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Abstract

A technique is described for calculating the number of block ideals of FG, where F is an algebraically
closed field of characteristic p, and where G is a /^-soluble finite group. Among its consequences are
the following: if U is a G-invariant irreducible FOp,(G)-modxx\e, then there is a unique block ideal of
FG whose restriction to Op,(G) has all its composition factors isomorphic to U; and if G has //-length
1, the number of block ideals of FG is the number of G-conjugacy classes of Op(G).

1980 Mathematics subject classification (Amer. Math. Soc): 20 C 05.

Suppose that G is a finite group, p a prime, and F an algebraically closed field
of characteristic p. We can write the group algebra FG as a direct sum of
indecomposable two-sided ideals: say

FG = B1® ••• ®Bt,

where 2?, is an indecomposable two-sided ideal of FG, i - \,...,t. Following
Huppert and Blackburn [3], we call 2?, a block ideal of FG; and if ft is the
indecomposable central idempotent of Bt, we call the set of irreducible FG-mod-
ules V for which Vft•.= V a p-block of G. Huppert and Blackburn [3, page 178]
remark that a "description of t is unfortunately completely lacking in the case
where char/" divides |G|". Our aim here is to take a small step towards such a
description for /^-soluble groups.

For p-soluble groups, a description of t can be given in two extreme cases: for
those /^-soluble groups G with Op(G) = 1 (Huppert and Blackburn [3, Theorem
7.13.4]), and for the class of />-nilpotent groups (an immediate corollary to
Theorem 7.16.10 of Huppert and Blackburn [3]). In both these cases, the number
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of /7-blocks is the number of G-conjugacy classes of Op,{G). Unfortunately, this is
not true for all /^-soluble groups: for example, if G = S4, and F has characteristic
3, then G has 3 3-blocks, but Oy(G) has only 2 G-conjugacy classes. However, the
ideas used in the proofs of these two results can be used to obtain more
information about t: we will be able to show that the number of />-blocks of G is
just the number of G-conjugacy classes of Op,{G) if G has //-length 1, thereby
extending the result for />-nilpotent groups; moreover, the techniques will give a
method of caluclating /.

We start by establishing some notation. In general, we shall follow the notation
and conventions of Huppert and Blackburn [3]. Put N = Op.(G), and let Uv...,Un

be a complete set of distinct irreducible FiV-modules, with Ut < FN. Let Ht be the
inertia subgroup of Ut in G. Finally, suppose that U1,...,Uk is a complete set of
distinct non G-conjugate irreducible FAf-modules. An easy calculation gives that
k is just the number of distinct G-conjugacy classes contained in N.

That the number of ^-blocks of G is at least the number of G-conjugacy classes
of irreducible FiV-modules is the content of part (1) of the proof of Theorem
7.16.10 of [3]. Putting these last two comments together gives the following result.

LEMMA 1. The number of p-blocks of G is at least the number of G-conjugacy
classes of Op.(G).

Each block ideal of FG has the property that its restriction to FN has every
composition factor isomorphic to a G-conjugate of some fixed Uj (1 <y < /c).
This is an easy consequence of Lemma 1.5 of Cliff [1], and we shall follow his
notation by saying that such a block ideal is of type Uj. Theorem 1.6 of Cliff [1]
then tells us that the number of block ideals of FG of type [/, is the same as the
number of block ideals of FHj of type Uj. We have only been able to calculate
this number in the following special case.

LEMMA 2. Suppose that G is p-soluble, and that Op,(Hj) = Op(G). Then there is
a unique block ideal of FHj of type Uj.

We shall defer the proof of Lemma 2 and first derive some consequences of it
(and we assume for the rest of this paper that G is /^-soluble).

COROLLARY 1. If Uj is G-invariant, then there is a unique block ideal of FG of
type Uj.

This follows immediately from the fact that Hj = G. Note that Theorem 7.13.5
of [3] is a special case of this result.
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We also obtain a method for calculating the number of block ideals of G. Each
G-invariant irreducible /TV-module contributes exactly one block ideal to the
count, while for each irreducible /TV-module which is not G-invariant, we get the
appropriate number as the number of block ideals of the same type of a smaller
group (the inertia subgroup).

In general, we need not have Op,(Hj) = N. However, there are some cases
where we can ensure that this condition is met. If G is of //-length 1, then
Hj > Op(G), and O,(Hj) < Opp,(G). Put Q = Opp,(G). We have Op.(Hj) <
CQ{Op,p(Q)/Op.(Q)) < Op,p{Q) (by Theorem 6.3.2 of Gorenstein [2]). Thus
Op-(Hj) < Op,(Q) = Op.(G). Now Lemma 2 and Theorem 1.6 of Cliff [1] give us
that there is exactly one block ideal of G for each G-conjugacy class of irreducible
FiV-modules, giving the following result.

COROLLARY 2. / / G has p'-length 1, then the number of p-blocks of G is the
number of G-conjugacy classes of Op(G).

We now turn to the proof of Lemma 2. We start by putting U = Uj and
H = Hj.

Suppose that B and C are blocks ideals of FH of type U with B =£ C, and with
indecomposable central idempotents fx and /2 , respectively. Then BN and CN

have all composition factors isomorphic to U.
Put M = Op,p(H). Then U has a unique extension to an irreducible FM-mod-

ule W (the extension by Theorem 4 of Isaacs [4], and the uniqueness from
Corollary 7.9.13 of [3]). Moreover, if V is an irreducible FAf-module of type U,
then it follows from Lemma 7.9.19 of [13] that V = W. We then have

HomFM(W,V) = HomFN(U,VN).

Also, if V is a direct sum of copies of W, then

Let x e H\M, and set Z = CH(x). Since H is /^-soluble, we have M $, NZ
(by Theorem 6.3.2 of Gorenstein [2]), and so if 5 is a transversal for N{M n Z)
in M, we have |S| > 1 and is a power of p. We can then find transversals R for
MZ in H, and T for # n Z in N such that {rst: r e R, s e S, t <= 7} is a
transversal for Z in i/. Note also that for r e R and 5 e S, the set
( r ' V 1 / " 1 ^ 5 ) ' : / e 71} is the set of iV-conjugates of s^r^xrs. It then follows
easily that, for n e N, the set {n^t^s'^r^xrs^n: t e T} is also the set of
iV-conjugates of s'^r^xrs, and that {s'1t~ls(r~1xr)s~1ts: t e T} is the set of
JV-conjugates of r"1^/-.

Let F be an irreducible FH-module such that FN is a direct sum of copies of
U. Fix r e / ? and s & S, and put T, r = E ^ j - r W - 1 * ™ / . Then TS r e
End/rAr(FA,), since n ' \ rn = TS r, and so T, r e EndfM(FA/). Thus, if v e F, we
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have

This then gives

since \S\ is divisible by p. If we now put ax = T.RSTt~1s'1r'1xrst, then we have,
for all v e V, that vax = 0.

We can write ft = Y.a'xox, where aj, G F, and where the sum is taken over the
class sums of conjugacy classes of //-elements of H ([3], Theorem 7.12.8). Put
f* = Ha'xax, where the a'x are as for /), and where the sum is taken over the class
sums of //-conjugacy classes contained in N.

If V is a composition factor of B, then we have, for v e V, that v = vfx = vff
(since vax — 0 for x £ N). Since VN is a direct sum of copies of U, and
/ j * G FiV, we have M/X* = u for u e U. If W is a composition factor of C, then
WN is a direct sum of copies of U, and so for w e W, we obtain w = w/x* = wfx

(since wax = 0 for x € N). However, wf2 = w, and f^f2 = 0, so that w = wfx =
{wfx)f2 — 0 for all w G W. This contradiction completes the proof.
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