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We numerically investigate turbulent Rayleigh–Bénard convection with gas bubbles
attached to the hot plate, mimicking a core feature in electrolysis, catalysis or boiling.
The existence of bubbles on the plate reduces the global heat transfer due to the much
lower thermal conductivity of gases as compared with liquids and changes the structure
of the boundary layers. The numerical simulations are performed in three dimensions at
Prandtl number Pr = 4.38 (water) and Rayleigh number 107 � Ra � 108. For simplicity,
we assume the bubbles to be equally sized and having pinned contact lines. We vary
the total gas-covered area fraction 0.18 � S0 � 0.62, the relative bubble height 0.02 �
h/H � 0.05 (where H is the height of the Rayleigh–Bénard cell), the bubble number
40 � n � 144 and their spatial distribution. In all cases, asymmetric temperature profiles
are observed, which we quantitatively explain based on the heat flux conservation at each
horizontal section. We further propose the idea of using an equivalent single-phase set-up
to mimic the system with attached bubbles. Based on this equivalence, we can calculate
the heat transfer. Without introducing any free parameter, the predictions for the Nusselt
number, the upper and lower thermal boundary layer thicknesses and the mean centre
temperature agree well with the numerical results. Finally, our predictions also work for the
cases with much larger Pr (e.g. 400), which indicates that our results can also be applied
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to predict the mass transfer in water electrolysis with bubbles attached to the electrode
surface or in catalysis.

Key words: Bénard convection, multiphase flow, turbulent convection

1. Introduction

In wall-bounded buoyancy-driven turbulence, the boundary conditions play a crucial role
in the flow structure and the global transport property of the system. Bubbles attached
to the wall affect these boundary conditions. They often occur in various industrial
applications. One example is water electrolysis, where bubbles are generated at the
electrodes and can significantly reduce the global mass transport of the system by reducing
the active electrode area (Vogt & Balzer 2005; Wang et al. 2014; Yang et al. 2018; Sepahi
et al. 2022), leading to the decrease of the electrolyser efficiency. Another example is
catalysis, where bubbles are generated by chemical reactions and can block the catalytic
surface, thus also reducing the mass transport (Oehmichen, Datsevich & Jess 2010;
Somorjai & Li 2010; Xu et al. 2018). One example from daily life is heating water.
When a pot of water is heated from below, many tiny gas bubbles nucleate at the bottom
wall, reducing the heat transfer efficiency of the system due to the much lower thermal
conductivity of gas as compared with the liquid. In all of these examples, bubbles attached
to the wall influence the boundary layer (BL) and thus affect the global heat or mass
transfer of the system. Therefore, it is highly desirable to quantitatively understand how
much the global transport properties are changed. This is the motivation for our study.

As a model system we choose Rayleigh–Bénard (RB) convection, which is the paradigm
of thermally driven turbulence (see the reviews of Ahlers, Grossmann & Lohse 2009;
Lohse & Xia 2010; Chillà & Schumacher 2012; Shishkina 2021), where a fluid between
two parallel plates is heated from below and cooled from above. In previous studies,
the effect of various plate properties on the flow structure and the heat transport were
examined, e.g. staggered conducting and insulating strips on the plate (Wang, Huang &
Xia 2017; Bakhuis et al. 2018), temporally modulated temperature (Jin & Xia 2008; Yang
et al. 2020), plate with roughness (Zhu et al. 2017; Jiang et al. 2018; Zhu et al. 2019)
and plates with different wettabilities (Liu et al. 2022). Here, we pick RB convection as a
model system to study the effects of attaching bubbles on the global heat or mass transport
in buoyancy-driven turbulence.

We employ direct numerical simulations with an advanced finite difference method
combined with the phase field method (Liu et al. 2021). The bubbles are put at the lower
(hot) plate with pinned contact lines so that they cannot move or detach from the plate.
To focus on the effects of the Rayleigh number (dimensionless strength of the thermal
driving) and the bubble geometry, we disregard mass exchange between the bubble and
the liquid and keep the bubbles at constant volume. The calculations are performed for
various Rayleigh numbers and geometries, expressed through the relative area covered
by the bubbles, bubble height, bubble number and type of bubble distribution. To define
the thermal BL thickness in the multiphase system, we extend the traditional temperature
profile slope method, based on heat flux conservation. With this, we propose an equivalent
single-phase system, for which we apply the Grossmann–Lohse (GL) theory (Grossmann
& Lohse 2000, 2001; Stevens et al. 2013) to predict the heat transfer and the temperature
profile for RB convection with bubbles attached to the hot plate. Without introducing any
new free parameter, these predictions well agree with our numerical results. They work for
both moderate and large Pr, which indicates that they can be applied to predict both the
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Turbulent RB convection with bubbles attached to the plate

mass transport in water electrolysis with bubbles attached to the electrode surface and to
catalytic surfaces on which bubbles have formed.

The organisation of this paper is as follows. The numerical method and set-up are
introduced in § 2. The flow features and heat transfer are shown in § 3. We define the
thermal BL thicknesses of this new two-phase system in § 4, and propose an equivalent
single-phase system in § 5 to calculate the heat transfer. The paper ends with conclusions
and an outlook.

2. Numerical method and set-up

The three-dimensional simulations are performed in a cubic domain of dimensions H3.
The numerical method (Liu et al. 2021) combines the phase-field method (Jacqmin 1999;
Ding, Spelt & Shu 2007; Liu & Ding 2015) and an advanced finite difference direct
numerical simulation solver for the Navier–Stokes equations (Verzicco & Orlandi 1996;
van der Poel et al. 2015), called AFiD. Numerical details, validation cases and convergence
tests were presented in our previous study (Liu et al. 2021).

The phase field method is widely used in simulations of multiphase turbulent flows
(Soligo, Roccon & Soldati 2021), where the liquid–gas interface is represented by contours
of the volume fraction C of the liquid. The corresponding volume fraction of gas is 1 − C.
The evolution of C is governed by the Cahn–Hilliard equation,

∂C
∂t

+ ∇ · (uC) = 1
Pe

∇2ψ, (2.1)

where u is the flow velocity and ψ = C3 − 1.5C2 + 0.5C − Cn2∇2C the chemical
potential. We set the Péclet number Pe = 0.9/Cn and the Cahn number Cn = 0.75�x/H
with�x being the mesh size and H being the height of the RB cell. The parameters Pe and
Cn are taken according to the sharp-interface approach proposed by Ding et al. (2007),
Yue, Zhou & Feng (2010) and Liu & Ding (2015).

The flow is governed by the Navier–Stokes equation, the heat transfer equation and the
incompressibility condition,

ρ̃

(
∂u
∂t

+ u · ∇u
)

= −∇P +
√

Pr
Ra

∇ · [μ̃(∇u + ∇uT)] + F st + G, (2.2)

ρ̃c̃p

(
∂θ

∂t
+ u · ∇θ

)
=

√
1

PrRa
∇ · (k̃∇θ), (2.3)

∇ · u = 0, (2.4)

where θ is the dimensionless temperature, F st = 6
√

2ψ∇C/(CnWe) the non-
dimensionalised surface force, where We = ρlU2H/σ is the Weber number, with the
surface tension σ . The vector G = {[C +ΛβΛρ(1 − C)] θ − ρ̃/Fr}z represents the
dimensionless gravity. All dimensionless material properties (indicated by a tilde, q̃) are
defined in a uniform way, q̃ = C +Λq(1 − C), where Λq = qg/ql is the ratio of the
material properties of gas and liquid, marked by the subscripts g and l, respectively.
The global dimensionless parameters controlling the flow are listed in table 1. The most
important response parameter of the system is the heat transfer, which is quantified by the
Nusselt number Nu = Q/(klΔ/H), with Q being the dimensional heat flux.

The values of the control parameters are chosen mainly based on the properties of
air and water (see table 1), though for better numerical efficiency we take the density
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Material and geometrical parameters (40 ◦C) Water Air

Density ρ kg m−3 992.2 1.127
Kinematic viscosity ν m2 s−1 0.6591 × 10−6 16.92 × 10−6

Thermal conductivity k W (m K)−1 0.6286 0.02735
Thermal diffusivity κ = k/(cpρ) m2 s−1 1.52 × 10−7 241.0 × 10−7

Specific heat capacity cp J (kg K)−1 4180 1007
Thermal expansion coefficient β K−1 3.84 × 10−4 32.1 × 10−4

Surface tension σ N m−1 0.0696
Gravity acceleration g m s−2 9.8
Temperature difference Δ K 0.1–10
Domain height H m 0.1–10

Dimensionless parameter Realistic value Present value
Rayleigh number Ra = βlgH3Δ/(νlκl) 106–1014 107–108

Prandtl number Pr = νl/κl 4.35 4.38
Weber number We = ρlU2H/σ 10−1–105 100
Froude number Fr = U2/(gH) 10−4–10−2 1
Density ratio Λρ = ρg/ρl 0.001 0.01
Kinematic viscosity ratio Λν = νg/νl 25.7 25.7
Thermal conductivity ratio Λk = kg/kl 0.0435 0.042
Thermal diffusivity ratio Λκ = κg/κl 158 158
Thermal expansion coefficient ratio Λβ = βg/βl 8.36 8.36

Table 1. Material and geometrical parameters controlling the flow and their typical values (upper part) and
all resulting dimensionless parameters (lower part). Here, U = √

βlgHΔ is the free-fall velocity. The index g
denotes gas and l denotes liquid.

ratio Λρ = 0.01, about 10 times larger than in reality. Note that the exact value of this
parameter hardly affects our results. As the bubbles are pinned and the buoyancy and
surface tension forces applied on bubbles are always balanced, we take Fr = 1 and
We = 100, also for numerical convenience. The geometrical parameters of the bubbles
are the relative covered area 0.18 � S0 � 0.62, the non-dimensionalised height 0.02 �
h/H � 0.05, their number 40 � n � 144, and the spatial distribution (uniform, random
and half-covered). Note that from S0, h̃ = h/H and n, we can also calculate the bubble
volume (= S0h̃/2 + nπh̃3/6), the bubble contact radius (= √

S0/(nπ)) and the bubble
contact angle (= arccos{[S0/(2nπh̃)− h̃/2]/[S0/(2nπh̃)+ h̃/2]}). As the local Weber
number of the bubble is relatively low due to the small bubble size, the bubbles maintain
their spherical-cap shape although the bubbles could deform and the flows inside and
outside the bubbles are both solved. The bubble shape is closer to spherical with larger h̃
and smaller S0/n.

To ensure that the contact lines are pinned on the plate, we set the value of C on the
hot bottom plate equal to the initial value as the boundary condition of the phase field.
The other boundary conditions are no-slip velocities on the top and bottom plates, fixed
temperature θcold = 0 (top) and θhot = 1 (bottom) and periodic conditions in the horizontal
directions. Stretched grids with 2883 gridpoints are used for the velocity and temperature
fields, and uniform grids with 5763 gridpoints for the phase field (Liu et al. 2021), which
corresponds to at least 12 gridpoints used for the bubble height. The mesh is sufficiently
fine and is comparable to corresponding single-phase studies (Stevens, Verzicco & Lohse
2010; van der Poel, Stevens & Lohse 2013).
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Figure 1. RB convection with bubbles on the hot plate for Ra = 108, Pr = 4.38, S0 = 0.18, h̃ = 0.02 and
n = 144: (a) volume rendering of a snapshot of the thermal structures, (b) horizontal slice at the height of
the lower (hot) BL thickness and (c) mean (over time and space) temperature profile with an inset showing
thermal structures inside one bubble. The temperature field is colour-coded and the interface between liquid
and gas is marked in green. As seen from the mean temperature profile in (c), due to the bubbles the mean
centre temperature θ̄ = 0.461 is lower than the average temperature 1/2 of the top and bottom plates (dashed
black line).

3. Flow features and heat transfer

A typical thermal structure in RB convection with bubbles attached to the hot plate
is shown in figure 1. Although there is continuous emission of thermal plumes, the
bubbles almost maintain the shape of spherical cap due to the pinned contact lines and
sufficiently strong surface tension. This is indeed the relevant situation during most of
the time for the bubbles in electrolysis or catalysis. In figures 1(a) and 1(b), we observe
the plumes rising up from the gaps between the bubbles. Inside the bubbles (see the inset
in figure 1c), pure thermal conduction takes place because the local Rayleigh number
inside the bubble Rag ≈ βggh3(Δ/2)/(νgκg) is small enough to remain under the onset
of convection Rac ≈ 1708 (namely Rag < 100) for all cases. Furthermore, considering
that the thermal conductivity of gas is much lower than that of liquid (i.e. for their ratio
Λk = 0.042 � 1), the heat transfer through the gas phase is negligible. Therefore, the
overall heat-conducting ability of the fluid near the hot bottom plate is lower than that
near the cold top plate. Consequently, because the total heat flux is the same across each
horizontal plane, the temperature drop across the hot bottom BL becomes larger than that
across the cold top BL, leading to the mean centre temperature smaller than 0.5 (e.g. 0.461
in figure 1c), closer to the temperature of the cold top plate to that of the hot bottom plate.

In figure 2, we plot the heat transfer Nu (normalised by Nus of single-phase system) as
function of the geometrical parameters. As shown in figure 2(a), unsurprisingly, Nu/Nus
decreases with increasing the relative bubble-covered area S0 due to the decreasing
conducting area. We also observe that Nu/Nus decreases with increasing bubble height
h (normalised by the thermal BL thickness λ) in figure 2(b), since for larger bubbles there
is less liquid (the major conducting fluid) in the thermal BL. With increasing h/λ, the
simulation results gradually deviate from the predictions, because the larger h/λ, the more
parts of the bubbles enter the bulk, which gradually deviates from our assumption that
bubbles only affect the thermal BL structure.

In contrast to the significant effects of S0 and h̃ on the heat transfer, Nu/Nus is insensitive
to the bubble number n (see figure 2c), because n only contributes to the second term in
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Figure 2. Nusselt number normalised by that in the single-phase system: (a) Nu/Nus as a function of the
relative bubble-covered area S0, where the (relative) bubble height h̃ = 0.02 and the bubble number n = 40;
(b) Nu/Nus as a function of h/λ for S0 = 0.32 and n = 40, with λ being the thermal BL thickness (values taken
from the hot bottom BL); (c) Nu/Nus as a function of n for S0 = 0.18 and h̃ = 0.02, where symbols denote
the numerical results and lines the predictions of (4.1) and (5.1a,b)–(5.3), and colours are for Ra = 107 (red),
Ra = 3.2 × 107 (blue) and Ra = 108 (black). The orange symbol + and the green symbol × in (c) denote the
cases with random bubbles distribution as shown in (d) and the half-covered distribution as shown in (e). All
the other symbols in (a–c) are for the uniform distribution. All error bars and deviations between simulations
and predictions are within 5 %.

the bubble volume (= S0h̃/2 + nπh̃3/2), which is of order O(h̃3) and, thus, negligible
compared with the first term (O(h̃)). We further show the effects of the spatial bubble
distribution, including uniform, random, and the half bubble-covered distributions in
figure 2(c). With all three types of distribution, the values of Nu/Nus are almost the same.
This indicates that the overall heat flux is insensitive to the spatial bubble distribution,
at least in our model system. This differs from the previous studies (Liu & Zhang 2008;
Jiang et al. 2018), where the large-scale flow is changed by the solid elements on the plate.
The rigid solid surfaces imply no-slip velocity boundary conditions, which affect the flow
structure much more than the boundary conditions of continuous velocity and shear stress
on the deformable bubble interfaces.

Analogous trends are also found in the relationship between the mean centre temperature
θ̄ and the geometrical parameters, as shown in figure 3. In all cases, the temperature profile
is asymmetric due to the bubbles, namely θ̄ is lower than the average temperature 1/2
between top and bottom plates, as explained previously. The temperature profile can be
quantitatively described by θ̄ and the top and bottom thermal BL thicknesses, the values
of which are calculated in § 5.

Such an asymmetric temperature profile has already been studied in the context of
single-phase RB convection under non-Oberbeck–Boussinesq (NOB) conditions (Ahlers
et al. 2006), where in water the viscosity and thermal diffusivity are temperature
dependent and smaller at the hot bottom plate than at the cold top plate. Also this
leads to an asymmetric temperature profile. Ahlers et al. (2006) employed an extended
Prandtl–Blasius BL theory for the NOB conditions in the two BLs, and coupled them by
imposing heat flux conservation. With this they could calculate the centre temperature
and the thermal BL thicknesses, which well agree with the experimental results. Note that
the analytical calculation must be adapted to be applicable to the situation here, because
here the BL flow is not parallel to the plates due to bubbles. In addition, whereas in the
NOB case one has no-slip and no-penetration boundary conditions throughout, here on the
spherical-cap-shaped bubble interface we have the emerging condition of the velocity and
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Figure 3. Mean centre temperature θ̄ as a function of (a) S0, (b) h/λ and (c) n. All the cases are the same as in
figure 2. The dashed line denotes the average temperature 1/2 of the top and bottom plates. All error bars and
deviations between simulations and predictions are within 5 %.

shear stresses continuity. However, as in Ahlers et al. (2006), we use the concept of heat
flux conservation to define the thermal BL thickness (see § 4), and then propose the idea
of an equivalent single-phase system to mimic the system with attached bubbles (see § 5).

4. Thermal BL thicknesses

A sketch of the temperature profiles near the plates is displayed in figure 4, where we also
show how the thermal BL thicknesses are defined. Near the cold top plate (see figure 4a),
the thermal BL thickness λcold is defined through the usual convenient definition via the
slope of the temperature profile at the plate from assuming a pure conductive thermal
BL and a well-mixed bulk (Ahlers et al. 2006). As λcold we take that distance from
the plate, where the tangent to the temperature profile at the plate reaches the mean
centre temperature θ̄ . However, this definition cannot be directly applied near the hot
bottom plate, due to the bubbles. As the bubbles reduce the area occupied by the liquid,
the conducting area varies with z. We therefore correct the solution for pure thermal
conduction in the hot bottom BL based on heat flux Q conservation,

Q = kl
∂θ

∂z
[1 − S(z, S0, h̃, n)] = kl

θ̄H
λcold

. (4.1)

Here, the term on the right-hand side is the heat flux on the cold top plate. The gas-covered
area S(z, S0, h̃, n) = max[(S0 + nπzh̃)(1 − z/h̃), 0] is the insulating area, which is defined
with the assumption of spherical-cap shaped bubbles.

The thermal BL thickness near the hot bottom plate λhot equals the distance from the
plate to the intersection between the lines of (4.1) and of θ = θ̄ , as shown in figure 4(b).
With these definitions, both values of λhot and λcold are close to each other in all cases
(within 10 %), as shown in figure 5. As λhot and λcold are almost the same and θ̄ < (θhot +
θcold)/2, the temperature variations across the hot bottom BL and the cold top BL are
different, which is reflected in that the temperature profile is asymmetric.

5. Predictions for Nu and the centre temperature using equivalent single-phase RB
system

To calculate the heat transfer Nu and the mean centre temperature θ̄ , we propose the idea of
using an equivalent single-phase set-up to mimic the system with attached bubbles. To find
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Figure 4. Sketch of the temperature profile near the (a) cold top and (b) hot bottom plate. The red lines denote
the temperature profiles, the black lines the mean centre temperature θ̄ , the blue lines the solution for pure
thermal conduction in the BL, that is, (4.1), and the green dashed line the tangent of (4.1) at the intersection.
Here, θ∗ is the intercept of the tangent. We define the dimensional BL thickness near the hot and cold plates as
λhot and λcold , respectively, that is, the distance from the black dashed lines to the corresponding plate.
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Figure 5. Thermal BL thicknesses λhot (empty symbols) and λcold (filled symbols) of the hot bottom and cold
top BLs, respectively, as functions of (a) S0, (b) h/λ and (c) n. All the cases are the same as in figure 2. All
error bars and deviations between simulations and predictions are within 5 %.

the equivalent flow, we first obtain the effective temperature at the hot bottom plate. This
is done by plotting the tangent of (4.1) at the position of λhot, and the obtaining θ -intercept
of the tangent as effective temperature θ∗ (see figure 4b).

Next, we compare the effective temperature θ∗ and the mean centre temperature θ̄ in
figure 6(a), which shows that θ∗ approximately equals to 2θ̄ (within ±5 %). Thus we
assume a nearly equivalent single-phase RB counterpart with θhot = 2θ̄ and θcold = 0,
such that θ̄ is the mean value of temperatures on the two plates, as shown in figure 6(b).
Again, we note that λhot is close to λcold, based on our definition of the thermal BL
thickness in § 3. Thus, we have the following relations:

θ∗ = 2θ̄ , λcold = λhot = λs. (5.1a,b)

Here, λs is the thermal BL thickness in the single-phase system, which can be calculated
as

λs = H
2Nue

, (5.2)

where Nue is the heat transfer estimated from the GL theory (Grossmann & Lohse 2000,
2001) for the equivalent single-phase system with Ra∗ = 2θ̄Ra, θhot = 2θ̄ and θcold = 0.
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Figure 6. (a) Comparison between the mean centre temperature θ̄sim and the effective temperature θ∗
sim, both

taken from simulations. The symbols are the same as in figure 2. The shadow is the zone within ±5 %.
(b) Sketch of the bubble system under consideration and the equivalent single-phase RB system. Here, θ̄sim
and θ∗

sim are plotted this way to support the existence of the equivalent single-phase system.

In the two-phase system and the equivalent single-phase system, the dimensional heat
transfer Q (= Nu k(θhot − θcold)/H) should be the same, which yields

Nu(Ra,Pr, S0, h̃, n) = 2θ̄Nue(Ra∗,Pr), (5.3)

where Nu(Ra,Pr, S0, h̃, n) = (θ̄H)/λcold is the heat transfer for the two-phase system.
Combining (5.1a,b)–(5.3) for the equivalent single-phase RB system with (4.1) in § 4,

which are both the relationships between θ̄ and λcold, we can calculate θ̄ and λcold by
iteratively solving these two relationships. Finally, the heat transfer in the system with
attached bubbles can be calculated by Nu = (θ̄H)/λcold.

We emphasise that with this approach, using the equations above without introducing
any free parameter, for given Ra, Pr and bubble geometries, we can now calculate Nu, θ̄ ,
λhot and λcold. The good agreements between the simulations and the predictions for Nu,
θ̄ , λhot and λcold are shown in figures 2, 3 and 5, respectively, where all deviations between
simulations and predictions are within ±5 %.

We further check whether our approach is also applicable for large Pr, which, as
explained previously, has relevance to transport phenomena in water electrolysis and
catalysis. Water electrolysis and catalysis can both lead to natural convection driven
by buoyancy, which originates from the density difference of the solute with different
concentrations of the electrolysis or catalysis product. Here, the mass transfer is also
characterised by Nu, that is, the mass transfer normalised by that with pure diffusion (in
this context normally called the Sherwood number Sh). The control parameters are the
Grashof number (dimensionless strength of the solute driving) Gr and the Schmidt number
(the ratio of viscous diffusion and mass diffusion rates) Sc, corresponding to Ra/Pr and
Pr in RB convection, respectively. The value of Sc in water electrolysis is always large,
e.g. Sc = 400 (Sepahi et al. 2022).

We performed two simulations (for two different bubble heights) at Pr = 400 and Ra =
107 (tabulated in table 2) with a sufficiently fine mesh as explained in § 2. Note the much
higher computational costs at this large Pr, due to the required long time (∼Pr1/2) for
the system to enter the statistical steady state. The bubble geometries are characterised by
h̃ = 0.03 and 0.05, S0 = 0.32 and n = 40. The good agreements between our parameter
free predictions and the results from the simulations are shown in table 2. This supports
that our predictions can be directly applied to water electrolysis and catalysis.
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h̃ Nu/Nus θ̄ λbot/H λtop/H

Simulations 0.03 0.900 ± 0.030 0.462 ± 0.005 0.0303 ± 0.0023 0.0294 ± 0.0008
Predictions 0.03 0.880 0.452 0.0340 0.0340

Simulations 0.05 0.821 ± 0.022 0.438 ± 0.003 0.0315 ± 0.0180 0.0299 ± 0.0006
Predictions 0.05 0.801 0.420 0.0347 0.0347

Table 2. Comparisons between simulations and predictions at large Pr = 400. The other parameters are
Ra = 107, S0 = 0.32 and n = 40.

6. Conclusions and outlook

Turbulent RB convection with gas bubbles attached to the hot plate is numerically
investigated for 107 � Ra � 108 and Pr = 4.38 and 400. The bubble geometrical
parameters are the relative bubble-covered area S0, the relative bubble height h̃, the
bubble number n and the spatial bubble distribution. Owing to the much lower thermal
conductivity of gas as compared with liquid, the temperature profile is asymmetric and
the heat transfer efficiency of the system is reduced. More specifically, Nu significantly
decreases with increasing S0 and h̃, but is almost unaffected by n and the types of bubble
distribution.

To predict the heat transfer and the mean centre temperature of the system, we have
proposed the idea of using an equivalent single-phase system to mimic the system with
attached bubbles. By applying the GL theory for the equivalent system and imposing heat
flux conservation in the two thermal BLs, we can predict the heat transfer, the top and
bottom thermal BL thicknesses and the mean centre temperature, without introducing any
free parameter. The predictions well agree with the results from the simulations. Briefly, in
§ 4 we obtained one relationship between θ̄ and λ in (4.1), and in § 5 we obtained another
relationship between θ̄ and λ in (5.1a,b) and (5.3). Then, for only given Ra, Pr and bubble
geometries, we can well predict the heat transfer and temperature profile in the system with
bubbles attached to the bottom plate.

The results of this study can be used not only for the heat transfer in RB convection
with bubbles attached to the plates, but also for the mass transfer in electrolysis or
catalysis. Our predictions can help to obtain estimates for relevant applications and, for
example, optimise the heat or mass transfer and flow features in systems in which bubbles
are forming on the plate(s). It would also be interesting to extend our basic idea to
other wall-bounded turbulent systems with various plate properties, such as plates with
inhomogeneous properties (e.g. wettability or conducting ability).
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