A NOTE ON THE REPRESENTATION TYPE OF POINTED IRREDUCIBLE COALGEBRAS AND UNIPOTENT ALGEBRAS

DAVID TRUSHIN

1. Introduction. In this paper the representation type of the class of pointed irreducible coalgebras is studied. We refer the reader to [4] for the basic definitions. A coalgebra is of *bounded representation type* if there is a bound on the dimension of finite dimensional indecomposable comodules. In Section 1, we show that the representation type is dependent upon the size of the space of primitives. Indeed, a pointed irreducible coalgebra is of bounded type if and only if it is finite dimensional and the space of primitives is one-dimensional, i.e. if and only if it is a coalgebra spanned by a finite sequence of divided powers.

Section 2 examines unipotent algebras, relating them to pointed irreducible coalgebras, and categorizes them as to their representation type. An algebra is of *bounded representation type* if there is a bound on the dimension of finite dimensional indecomposable modules. Two examples show how the results [2, 64.1] and [3, 4.4] on the representation type of *p*-groups and *p*-nilpotent Lie algebras follow from the results in Section 1.

2. Representation type of pointed irreducible coalgebras. Let k be a field of arbitrary characteristic and let (C, Δ, ϵ) be a coalgebra over k. C is called *irreducible* if C has a unique simple subcoalgebra. C is *pointed* if each simple subcoalgebra is one-dimensional. A pointed irreducible coalgebra has a unique grouplike element g and kg is its coradical. C is cocommutative if for each $c \in C$, $\Delta(c) = T\Delta(c)$ where T is the "twist" map on $C \otimes_k C$, $T(c \otimes d) = d \otimes c$. Let g be a grouplike element of the coalgebra C. The set $P(C, g) = \{c \in C | \Delta(c) = c \otimes g + g \otimes c\}$ is a subspace (in fact a coideal) and is called the space of g-primitives of C. If C is pointed irreducible we write $P(C) \equiv P(C, g)$. It is easily seen that kg + W is a subcoalgebra where W is a subspace of P(C, g), and in addition, the sum is direct.

A right C-comodule (M, ψ) is called *indecomposable* if the rational C*-module structure on M is indecomposable. Clearly if A is an associative algebra, then a locally finite A-module M is indecomposable if and only if M is an indecomposable A^{0} -comodule, where A^{0} is the coalgebra dual of A. Let (M, ψ) be a simple C-comodule for any coalgebra C. M is isomorphic to a minimal right coideal of C and $\psi(M) \subseteq M \otimes_{k} \text{Corad}(C)$ [5]. Thus C is pointed ir-

Received June 8, 1976. Part of this research is contained in the author's doctoral dissertation.

reducible if and only if there exists a unique isomorphism class of rational irreducible C^* -modules, a representative of which is one-dimensional.

1.1 Definition. A coalgebra C is of bounded representation type if there exists $n \in \mathbb{Z}$ such that $\dim_k M < n$ for every indecomposable C-comodule M.

1.2 PROPOSITION. Let C be a pointed irreducible coalgebra such that $\dim_k P(C) \geq 2$. Then C is of unbounded type. In particular, C has indecomposable modules of every odd dimension.

Proof. Let $c_1, c_2 \in P(C)$ be linearly independent and let $D = kg \oplus k\{c_1, c_2\}$ be the coalgebra spanned by c_1, c_2 and the unique grouplike g. Since every D-comodule is a C-comodule it is sufficient to prove the result for D. Let $M = k\{m_0, \ldots, m_n, n_1, \ldots, n_n\}$ be a vector space of dimension 2n + 1. Let $\psi: M \to M \otimes D$ be defined on a basis by

$$\begin{split} \psi(m_i) &= m_i \otimes g \quad i = 0, \dots, n, \quad \text{and} \\ \psi(n_i) &= m_i \otimes c_1 + m_{i-1} \otimes c_2 + n_i \otimes g \quad i = 1, \dots, n. \end{split}$$

It is easily shown that this defines a *C*-comodule structure; we show it is indecomposable.

Let $a, b \in D^*$ such that

$$\langle a - 1, c_1 \rangle = 1 = \langle b - 1, c_2 \rangle, \langle a - 1, g \rangle = \langle a - 1, c_2 \rangle$$
$$= \langle b - 1, g \rangle = \langle b - 1, c_1 \rangle = 0.$$

Since D is cocommutative, a and b commute and so the proof of 64.3 of [2] may be applied to M and a and b to yield the desired result.

1.3 COROLLARY. Let C be any coalgebra and let g be a grouplike element of C such that $\dim_k P(C, g) \geq 2$. Then C is of unbounded type.

Let C be a coalgebra and let $C_0 = \text{Corad}(C)$. We use the *coradical filtration* $\{C_i\}_{i=0}^{\infty}$ on C defined in [4, 9.1] in the sequel. The set $\{c_0, c_1, \ldots\}$ (possibly finite) of elements of C is called a *sequence of divided powers* if c_0 is grouplike and $\Delta(c_n) = \sum_{i=0}^{n} c_i \otimes c_{n-i}$ for all n.

1.4 PROPOSITION. Let C be a pointed irreducible coalgebra with unique grouplike g. Then C_n is an indecomposable C-comodule for all $n \ge 0$. If, in addition, $\dim_k P(C) = 1$, then $\dim_k C_{n+1}/C_n \le 1$ for all $n \ge 0$ and every finite dimensional subcoalgebra of C has a basis which is a sequence of divided powers.

Proof. By the opening remarks of this section, since any subcomodule of C_n contains a minimal right coideal, it must contain kg. Thus C_n is not a direct sum of subcomodules.

Suppose dim_k P(C) = 1. Then let n_0 be the smallest integer such that dim_k $C_{n_0}/C_{n_0-1} > 1$. Clearly, $n_0 > 1$. Let $c_1, c_2 \in C_{n_0}$ be independent modulo C_{n_0-1} and let C' be the subcoalgebra generated by c_1, c_2 and C_{n_0-1} . Then C' is

DAVID TRUSHIN

finite dimensional, pointed irreducible, $\dim_k C' = n_0 + 2$, $\dim_k P(C') = 1$ and $C_k' = C_k$ for $k < n_0$. We may thus assume that C = C'.

Let $R = C_0^{\perp}$ in C^* . By [4, 11.0.5], $(R^{k+1})^{\perp} = C_k$ and so $\dim_k C^*/R^{i+1} = \dim C_i = i + 1$ for $i = 0, \ldots, n_0$. In particular, $\dim R/R^2 = \dim P(C) = 1$. By choosing $x \in R \setminus R^2$, one can easily show that the set $\{1, x, \ldots, x^{n_0}\}$ is a basis for C^* , contradicting our original assumption. If we now construct a similar basis for each C_n^* , evidently the dual basis for C_n is a sequence of divided powers.

Last, if $D \subseteq C$ is any finite dimensional subcoalgebra, then $D \supseteq kg$. By induction, one can show that $D \supseteq C_n$ for every $n \leq \dim_k D - 1$. Thus $D = C_k$ for some k and the result is established.

1.5 THEOREM. Let C be a pointed irreducible coalgebra. Then C is of bounded type if and only if $\dim_k P(C) = 1$ and C is finite dimensional.

Proof. If $\dim_k P(C) \ge 2$, then by 1.2, C is of unbounded type. If $\dim_k P(C) = 1$ and C is infinite dimensional, then 1.4 shows that C is of unbounded type. We shall show that if $\dim_k P(C) = 1$, and M is a finite dimensional indecomposable, then $M \cong C_n$ for some n.

Let (M, ψ) be a finite dimensional indecomposable comodule and let D be a subcoalgebra which is minimal with respect to the property that $\psi(M) \subseteq M \otimes D$. D is finite-dimensional and hence has a basis $\{c_0, \ldots, c_k\}$ of divided powers. Since D is minimal, there exists a $\lambda \in M^*$ and $0 \neq m \in M$ such that $(\lambda \otimes I)\psi(m) = c \notin k\{c_0, \ldots, c_{k-1}\}$. Since $(\lambda \otimes I)\psi$ is a D^* -module map and $D^* \cdot c = D$, $(\lambda \otimes I)\psi(D^* \cdot m) = D$ and $(\lambda \otimes I)\psi|_{D^* \cdot m}$ is injective (by comparing dimensions). Hence $(\lambda \otimes I)\psi$ is a split morphism and so $M = D^* \cdot m = C_k$.

3. Unipotent algebras. Let A be an associative algebra with identity over k. Let A^0 be the coalgebra dual and $R = (\text{Corad}(A^0))^{\perp}$ in A. A is called *unipotent* if $A = kl \oplus R$. The following are easy consequences of the theory.

- 2.1 PROPOSITION. Let A be an algebra over a field k.
- (a) If A is finite dimensional then R is the Jacobson radical.
- (b) A is unipotent if and only if A^o is pointed irreducible.
- (c) If A is unipotent then $(R^n)^{\perp} = A_{n-1}^0$.

2.2 THEOREM. Let A be a unipotent algebra. Then A is of bounded type if and only if dim_k $R/R^2 = 1$ and A is finite dimensional.

Proof. A^0 is pointed irreducible and evidently $\dim_k P(A^0) = \dim_k (R/R^2)$. Thus the conclusion follows from 1.5.

We conclude with two applications which yield some known results as corollaries. Let k have characteristic p.

2.3 Example. Let G be a finite p-group. Then kG is a Hopf algebra and

ker $\epsilon_{kG} = k\{g - 1 | g \in G\}$ is nilpotent. Thus $R = \ker \epsilon_{kG}$ by 2.1 and $kG = kl \oplus R$, i.e. kG is unipotent. It is easily shown that $\dim_k R/R^2 = 1$ if and only if G is cyclic. Thus we have

2.4 COROLLARY. A finite p-group is of bounded type if and only if it is cyclic.

2.5 *Example*. Let \mathscr{L} be a finite dimensional *p*-nilpotent restricted Lie algebra. Let $H = u(\mathscr{L})$ be the restricted enveloping algebra. *H* is unipotent since ker ϵ_H is generated by \mathscr{L} and is thus nilpotent. Furthermore, $\dim_k R/R^2 = 1$ if and only if \mathscr{L} is cyclic. Thus we obtain the following.

2.6 COROLLARY. A finite dimensional p-nilpotent restricted Lie algebra is of bounded type if and only if it is cyclic.

References

- 1. H. P. Allen, Invariant radical splittings: a Hopf approach, Journal of Pure and Applied Algebra 3 (1973), 1-19.
- 2. Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras (Interscience Publishers, New York, 1966).
- 3. Richard D. Pollack, *Restricted Lie algebras of bounded type*, Ph.D. Dissertation, Yale University, 1967.
- 4. Moss E. Sweedler, Hopf algebras (W. A. Benjamin, Inc., New York, 1969).
- David S. Trushin, Coinduced comodules and applications to the representation theory of coalgebras, Ph.D. Dissertation, The Ohio State University, Columbus, Ohio, 1975.

The Ohio State University, Columbus, Ohio