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Abstract

A technique is described for calculating the number of block ideals of FG, where F is an algebraically
closed field of characteristic p, and where G is a p-soluble finite group. Among its consequences are
the following: if U is a G-invariant irreducible FO, (G)-module, then there is a unique block ideal of
FG whose restriction to 0,.(G) has all its composition factors isomorphic to U; and if G has p’-length
1, the number of block ideals of FG is the number of G-conjugacy classes of O, (G).

1980 Mathematics subject classification (Amer. Math. Soc.): 20 C 05.

Suppose that G is a finite group, p a prime, and F an algebraically closed field
of characteristic p. We can write the group algebra FG as a direct sum of
indecomposable two-sided ideals: say
FG=B,o® --- ®B,,

where B; is an indecomposable two-sided ideal of FG, i =1,...,t. Following
Huppert and Blackburn [3], we call B, a block ideal of FG; and if f; is the
indecomposable central idempotent of B,, we call the set of irreducible FG-mod-
ules V for which Vf, = V a p-block of G. Huppert and Blackburn [3, page 178]
remark that a “description of ¢ is unfortunately completely lacking in the case
where char F divides |G[’. Our aim here is to take a small step towards such a
description for p-soluble groups.

For p-soluble groups, a description of ¢ can be given in two extreme cases: for
those p-soluble groups G with 0,(G) = 1 (Huppert and Blackburn [3, Theorem
7.13.4)]), and for the class of p-nilpotent groups (an immediate corollary to
Theorem 7.16.10 of Huppert and Blackburn [3]). In both these cases, the number
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of p-blocks is the number of G-conjugacy classes of O,.(G). Unfortunately, this is
not true for all p-soluble groups: for example, if G = S,, and F has characteristic
3, then G has 3 3-blocks, but 0;.(G) has only 2 G-conjugacy classes. However, the
ideas used in the proofs of these two results can be used to obtain more
information about : we will be able to show that the number of p-blocks of G is
just the number of G-conjugacy classes of 0,(G) if G has p’-length 1, thereby
extending the result for p-nilpotent groups; moreover, the techniques will give a
method of caluclating ¢.

We start by establishing some notation. In general, we shall follow the notation
and conventions of Huppert and Blackburn [3]. Put N = O,(G),and let U, ..., U,
be a complete set of distinct irreducible FN-modules, with U, < FN. Let H, be the
inertia subgroup of U, in G. Finally, suppose that U,,..., U, is a complete set of
distinct non G-conjugate irreducible FN-modules. An easy calculation gives that
k is just the number of distinct G-conjugacy classes contained in N.

That the number of p-blocks of G is at least the number of G-conjugacy classes
of irreducible FN-modules is the content of part (1) of the proof of Theorem
7.16.10 of [3]. Putting these last two comments together gives the following result.

LEMMA 1. The number of p-blocks of G is at least the number of G-conjugacy
classes of O,.(G).

Each block ideal of FG has the property that its restriction to FN has every
composition factor isomorphic to a G-conjugate of some fixed U, (1 <j < k).
This is an easy consequence of Lemma 1.5 of Cliff [1], and we shall follow his
notation by saying that such a block ideal is of type U,. Theorem 1.6 of CLiff [1]
then tells us that the number of block ideals of FG of type U, is the same as the
number of block ideals of FH; of type U. We have only been able to calculate
this number in the following special case.

LEMMA 2. Suppose that G is p-soluble, and that O,.(H;) = O,(G). Then there is
a unique block ideal of FH; of type U,.

We shall defer the proof of Lemma 2 and first derive some consequences of it
(and we assume for the rest of this paper that G is p-soluble).

COROLLARY 1. If U, is G-invariant, then there is a unique block ideal of FG of
type U,.

This follows immediately from the fact that H, = G. Note that Theorem 7.13.5
of [3] is a special case of this result.
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We also obtain a method for calculating the number of block ideals of G. Each
G-invariant irreducible FN-module contributes exactly one block ideal to the
count, while for each irreducible FN-module which is not G-invariant, we get the
appropriate number as the number of block ideals of the same type of a smaller
group (the inertia subgroup).

In general, we need not have O,(H;) = N. However, there are some cases
where we can ensure that this condition is met. If G is of p’-length 1, then
H, > 0,(G), and O,(H;)< 0,,(G). Put Q =0,,(G). We have O,(H)) <
Co(0,,(2)/0,(Q)) < 0,,(Q) (by Theorem 6.3.2 of Gorenstein [2]). Thus
0,(H;) < 0,(Q) = 0,(G). Now Lemma 2 and Theorem 1.6 of Cliff [1] give us
that there is exactly one block ideal of G for each G-conjugacy class of irreducible
FN-modules, giving the following result.

COROLLARY 2. If G has p’-length 1, then the number of p-blocks of G is the
number of G-conjugacy classes of O,(G).

We now turn to the proof of Lemma 2. We start by putting U = U, and
H=H,

Suppose that B and C are blocks ideals of FH of type U with B # C, and with
indecomposable central idempotents f; and f,, respectively. Then B, and C,
have all composition factors isomorphic to U.

Put M = O, ,(H). Then U has a unique extension to an irreducible FM-mod-
ule W (the extension by Theorem 4 of Isaacs [4], and the uniqueness from
Corollary 7.9.13 of [3]). Moreover, if V is an irreducible FM-module of type U,
then it follows from Lemma 7.9.19 of [13] that IV = W. We then have

Hom ,, (W,V) = Hom (U, Vy).
Also, if V is a direct sum of copies of W, then
End g4, (V) = End g (Vy).

Let x € H\ M, and set Z = Cg(x). Since H is p-soluble, we have M £« NZ
(by Theorem 6.3.2 of Gorenstein [2]), and so if S is a transversal for N(M N Z)
in M, we have |S| > 1 and is a power of p. We can then find transversals R for
MZ in H, and T for NN Z in N such that {rst: re R,s€ S§,t€ T} is a
transversal for Z in H. Note also that for r€ R and s € S, the set
{(t7(s7Y xr)t: t € T} is the set of N-conjugates of s~'r~xrs. It then follows
easily that, for n € N, the set {nt7(s™r'xrs)tn: t € T} is also the set of
N-conjugates of s~'r~!xrs, and that {s~ ' 's(r'xr)slts: 1t € T} is the set of
N-conjugates of r~lxr.

Let V' be an irreducible FH-module such that V), is a direct sum of copies of
U. Fix reR and s€ S, and put 7, =X, ;¢ s 'r'xrst. Then 7, €
End ;y(Vy), since n™lr, n = 1, , and so 7,, € End ,(V),). Thus, if v € V, we

»r
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have

- -1
vT, = UST, ST =0T .

This then gives

U(;LSTS") = U(|S|’rly,) =0,

1p-lxrst, then we have,

since |S| is divisible by p. If we now put 0, = g ¢ 717~
for all v € V, that ve, = 0.

We can write f, = La'e,, where o), € F, and where the sum is taken over the
class sums of conjugacy classes of p’-elements of H ([3], Theorem 7.12.8). Put
f* = La'o,, where the o are as for f;, and where the sum is taken over the class
sums of H-conjugacy classes contained in N.

If V is a composition factor of B, then we have, for v € V, that v = vf, = vfi*
(since ve, =0 for x &€ N). Since V), is a direct sum of copies of U, and

* € FN, we have uf;* = u for u € U. If W is a composition factor of C, then
W, is a direct sum of copies of U, and so for w € W, we obtain w = wf* = wf;
(since we, = 0 for x € N). However, wf, = w, and f,f, = 0, so that w = wf, =
(wf)f, = 0 for all w € W. This contradiction completes the proof.
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