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A NOTE ON THE REPRESENTATION TYPE OF 
POINTED IRREDUCIBLE COALGEBRAS AND 

UNIPOTENT ALGEBRAS 

DAVID TRUSHIN 

1. I n t r o d u c t i o n . In this paper the representation type of the class of 
pointed irreducible coalgebras is studied. We refer the reader to [4] for the 
basic definitions. A coalgebra is of bounded representation type if there is a 
bound on the dimension of finite dimensional indecomposable comodules. In 
Section 1, we show tha t the representation type is dependent upon the size of 
the space of primitives. Indeed, a pointed irreducible coalgebra is of bounded 
type if and only if it is finite dimensional and the space of primitives is one-
dimensional, i.e. if and only if it is a coalgebra spanned by a finite sequence of 
divided powers. 

Section 2 examines unipotent algebras, relating them to pointed irreducible 
coalgebras, and categorizes them as to their representat ion type. An algebra is 
of bounded representation type if there is a bound on the dimension of finite 
dimensional indecomposable modules. Two examples show how the results 
[2, 64.1] and [3, 4.4] on the representation type of ^-groups and ^-ni lpotent 
Lie algebras follow from the results in Section 1. 

2. R e p r e s e n t a t i o n type of p o i n t e d irreducib le coa lgebras . Let k be a 
field of arb i t rary characteristic and let (C, A, e) be a coalgebra over k. C is 
called irreducible if C has a unique simple subcoalgebra. C is pointed if each 
simple subcoalgebra is one-dimensional. A pointed irreducible coalgebra has a 
unique grouplike element g and kg is its coradical. C is cocommutative if for 
each c £ C, A(c) = T A(c) where T is the " tw i s t " m a p on C 0k C, T(c ® d) = 
d 0 c. Let g be a grouplike element of the coalgebra C. T h e set P(C, g) = 
{c G C\A(c) = c ® g + g ® c] is a subspace (in fact a coideal) and is called 
the space of g-primitives of C. If C is pointed irreducible we write P(C) = 
P ( C , g). I t is easily seen t ha t kg + W is a subcoalgebra where W is a subspace 
of P(C, g), and in addit ion, the sum is direct. 

A right C-comodule (M, \p) is called indecomposable if the rational C*-module 
s t ructure on M is indecomposable. Clearly if A is an associative algebra, then 
a locally finite A -module M is indecomposable if and only if M is an in
decomposable yl°-comodule, where A0 is the coalgebra dual of A. Let (M, yp) 
be a simple C-comodule for any coalgebra C. M is isomorphic to a minimal 
right coideal of C and \[/(M) Q M ®^ Corad(C) [5]. T h u s C is pointed ir-
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reducible if and only if there exists a unique isomorphism class of rational 
irreducible C*-modules, a representative of which is one-dimensional. 

1.1 Definition. A coalgebra C is of bounded representation type if there exists 
wÇ Z such that dim* M < n for every indecomposable C-comodule M. 

1.2 PROPOSITION. Let C be a pointed irreducible coalgebra such that 
dimk P(C) ^ 2. Then C is of unbounded type. In particular, C has indecom
posable modules of every odd dimension. 

Proof. Let C\, c2 6 P(C) be linearly independent and let D = kg ® k{cu c2) 
be the coalgebra spanned by C\, c2 and the unique grouplike g. Since every D-
comodule is a C-comodule it is sufficient to prove the result for D. Let M = 
k{m0, . . . , mn, ni, . . . , nn) be a vector space of dimension 2w + 1. Let 
yp : M —> M ® D be defined on a basis by 

\p(mi) =mt (g) g i = 0, . . . , w, and 

^(wf) = Wi ® ci + Wi_i <g> c2 + w* 0 g i = 1, . . . , n. 

It is easily shown that this defines a C-comodule structure; we show it is 
indecomposable. 

Let a, b G D* such that 

(a - 1, ci) = 1 = (b - 1, c2>, (a - 1, g) = (a - 1, c2) 

= (b-l,g) = (b- hd) = 0. 

Since D is cocommutative, a and & commute and so the proof of 64.3 of [2] 
may be applied to M and a and b to yield the desired result. 

1.3 COROLLARY. Let C be any coalgebra and let g be a grouplike element of C 
such that dim* P(C, g) ^ 2. Then C is of unbounded type. 

Let C be a coalgebra and let C0 = Corad(C). We use the coradical filtration 
{Ci}f=0 on C defined in [4, 9.1] in the sequel. The set {c0, Ci, . . .} (possibly 
finite) of elements of C is called a sequence of divided powers if c0 is grouplike 
and A(cn) = X^=o ct (8) cn-t for all n. 

1.4 PROPOSITION. Let C be a pointed irreducible coalgebra with unique group
like g. Then Cn is an indecomposable C-comodule for all n ^ 0. If, in addition, 
dim^P(C) = 1, then dimk Cn+i/Cn ^ 1 for all n ^ 0 and every finite dimensional 
sub coalgebra of C has a basis which is a sequence of divided powers. 

Proof. By the opening remarks of this section, since any subcomodule of Cn 

contains a minimal right coideal, it must contain kg. Thus Cn is not a direct 
sum of subcomodules. 

Suppose dim*; P(C) = 1. Then let n0 be the smallest integer such that 
dim* CnQ/Cno-i > 1. Clearly, n0 > 1. Let Ci, c2 G Cno be independent modulo 
CnQ-i and let C be the subcoalgebra generated by C\, c2 and Cno_i. Then C is 
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finite dimensional, pointed irreducible, dimA: C = n{) + 2, dh\\kP(C) = 1 
and Ck = Ck for k < nQ. We may thus assume tha t C = C. 

Let tf - CV- in C*. By [4, 11.0.5], (Rk^)L = Ck and so dim* C*/Ri+l = 
dim 6\ = i + 1 for i = 0, . . . , rc0. In particular, dim R/R2 = dim P ( C ) = 1. 
By choosing x Ç R\R2, one can easily show tha t the set j l , x, . . . , xw°} is a 
basis for C*, contradict ing our original assumption. If we now construct a 
similar basis for each Cn*, evidently the dual basis for Cn is a sequence of 
divided powers. 

Last, if D Ç C is any finite dimensional subcoalgebra, then D 2 kg. By 
induction, one can show tha t L> 3 Cn for every n ^ dim* D — 1. Thus 
D = Ck for some k and the result is established. 

1.0 T H E O R E M . Let C be a pointed irreducible coalgebra. Then C is of bounded 
type if and only if dim* P(C) = 1 and C is finite dimensional. 

Proof. If d im, P ( C ) è 2 , then by 1.2, C is of unbounded type. If 
clinic P ( C ) = 1 and C is infinite dimensional, then 1.4 shows tha t C is of 
unbounded type. We shall show tha t if dimk P(C) = 1, and M is a finite 
dimensional indecomposable, then M = Cn for some n. 

Let (M, i/0 be a finite dimensional indecomposable comodule and let D be a 
subcoalgebra which is minimal with respect to the property t ha t ^/(M) ÇZ 
M ® D. D is finite-dimensional and hence has a basis {c0, . . . , ck\ of divided 
powers. Since D is minimal, there exists a X (/ M* and 0 ^ m G M such tha t 
(X ® I)\p(m) — c (/_ k{c{), . . . , Cfc-i}. Since (X 0 I)\p is a D*-module map and 
D*-c = D, (X ® I)\P(D*-tn) = £> and (X ® I)\p\D*-m is injective (by com
paring dimensions). Hence (X <g> 7 ) ^ is a split morphism and so A/ = D*-m = 
Ch. 

3. U n i p o t e n t a lgebras . Let 4̂ be an associative algebra with identi ty 
over k. Let A0 be the coalgebra dual and R = (Corad(.4°)) J- in ,4. ,4 is called 
unipotent if .4 = kl © /^. The following are easy consequences of the theory. 

2.1 PROPOSITION. Let A be an algebra over afield k. 
(a) If A is finite dimensional then R is the Jacobson radical. 
(b) A is unipotent if and only if A{) is pointed irreducible. 
(c) If A is unipotent then (R")1- = A»^. 

2.2 T H E O R E M . Let A be a unipotent algebra. Then A is of bounded type if and 
only if dimk R/R2 = 1 and A is finite dimensional. 

Proof. A0 is pointed irreducible and evidently d im^P(^ l ° ) = dimk(R/R2). 
Thus the conclusion follows from 1.5. 

We conclude with two applicat ions which yield some known results as 
corollaries. Let k have characteristic p. 

2.3 Example. Let G be a finite p-group. Then kG is a Hopf algebra and 
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ker ekG = k{g — \\g G G} is nilpotent. Thus R = ker ekG by 2.1 and kG = 
kl © R, i.e. kG is unipotent. It is easily shown that dimfc R/R2 = 1 if and only 
if G is cyclic. Thus we have 

2.4 COROLLARY. A finite p-group is of bounded type if and only if it is cyclic. 

2.5 Example. Let «if be a finite dimensional ^-nilpotent restricted Lie 
algebra. Let H = u(J£) be the restricted enveloping algebra. iJ is unipotent 
since ker eH is generated by i f and is thus nilpotent. Furthermore, dim/c R/R2 = 
1 if and only if S£ is cyclic. Thus we obtain the following. 

2.6 COROLLARY. A finite dimensional p-nilpotent restricted Lie algebra is of 
bounded type if and only if it is cyclic. 
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