectively, and let S, T be the distinct translations along 
G such tha t S (a') = T(ar) = V. Now each of these translations sends a into a 
point of -gV- whose distance from g equals gb. Let b, b" be the two points of 
-gb'- a t distance gb from g. S and T cannot both send a into b", for suppose 
S{a) = T{d) = b". Since S{af) = ? > ' ) = &', we have ST~\bf, b") = &', 6". 
Hence ST~l, a translation along G, has Z/, 6", as wrell as g, as fixed points. By 
Theorem 25, then, each point of G is fixed under ST~l, and from Theorem 35 we 
see tha t ST-1 = / , and hence tha t S = T. Since this contradicts the fact 
t ha t 5 5e T, we infer tha t S, T cannot both send a into b". Similarly they 
cannot both send a into b. Hence either S{a) = b or T(a) = &. Finally, let 
-ga- = -g&-. Then R(a) = b, for i? leaves -ga- fixed, bu t not point a, by 
Theorem 35. 

https://doi.org/10.4153/CJM-1952-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-008-2


AXIOMS FOR ELLIPTIC GEOMETRY 89 

38. If all rotations about a point p exist, and a motion exists sending p into a 
point q{^ p), then all rotations about q exist. 

Proof. Let c> d be any points such that qc = qd, and M a motion such that 
M(p) = g, M~l(c,d) = a,b. Then pa = pb. If N be a rotation about p such 
that N(a) = b, then MNM^fac) = q,d. 

39. All rotations exist about some point of G. 

Proof. If g C H the assertion is a consequence of Theorems 36 and 37. 
If g <X H, take point C(T* g) on -gh- so that he = hg. A rotation exists 
about h sending g into c; hence all rotations about c exist. Take d(^ h) on 
-gh-, so that cd = ch. There is a rotation about c sending h into d; hence all 
rotations about d exist. Thus we obtain a sequence of points c,d,e, . . . on -gh-
about each of which all rotations exist. The function hx, where x ranges over G, 
attains its maximum and minimum at points of G since G is a closed set and S 
is compact. Let G and H meet at p; then hp is such a maximum, with the value 1. 
Let a be a point of G such that ha is a minimum of hx. 

Case 1. gh > ha. Then hp > gh > &a since 1 > g/&. Since G is connected 
and closed, hx takes on all values between its maximum hp and minimum ha. 
Hence for some point x = x' we have /wc' = g/z. A rotation about h exists 
sending g into x', so that all rotations exist about x', a point of G. 

Case 2. gh < ha. Let -gh- meet G in r, whence gh + hr = gr. Then &a < hr, 
so that g& < hr. The latter relation may be written 

(1) hr = K-gh + F-gh, 

where K is a positive integer and 0 < F < 1. We then have 

hr = K-gh + gh - (1 - F)g&, 
or 

(2) hr+ (1 - F)£fc= (#+l)£ft . 

Since 1 — F > 0 we infer from (2) that 

(3) /*r < (K+ \)gh, 

Add g/z to each side of (1), obtaining 

hr + gh = (K+ l)gh + Fgh 

or 

gr = (A^+ l)gft+ Fgh. 

Since F-gÂ > 0, we get 

(4) (K+l)gh<gr. 

From (3) and (4) we have 
hr<(K+l)gh<gr. 

Since ha < ^r we get 
ha < (K+ \)gh < gr. 
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Taking N = K + 1, and noting tha t gr = hp = 1, we obtain 

ha < N-gh < hp. 
m 

Now we take tha t one of the points c,d,e, . . . mentioned previously whose 
distance from h equals N-gh, and denote the point by y. As shown in Case 1 
there exists a point on G, which we denote by z, such tha t hy = hz. Hence a 
rotation about h exists which sends y into z. Since all rotat ions exist about y 
they likewise exist about z. 

40. All rotations exist about each point of G and II. 

D E F I N I T I O N 6. The locus of points conjugate to any point p is called the polar 
of p} and p is called the pole of the locus. 

4 1 . G and II are the polars of g and h, respectively. 

42. If a motion sends a point p into a point q, it sends the polar of p into the 
polar of q. 

43. The polar of each point of G or II is a straight line. 

Proof. Let x be any point of G, and r its conjugate on G. Since xg = xr=l, 
a rotation exists about x sending g into r. Some translation along G sends r 
into x. Hence a motion exists sending g into x, and hence G into X, the polar 
of x. Then X is a straight line by Theorem 22. 

D E F I N I T I O N 7. A group of motions of a metric space into itself is transitive if 
for each pair of points a,b of the space there exists a motion of the group sending 
a into b. 

44. The group of all motions of 2 is transitive. 

Proof. Let x,y be any distinct points, p any point of G, P the polar 
of p, and q the intersection of G and P. Let x' C P so tha t xg = x'g. A rotat ion 
exists about g sending x into x' by Theorem 37. Since px' = pq = 1, a rotat ion 
exists about p sending x' into q by Theorem 40. Let y' C G so t ha t £y = pyr. 
Some translation along G sends q into yf, and a rotation exists about /? sending 
y' into y. The resultant of these four motions is a motion sending x into y. 

45. y4// rotations exist about each point of 2 . 

Proof. This follows directly from Theorems 37, 38, 44. 

46. The polar of each point of 2 is a straight line. 

47. Distinct points have distinct polars. 

Proof. Let a,b be any distinct points, wTith polars A,B, respectively. If 
b C A, clearly A 9e B. If b (7 A, let -ab- meet 4̂ in c. Then ac = 1 and 
abc. Thus ab + be = ac, so tha t &£ < ac. Since &c, the distance from b to a 
point of A, is not 1 we infer tha t A 9e B. 
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48. Each straight line of 2 is the polar of some point. 

Proof. Let C be any line, a,b distinct points of C, and A,B the polars of 
a,b, respectively. A,B meet in a point c. Then ca — cb = 1 since c is on A 
and B. Hence the polar of c must contain a and b, and must therefore be -ab-. 
Thus C is the polar of c. 

DEFINITION 8. A k-dimensional linear sub space of an S. L. space is any closed 
&-dimensional set (of the space) which, if it contains any two distinct points, 
also contains the geodesic through them. An involutory motion is a motion, not 
the identity, whose square is the identity. An involutory motion M of an S. L. 
space is called a reflection in the linear subspace S when all points of £ are fixed 
under M, and 5 is maximal, i.e., it is not a proper subset of any other linear sub-
space whose points are fixed under M [2, pp. 113, 179]. 

49. Each straight line is a 1-dimensional linear subspace of 2. 

50. If p is any point, and P its polar, one of the rotations about p is a reflection 
in P. 

Proof. Let/? = g. Then R2 = P by Theorem 31, or R2 = 7. By Theorem 
35 only g, apart from each point of G, is fixed under R. Thus R is a reflection 
in G by Theorem 49. Now let p 5* g, and M(p) = g, M being a motion. Then 
M(P) = G. Let x be any point of P, y any point between x and p, and z(9é y) 
the point on -xp- such that py = pz. Let 

M(x,y,z) = x ,y ,z , 

in which case M(-xp-) = -x'g- and yf,zf are on -x'g-, with gy' = gz'. Then 

M~lRM{p,x) = p,x. 

Thus the motion M~lRM leaves p, and also each point of P, fixed. But it leaves 
no other point of S fixed. For, suppose M~~lRM(y) = y, where y is any point 
of 2 not on P and distinct from p; then RM(y) = M(y), or R(y') = y', where, 
as above, M(y) = y'. But this contradicts Theorem 35. Now M~lRM ^ 7, 
otherwise R = I. Also i?(y) = z; since gy' = gzf. Hence 

M~lRM{p,x,y,z) = p,x,z,y, 

so that (M~lRM)~ = 7. Also M~lRM leaves fixed each point of the linear 
subspace P, and P is maximal. Hence M~lRM is a reflection in P , and since it 
leaves p fixed it is also a rotation about p. 

From Theorems 48 and 50 we then obtain: 

51. A reflection exists in each straight line of 2. 

DEFINITION 9. A metric space is called homogeneous if and only if it is congru­
ent to a Euclidean, hyperbolic, or elliptic space of finite dimension. 

52. 2 is congruent to a two-dimensional elliptic space. 
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Proof. An S. L. space is homogeneous if a reflection exists in each geodesic 
[2, p. 181]. Hence 2 is homogeneous by Theorems 17 and 51 and, being a pro­
jective plane, must be congruent to a two-dimensional elliptic space. 

V I . A FINAL REMARK ON 2 AND S. L . SPACES 

Busemann states that if all translations exist along two geodesies of a closed 
S. L. plane, the metric of the latter is elliptic [2, p. 219]. The proof of this, 
which was left to the writer, can now be supplied. For brevity we merely out­
line its main features. First, we can use results in [2] to show that Axioms 1 to 
5 for 2 are valid propositions in any closed S. L. plane S. Thus 5 is a compact 
metric space, two points at maximum distance have exactly two midpoints, etc. 
Then, noting that Busemann's translations are defined somewhat differently 
than are translations in S, we can show, nevertheless, that the assumption that 
all of Busemann's translations exist along a geodesic of S implies that exactly 
two translations as defined in 2 exist along it, sending an arbitrary one of its 
points into an arbitrary one of its points. Then, whenever all Busemann's 
translations exist along two geodesies of S, so do all translations exist along them 
in the sense of Axiom 6. It follows that Axioms 1 to 6 are valid propositions in 
5 if all Busemann's translations exist along two geodesies of S. The metric of 
5 would then be elliptic by Theorem 52. 
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